| 1 | \documentclass[11pt,awpaper]{book} |
|---|
| 2 | |
|---|
| 3 | \usepackage{math} |
|---|
| 4 | \usepackage{jweb} |
|---|
| 5 | \usepackage[nolineno]{lgrind} |
|---|
| 6 | \usepackage{awpaper} |
|---|
| 7 | \usepackage{graphicx} |
|---|
| 8 | |
|---|
| 9 | \setlength{\evensidemargin}{-0.25in}% was -0.17in |
|---|
| 10 | \setlength{\oddsidemargin}{0in}%was -0.25in |
|---|
| 11 | \setlength{\textwidth}{5.625in}%was 5.75in |
|---|
| 12 | \setlength{\textheight}{7.75in} |
|---|
| 13 | \setlength{\topmargin}{-0.125in}%was -0.25 |
|---|
| 14 | \addtolength{\topmargin}{-\headheight} |
|---|
| 15 | \addtolength{\topmargin}{-\headsep} |
|---|
| 16 | |
|---|
| 17 | \newif\ifpdf |
|---|
| 18 | \ifx\pdfoutput\undefined |
|---|
| 19 | \pdffalse |
|---|
| 20 | \else |
|---|
| 21 | \pdfoutput=1 |
|---|
| 22 | \pdftrue |
|---|
| 23 | \fi |
|---|
| 24 | |
|---|
| 25 | \ifpdf |
|---|
| 26 | \usepackage[ |
|---|
| 27 | pdftex, |
|---|
| 28 | colorlinks=true, %change to true for the electronic version |
|---|
| 29 | linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue |
|---|
| 30 | ]{hyperref} |
|---|
| 31 | \fi |
|---|
| 32 | |
|---|
| 33 | \ifpdf |
|---|
| 34 | \newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{{\small \textsf{#1}}}} |
|---|
| 35 | \newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}} |
|---|
| 36 | \newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}} |
|---|
| 37 | \newcommand{\myhyperref}[2]{\hyperref[#1]{#2}} |
|---|
| 38 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 39 | \else |
|---|
| 40 | \newcommand{\myhyperref}[2]{#2} |
|---|
| 41 | \newcommand{\bglconcept}[1]{{\small \textsf{#1}}} |
|---|
| 42 | \newcommand{\pmconcept}[1]{{\small \textsf{#1}}} |
|---|
| 43 | \newcommand{\stlconcept}[1]{{\small \textsf{#1}}} |
|---|
| 44 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 45 | \fi |
|---|
| 46 | |
|---|
| 47 | \newcommand{\code}[1]{{\small{\em \textbf{#1}}}} |
|---|
| 48 | |
|---|
| 49 | |
|---|
| 50 | \newcommand{\isomorphic}{\cong} |
|---|
| 51 | |
|---|
| 52 | \begin{document} |
|---|
| 53 | |
|---|
| 54 | \title{An Implementation of Graph Isomorphism Testing} |
|---|
| 55 | \author{Jeremy G. Siek} |
|---|
| 56 | |
|---|
| 57 | \maketitle |
|---|
| 58 | |
|---|
| 59 | % Ideas: use BFS instead of DFS, don't have to sort edges? |
|---|
| 60 | % No, you would still have to sort the edges. |
|---|
| 61 | % |
|---|
| 62 | %Figure~\ref{fig:iso-eg2}. |
|---|
| 63 | % 0 0 0 1 1 2 5 6 6 7 |
|---|
| 64 | % 1 2 3 4 2 4 6 3 7 5 |
|---|
| 65 | %\vizfig{iso-eg2}{Vertices numbered by BFS discover time. The BFS tree |
|---|
| 66 | %edges are the solid lines. Nodes $0$ and $5$ are BFS tree root nodes.} |
|---|
| 67 | % |
|---|
| 68 | % You could do a modified Dijkstra, where the priority in the queue |
|---|
| 69 | % would be the BFS discover time of the target vertex. |
|---|
| 70 | |
|---|
| 71 | % Use w(u,v) = |Adj[u] \intersect Adj[v]| as an edge invariant. |
|---|
| 72 | % Has anyone used edge invariants before? |
|---|
| 73 | |
|---|
| 74 | |
|---|
| 75 | \section{Introduction} |
|---|
| 76 | |
|---|
| 77 | This paper documents the implementation of the \code{isomorphism()} |
|---|
| 78 | function of the Boost Graph Library. The implementation was by Jeremy |
|---|
| 79 | Siek with algorithmic improvements and test code from Douglas Gregor |
|---|
| 80 | and Brian Osman. The \code{isomorphism()} function answers the |
|---|
| 81 | question, ``are these two graphs equal?'' By \emph{equal} we mean |
|---|
| 82 | the two graphs have the same structure---the vertices and edges are |
|---|
| 83 | connected in the same way. The mathematical name for this kind of |
|---|
| 84 | equality is \emph{isomorphism}. |
|---|
| 85 | |
|---|
| 86 | More precisely, an \emph{isomorphism} is a one-to-one mapping of the |
|---|
| 87 | vertices in one graph to the vertices of another graph such that |
|---|
| 88 | adjacency is preserved. Another words, given graphs $G_{1} = |
|---|
| 89 | (V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a |
|---|
| 90 | function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$, |
|---|
| 91 | edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in |
|---|
| 92 | $E_{2}$. |
|---|
| 93 | |
|---|
| 94 | The graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists |
|---|
| 95 | between the two graphs, which we denote by $G_1 \isomorphic G_2$. |
|---|
| 96 | Both graphs must be the same size, so let $N = |V_1| = |V_2|$. |
|---|
| 97 | |
|---|
| 98 | In the following discussion we will need to use several more notions |
|---|
| 99 | from graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of |
|---|
| 100 | graph $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An |
|---|
| 101 | \emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$ |
|---|
| 102 | consists of the vertices in $V_s$, which is a subset of $V$, and every |
|---|
| 103 | edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use |
|---|
| 104 | the notation $E[V_s]$ to mean the edges in $G[V_s]$. |
|---|
| 105 | |
|---|
| 106 | \section{Backtracking Search} |
|---|
| 107 | \label{sec:backtracking} |
|---|
| 108 | |
|---|
| 109 | The algorithm used by the \code{isomorphism()} function is, at first |
|---|
| 110 | approximation, an exhaustive search implemented via backtracking. The |
|---|
| 111 | backtracking algorithm is a recursive function. At each stage we will |
|---|
| 112 | try to extend the match that we have found so far. So suppose that we |
|---|
| 113 | have already determined that some subgraph of $G_1$ is isomorphic to a |
|---|
| 114 | subgraph of $G_2$. We then try to add a vertex to each subgraph such |
|---|
| 115 | that the new subgraphs are still isomorphic to one another. At some |
|---|
| 116 | point we may hit a dead end---there are no vertices that can be added |
|---|
| 117 | to extend the isomorphic subgraphs. We then backtrack to previous |
|---|
| 118 | smaller matching subgraphs, and try extending with a different vertex |
|---|
| 119 | choice. The process ends by either finding a complete mapping between |
|---|
| 120 | $G_1$ and $G_2$ and returning true, or by exhausting all possibilities |
|---|
| 121 | and returning false. |
|---|
| 122 | |
|---|
| 123 | The problem with the exhaustive backtracking algorithm is that there |
|---|
| 124 | are $N!$ possible vertex mappings, and $N!$ gets very large as $N$ |
|---|
| 125 | increases, so we need to prune the search space. We use the pruning |
|---|
| 126 | techniques described in |
|---|
| 127 | \cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo}, |
|---|
| 128 | some of which originated in |
|---|
| 129 | \cite{sussenguth65:_isomorphism,unger64:_isomorphism}. Also, the |
|---|
| 130 | specific backtracking method we use is the one from |
|---|
| 131 | \cite{deo77:_new_algo_digraph_isomorph}. |
|---|
| 132 | |
|---|
| 133 | We consider the vertices of $G_1$ for addition to the matched subgraph |
|---|
| 134 | in a specific order, so assume that the vertices of $G_1$ are labeled |
|---|
| 135 | $1,\ldots,N$ according to that order. As we will see later, a good |
|---|
| 136 | ordering of the vertices is by DFS discover time. Let $G_1[k]$ denote |
|---|
| 137 | the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$ |
|---|
| 138 | being an empty graph. We also consider the edges of $G_1$ in a |
|---|
| 139 | specific order. We always examine edges in the current subgraph |
|---|
| 140 | $G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v |
|---|
| 141 | \leq k$. This ordering of edges can be acheived by sorting each edge |
|---|
| 142 | $(u,v)$ by lexicographical comparison on the tuple $\langle \max(u,v), |
|---|
| 143 | u, v \rangle$. Figure~\ref{fig:iso-eg} shows an example of a graph |
|---|
| 144 | with the vertices labelled by DFS discover time. The edge ordering for |
|---|
| 145 | this graph is as follows: |
|---|
| 146 | |
|---|
| 147 | \begin{tabular}{lccccccccc} |
|---|
| 148 | source: &0&1&0&1&3&0&5&6&6\\ |
|---|
| 149 | target: &1&2&3&3&2&4&6&4&7 |
|---|
| 150 | \end{tabular} |
|---|
| 151 | |
|---|
| 152 | \vizfig{iso-eg}{Vertices numbered by DFS discover time. The DFS tree |
|---|
| 153 | edges are the solid lines. Nodes $0$ and $5$ are DFS tree root nodes.} |
|---|
| 154 | |
|---|
| 155 | Each step of the backtracking search moves from left to right though |
|---|
| 156 | the ordered edges. At each step it examines an edge $(i,j)$ of $G_1$ |
|---|
| 157 | and decides whether to continue to the left or to go back. There are |
|---|
| 158 | three cases to consider: |
|---|
| 159 | |
|---|
| 160 | \begin{enumerate} |
|---|
| 161 | \item \label{case:1} $i > k$ |
|---|
| 162 | \item \label{case:2} $i \leq k$ and $j > k$. |
|---|
| 163 | \item \label{case:3} $i \leq k$ and $j \leq k$. |
|---|
| 164 | \end{enumerate} |
|---|
| 165 | |
|---|
| 166 | \paragraph{Case 1: $i > k$.} |
|---|
| 167 | $i$ is not in the matched subgraph $G_1[k]$. This situation only |
|---|
| 168 | happens at the very beginning of the search, or when $i$ is not |
|---|
| 169 | reachable from any of the vertices in $G_1[k]$. This means that we |
|---|
| 170 | are finished with $G_1[k]$. We increment $k$ and find a match for it |
|---|
| 171 | amongst any of the eligible vertices in $V_2 - S$. We then proceed to |
|---|
| 172 | Case 2. It is usually the case that $i$ is equal to the new $k$, but |
|---|
| 173 | when there is another DFS root $r$ with no in-edges or out-edges |
|---|
| 174 | and if $r < i$ then it will be the new $k$. |
|---|
| 175 | |
|---|
| 176 | \paragraph{Case 2: $i \leq k$ and $j > k$.} |
|---|
| 177 | $i$ is in the matched subgraph $G_1[k]$, but $j$ is not. We are about |
|---|
| 178 | to increment $k$ to try and grow the matched subgraph to include |
|---|
| 179 | $j$. However, first we need to finish verifying that $G_1[k] |
|---|
| 180 | \isomorphic G_2[S]$. In previous steps we proved that $G_1[k-1] |
|---|
| 181 | \isomorphic G_2[S-\{f(k)\}]$, so now we just need to verify the |
|---|
| 182 | extension of the isomorphism to $k$. At this point we are guaranteed |
|---|
| 183 | to have seen all the edges to and from vertex $k$ (because the edges |
|---|
| 184 | are sorted), and in previous steps we have checked that for each edge |
|---|
| 185 | incident on $k$ in $E_1[k]$ there is a matching edge in |
|---|
| 186 | $E_2[S]$. However we still need to check the ``only if'' part of the |
|---|
| 187 | ``if and only if''. So we check that for every edge $(u,v)$ incident |
|---|
| 188 | on $f(k)$ there is $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. A quick way to |
|---|
| 189 | verify this is to make sure that the number of edges incident on $k$ |
|---|
| 190 | in $E_1[k]$ is the same as the number of edges incident on $f(k)$ in |
|---|
| 191 | $E_2[S]$. We create an edge counter that we increment every time we |
|---|
| 192 | see an edge incident on $k$ and decrement for each edge incident on |
|---|
| 193 | $f(k)$. If the counter gets back to zero we know the edges match up. |
|---|
| 194 | |
|---|
| 195 | Once we have verified that $G_1[k] \isomorphic G_2[S]$ we add $f(k)$ |
|---|
| 196 | to $S$, increment $k$, and then try assigning $j$ to |
|---|
| 197 | any of the eligible vertices in $V_2 - S$. More about what |
|---|
| 198 | ``eligible'' means below. |
|---|
| 199 | |
|---|
| 200 | \paragraph{Case 3: $i \leq k$ and $j \leq k$.} |
|---|
| 201 | Both $i$ and $j$ are in $G_1[k]$. We check to make sure that |
|---|
| 202 | $(f(i),f(j)) \in E_2[S]$ and then proceed to the next edge. |
|---|
| 203 | |
|---|
| 204 | |
|---|
| 205 | \subsection{Vertex Invariants} |
|---|
| 206 | \label{sec:vertex-invariants} |
|---|
| 207 | |
|---|
| 208 | One way to reduce the search space is through the use of \emph{vertex |
|---|
| 209 | invariants}. The idea is to compute a number for each vertex $i(v)$ |
|---|
| 210 | such that $i(v) = i(v')$ if there exists some isomorphism $f$ where |
|---|
| 211 | $f(v) = v'$. Then when we look for a match to some vertex $v$, only |
|---|
| 212 | those vertices that have the same vertex invariant number are |
|---|
| 213 | ``eligible''. The number of vertices in a graph with the same vertex |
|---|
| 214 | invariant number $i$ is called the \emph{invariant multiplicity} for |
|---|
| 215 | $i$. In this implementation, by default we use the function $i(v) = |
|---|
| 216 | (|V|+1) \times \outdegree(v) + \indegree(v)$, though the user can also |
|---|
| 217 | supply there own invariant function. The ability of the invariant |
|---|
| 218 | function to prune the search space varies widely with the type of |
|---|
| 219 | graph. |
|---|
| 220 | |
|---|
| 221 | The following is the definition of the functor that implements the |
|---|
| 222 | default vertex invariant. The functor models the |
|---|
| 223 | \stlconcept{AdaptableUnaryFunction} concept. |
|---|
| 224 | |
|---|
| 225 | @d Degree vertex invariant functor |
|---|
| 226 | @{ |
|---|
| 227 | template <typename InDegreeMap, typename Graph> |
|---|
| 228 | class degree_vertex_invariant |
|---|
| 229 | { |
|---|
| 230 | typedef typename graph_traits<Graph>::vertex_descriptor vertex_t; |
|---|
| 231 | typedef typename graph_traits<Graph>::degree_size_type size_type; |
|---|
| 232 | public: |
|---|
| 233 | typedef vertex_t argument_type; |
|---|
| 234 | typedef size_type result_type; |
|---|
| 235 | |
|---|
| 236 | degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g) |
|---|
| 237 | : m_in_degree_map(in_degree_map), m_g(g) { } |
|---|
| 238 | |
|---|
| 239 | size_type operator()(vertex_t v) const { |
|---|
| 240 | return (num_vertices(m_g) + 1) * out_degree(v, m_g) |
|---|
| 241 | + get(m_in_degree_map, v); |
|---|
| 242 | } |
|---|
| 243 | // The largest possible vertex invariant number |
|---|
| 244 | size_type max() const { |
|---|
| 245 | return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g); |
|---|
| 246 | } |
|---|
| 247 | private: |
|---|
| 248 | InDegreeMap m_in_degree_map; |
|---|
| 249 | const Graph& m_g; |
|---|
| 250 | }; |
|---|
| 251 | @} |
|---|
| 252 | |
|---|
| 253 | |
|---|
| 254 | \subsection{Vertex Order} |
|---|
| 255 | |
|---|
| 256 | A good choice of the labeling for the vertices (which determines the |
|---|
| 257 | order in which the subgraph $G_1[k]$ is grown) can also reduce the |
|---|
| 258 | search space. In the following we discuss two labeling heuristics. |
|---|
| 259 | |
|---|
| 260 | \subsubsection{Most Constrained First} |
|---|
| 261 | |
|---|
| 262 | Consider the most constrained vertices first. That is, examine |
|---|
| 263 | lower-degree vertices before higher-degree vertices. This reduces the |
|---|
| 264 | search space because it chops off a trunk before the trunk has a |
|---|
| 265 | chance to blossom out. We can generalize this to use vertex |
|---|
| 266 | invariants. We examine vertices with low invariant multiplicity |
|---|
| 267 | before examining vertices with high invariant multiplicity. |
|---|
| 268 | |
|---|
| 269 | \subsubsection{Adjacent First} |
|---|
| 270 | |
|---|
| 271 | It only makes sense to examine an edge if one or more of its vertices |
|---|
| 272 | has been assigned a mapping. This means that we should visit vertices |
|---|
| 273 | adjacent to those in the current matched subgraph before proceeding. |
|---|
| 274 | |
|---|
| 275 | \subsubsection{DFS Order, Starting with Lowest Multiplicity} |
|---|
| 276 | |
|---|
| 277 | For this implementation, we combine the above two heuristics in the |
|---|
| 278 | following way. To implement the ``adjacent first'' heuristic we apply |
|---|
| 279 | DFS to the graph, and use the DFS discovery order as our vertex |
|---|
| 280 | order. To comply with the ``most constrained first'' heuristic we |
|---|
| 281 | order the roots of our DFS trees by invariant multiplicity. |
|---|
| 282 | |
|---|
| 283 | |
|---|
| 284 | \subsection{Implementation of the \code{match} function} |
|---|
| 285 | |
|---|
| 286 | |
|---|
| 287 | The \code{match} function implements the recursive backtracking, |
|---|
| 288 | handling the four cases described in \S\ref{sec:backtracking}. |
|---|
| 289 | |
|---|
| 290 | @d Match function |
|---|
| 291 | @{ |
|---|
| 292 | bool match(edge_iter iter, int dfs_num_k) |
|---|
| 293 | { |
|---|
| 294 | if (iter != ordered_edges.end()) { |
|---|
| 295 | vertex1_t i = source(*iter, G1), j = target(*iter, G2); |
|---|
| 296 | if (dfs_num[i] > dfs_num_k) { |
|---|
| 297 | @<Find a match for the DFS tree root $k+1$@> |
|---|
| 298 | } |
|---|
| 299 | else if (dfs_num[j] > dfs_num_k) { |
|---|
| 300 | @<Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$@> |
|---|
| 301 | } |
|---|
| 302 | else { |
|---|
| 303 | @<Check to see if $(f(i),f(j)) \in E_2[S]$ and continue@> |
|---|
| 304 | } |
|---|
| 305 | } else |
|---|
| 306 | return true; |
|---|
| 307 | return false; |
|---|
| 308 | } |
|---|
| 309 | @} |
|---|
| 310 | |
|---|
| 311 | \noindent Now to describe how each of the four cases is implemented. |
|---|
| 312 | |
|---|
| 313 | \paragraph{Case 1: $i \not\in G_1[k]$.} |
|---|
| 314 | We increment $k$ and try to map it to any of the eligible vertices of |
|---|
| 315 | $V_2 - S$. After matching the new $k$ we proceed by invoking |
|---|
| 316 | \code{match}. We do not yet move on to the next edge, since we have |
|---|
| 317 | not yet found a match for edge, or for target $j$. We reset the edge |
|---|
| 318 | counter to zero. |
|---|
| 319 | |
|---|
| 320 | @d Find a match for the DFS tree root $k+1$ |
|---|
| 321 | @{ |
|---|
| 322 | vertex1_t kp1 = dfs_vertices[dfs_num_k + 1]; |
|---|
| 323 | BGL_FORALL_VERTICES_T(u, G2, Graph2) { |
|---|
| 324 | if (invariant1(kp1) == invariant2(u) && in_S[u] == false) { |
|---|
| 325 | f[kp1] = u; |
|---|
| 326 | in_S[u] = true; |
|---|
| 327 | num_edges_on_k = 0; |
|---|
| 328 | if (match(iter, dfs_num_k + 1)); |
|---|
| 329 | return true; |
|---|
| 330 | in_S[u] = false; |
|---|
| 331 | } |
|---|
| 332 | } |
|---|
| 333 | @} |
|---|
| 334 | |
|---|
| 335 | |
|---|
| 336 | \paragraph{Case 2: $i \in G_1[k]$ and $j \not\in G_1[k]$.} |
|---|
| 337 | Before we extend the subgraph by incrementing $k$, we need to finish |
|---|
| 338 | verifying that $G_1[k]$ and $G_2[S]$ are isomorphic. We decrement the |
|---|
| 339 | edge counter for every edge incident to $f(k)$ in $G_2[S]$, which |
|---|
| 340 | should bring the counter back down to zero. If not we return false. |
|---|
| 341 | |
|---|
| 342 | @d Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$ |
|---|
| 343 | @{ |
|---|
| 344 | vertex1_t k = dfs_vertices[dfs_num_k]; |
|---|
| 345 | @<Count out-edges of $f(k)$ in $G_2[S]$@> |
|---|
| 346 | @<Count in-edges of $f(k)$ in $G_2[S]$@> |
|---|
| 347 | if (num_edges_on_k != 0) |
|---|
| 348 | return false; |
|---|
| 349 | @<Find a match for $j$ and continue@> |
|---|
| 350 | @} |
|---|
| 351 | |
|---|
| 352 | \noindent We decrement the edge counter for every vertex in |
|---|
| 353 | $Adj[f(k)]$ that is also in $S$. We call \code{count\_if} to do the |
|---|
| 354 | counting, using \code{boost::bind} to create the predicate functor. |
|---|
| 355 | |
|---|
| 356 | @d Count out-edges of $f(k)$ in $G_2[S]$ |
|---|
| 357 | @{ |
|---|
| 358 | num_edges_on_k -= |
|---|
| 359 | count_if(adjacent_vertices(f[k], G2), make_indirect_pmap(in_S)); |
|---|
| 360 | @} |
|---|
| 361 | |
|---|
| 362 | \noindent Next we iterate through all the vertices in $S$ and for each |
|---|
| 363 | we decrement the counter for each edge whose target is $k$. |
|---|
| 364 | |
|---|
| 365 | % We could specialize this for the case when G_2 is bidirectional. |
|---|
| 366 | |
|---|
| 367 | @d Count in-edges of $f(k)$ in $G_2[S]$ |
|---|
| 368 | @{ |
|---|
| 369 | for (int jj = 0; jj < dfs_num_k; ++jj) { |
|---|
| 370 | vertex1_t j = dfs_vertices[jj]; |
|---|
| 371 | num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[k]); |
|---|
| 372 | } |
|---|
| 373 | @} |
|---|
| 374 | |
|---|
| 375 | Now that we have finished verifying that $G_1[k] \isomorphic G_2[S]$, |
|---|
| 376 | we can now consider extending the isomorphism. We need to find a match |
|---|
| 377 | for $j$ in $V_2 - S$. Since $j$ is adjacent to $i$, we can further |
|---|
| 378 | narrow down the search by only considering vertices adjacent to |
|---|
| 379 | $f(i)$. Also, the vertex must have the same vertex invariant. Once we |
|---|
| 380 | have a matching vertex $v$ we extend the matching subgraphs by |
|---|
| 381 | incrementing $k$ and adding $v$ to $S$, we set $f(j) = v$, and we set |
|---|
| 382 | the edge counter to $1$ (since $(i,j)$ is the first edge incident on |
|---|
| 383 | our new $k$). We continue to the next edge by calling \code{match}. If |
|---|
| 384 | that fails we undo the assignment $f(j) = v$. |
|---|
| 385 | |
|---|
| 386 | @d Find a match for $j$ and continue |
|---|
| 387 | @{ |
|---|
| 388 | BGL_FORALL_ADJ_T(f[i], v, G2, Graph2) |
|---|
| 389 | if (invariant2(v) == invariant1(j) && in_S[v] == false) { |
|---|
| 390 | f[j] = v; |
|---|
| 391 | in_S[v] = true; |
|---|
| 392 | num_edges_on_k = 1; |
|---|
| 393 | int next_k = std::max(dfs_num_k, std::max(dfs_num[i], dfs_num[j])); |
|---|
| 394 | if (match(next(iter), next_k)) |
|---|
| 395 | return true; |
|---|
| 396 | in_S[v] = false; |
|---|
| 397 | } |
|---|
| 398 | @} |
|---|
| 399 | |
|---|
| 400 | \paragraph{Case 3: both $i$ and $j$ are in $G_1[k]$.} |
|---|
| 401 | Our goal is to check whether $(f(i),f(j)) \in E_2[S]$. If $f(j)$ is |
|---|
| 402 | in $Adj[f(i)]$ then we have a match for the edge $(i,j)$, and can |
|---|
| 403 | increment the counter for the number of edges incident on $k$ in |
|---|
| 404 | $E_1[k]$. We continue by calling \code{match} on the next edge. |
|---|
| 405 | |
|---|
| 406 | @d Check to see if $(f(i),f(j)) \in E_2[S]$ and continue |
|---|
| 407 | @{ |
|---|
| 408 | edge2_t e2; |
|---|
| 409 | bool fi_fj_exists = false; |
|---|
| 410 | typename graph_traits<Graph2>::out_edge_iterator io, io_end; |
|---|
| 411 | for (tie(io, io_end) = out_edges(f[i], G2); io != io_end; ++io) |
|---|
| 412 | if (target(*io, G2) == f[j]) { |
|---|
| 413 | fi_fj_exists = true; |
|---|
| 414 | e2 = *io; |
|---|
| 415 | } |
|---|
| 416 | |
|---|
| 417 | if (fi_fj_exists && edge_compare(e2, *iter)) { |
|---|
| 418 | ++num_edges_on_k; |
|---|
| 419 | if (match(next(iter), dfs_num_k)) |
|---|
| 420 | return true; |
|---|
| 421 | } |
|---|
| 422 | @} |
|---|
| 423 | |
|---|
| 424 | \section{Public Interface} |
|---|
| 425 | |
|---|
| 426 | The following is the public interface for the \code{isomorphism} |
|---|
| 427 | function. The input to the function is the two graphs $G_1$ and $G_2$, |
|---|
| 428 | mappings from the vertices in the graphs to integers (in the range |
|---|
| 429 | $[0,|V|)$), and a vertex invariant function object. The output of the |
|---|
| 430 | function is an isomorphism $f$ if there is one. The \code{isomorphism} |
|---|
| 431 | function returns true if the graphs are isomorphic and false |
|---|
| 432 | otherwise. The invariant parameters are function objects that compute |
|---|
| 433 | the vertex invariants for vertices of the two graphs. The |
|---|
| 434 | \code{max\_invariant} parameter is to specify one past the largest |
|---|
| 435 | integer that a vertex invariant number could be (the invariants |
|---|
| 436 | numbers are assumed to span from zero to \code{max\_invariant-1}). |
|---|
| 437 | The requirements on the template parameters are described below in the |
|---|
| 438 | ``Concept checking'' code part. |
|---|
| 439 | |
|---|
| 440 | |
|---|
| 441 | @d Isomorphism function interface |
|---|
| 442 | @{ |
|---|
| 443 | template <typename Graph1, typename Graph2, typename IsoMapping, |
|---|
| 444 | typename Invariant1, typename Invariant2, typename EdgeCompare, |
|---|
| 445 | typename IndexMap1, typename IndexMap2> |
|---|
| 446 | bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, |
|---|
| 447 | Invariant1 invariant1, Invariant2 invariant2, |
|---|
| 448 | std::size_t max_invariant, EdgeCompare edge_compare, |
|---|
| 449 | IndexMap1 index_map1, IndexMap2 index_map2) |
|---|
| 450 | @} |
|---|
| 451 | |
|---|
| 452 | |
|---|
| 453 | The function body consists of the concept checks followed by a quick |
|---|
| 454 | check for empty graphs or graphs of different size and then constructs |
|---|
| 455 | an algorithm object. We then call the \code{test\_isomorphism} member |
|---|
| 456 | function, which runs the algorithm. The reason that we implement the |
|---|
| 457 | algorithm using a class is that there are a fair number of internal |
|---|
| 458 | data structures required, and it is easier to make these data members |
|---|
| 459 | of a class and make each section of the algorithm a member |
|---|
| 460 | function. This relieves us from the burden of passing lots of |
|---|
| 461 | arguments to each function, while at the same time avoiding the evils |
|---|
| 462 | of global variables (non-reentrant, etc.). |
|---|
| 463 | |
|---|
| 464 | |
|---|
| 465 | @d Isomorphism function body |
|---|
| 466 | @{ |
|---|
| 467 | { |
|---|
| 468 | @<Concept checking@> |
|---|
| 469 | @<Quick return based on size@> |
|---|
| 470 | detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1, |
|---|
| 471 | Invariant2, EdgeCompare, IndexMap1, IndexMap2> |
|---|
| 472 | algo(G1, G2, f, invariant1, invariant2, max_invariant, |
|---|
| 473 | edge_compare, |
|---|
| 474 | index_map1, index_map2); |
|---|
| 475 | return algo.test_isomorphism(); |
|---|
| 476 | } |
|---|
| 477 | @} |
|---|
| 478 | |
|---|
| 479 | |
|---|
| 480 | \noindent If there are no vertices in either graph, then they are |
|---|
| 481 | trivially isomorphic. If the graphs have different numbers of vertices |
|---|
| 482 | then they are not isomorphic. We could also check the number of edges |
|---|
| 483 | here, but that would introduce the \bglconcept{EdgeListGraph} |
|---|
| 484 | requirement, which we otherwise do not need. |
|---|
| 485 | |
|---|
| 486 | @d Quick return based on size |
|---|
| 487 | @{ |
|---|
| 488 | if (num_vertices(G1) != num_vertices(G2)) |
|---|
| 489 | return false; |
|---|
| 490 | if (num_vertices(G1) == 0 && num_vertices(G2) == 0) |
|---|
| 491 | return true; |
|---|
| 492 | @} |
|---|
| 493 | |
|---|
| 494 | We use the Boost Concept Checking Library to make sure that the |
|---|
| 495 | template arguments fulfill certain requirements. The graph types must |
|---|
| 496 | model the \bglconcept{VertexListGraph} and \bglconcept{AdjacencyGraph} |
|---|
| 497 | concepts. The vertex invariants must model the |
|---|
| 498 | \stlconcept{AdaptableUnaryFunction} concept, with a vertex as their |
|---|
| 499 | argument and an integer return type. The \code{IsoMapping} type |
|---|
| 500 | representing the isomorphism $f$ must be a |
|---|
| 501 | \pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to |
|---|
| 502 | vertices in $G_2$. The two other index maps are |
|---|
| 503 | \pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to |
|---|
| 504 | unsigned integers. |
|---|
| 505 | |
|---|
| 506 | |
|---|
| 507 | @d Concept checking |
|---|
| 508 | @{ |
|---|
| 509 | // Graph requirements |
|---|
| 510 | function_requires< VertexListGraphConcept<Graph1> >(); |
|---|
| 511 | function_requires< EdgeListGraphConcept<Graph1> >(); |
|---|
| 512 | function_requires< VertexListGraphConcept<Graph2> >(); |
|---|
| 513 | function_requires< BidirectionalGraphConcept<Graph2> >(); |
|---|
| 514 | |
|---|
| 515 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 516 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 517 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 518 | |
|---|
| 519 | // Vertex invariant requirement |
|---|
| 520 | function_requires< AdaptableUnaryFunctionConcept<Invariant1, |
|---|
| 521 | size_type, vertex1_t> >(); |
|---|
| 522 | function_requires< AdaptableUnaryFunctionConcept<Invariant2, |
|---|
| 523 | size_type, vertex2_t> >(); |
|---|
| 524 | |
|---|
| 525 | // Property map requirements |
|---|
| 526 | function_requires< ReadWritePropertyMapConcept<IsoMapping, vertex1_t> >(); |
|---|
| 527 | typedef typename property_traits<IsoMapping>::value_type IsoMappingValue; |
|---|
| 528 | BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value)); |
|---|
| 529 | |
|---|
| 530 | function_requires< ReadablePropertyMapConcept<IndexMap1, vertex1_t> >(); |
|---|
| 531 | typedef typename property_traits<IndexMap1>::value_type IndexMap1Value; |
|---|
| 532 | BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value)); |
|---|
| 533 | |
|---|
| 534 | function_requires< ReadablePropertyMapConcept<IndexMap2, vertex2_t> >(); |
|---|
| 535 | typedef typename property_traits<IndexMap2>::value_type IndexMap2Value; |
|---|
| 536 | BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value)); |
|---|
| 537 | @} |
|---|
| 538 | |
|---|
| 539 | |
|---|
| 540 | \section{Data Structure Setup} |
|---|
| 541 | |
|---|
| 542 | The following is the outline of the isomorphism algorithm class. The |
|---|
| 543 | class is templated on all of the same parameters as the |
|---|
| 544 | \code{isomorphism} function, and all of the parameter values are |
|---|
| 545 | stored in the class as data members, in addition to the internal data |
|---|
| 546 | structures. |
|---|
| 547 | |
|---|
| 548 | @d Isomorphism algorithm class |
|---|
| 549 | @{ |
|---|
| 550 | template <typename Graph1, typename Graph2, typename IsoMapping, |
|---|
| 551 | typename Invariant1, typename Invariant2, typename EdgeCompare, |
|---|
| 552 | typename IndexMap1, typename IndexMap2> |
|---|
| 553 | class isomorphism_algo |
|---|
| 554 | { |
|---|
| 555 | @<Typedefs for commonly used types@> |
|---|
| 556 | @<Data members for the parameters@> |
|---|
| 557 | @<Internal data structures@> |
|---|
| 558 | friend struct compare_multiplicity; |
|---|
| 559 | @<Invariant multiplicity comparison functor@> |
|---|
| 560 | @<DFS visitor to record vertex and edge order@> |
|---|
| 561 | @<Edge comparison predicate@> |
|---|
| 562 | public: |
|---|
| 563 | @<Isomorphism algorithm constructor@> |
|---|
| 564 | @<Test isomorphism member function@> |
|---|
| 565 | private: |
|---|
| 566 | @<Match function@> |
|---|
| 567 | }; |
|---|
| 568 | @} |
|---|
| 569 | |
|---|
| 570 | The interesting parts of this class are the \code{test\_isomorphism} |
|---|
| 571 | function and the \code{match} function. We focus on those in the |
|---|
| 572 | following sections, and leave the other parts of the class to the |
|---|
| 573 | Appendix. |
|---|
| 574 | |
|---|
| 575 | The \code{test\_isomorphism} function does all of the setup required |
|---|
| 576 | of the algorithm. This consists of sorting the vertices according to |
|---|
| 577 | invariant multiplicity, and then by DFS order. The edges are then |
|---|
| 578 | sorted as previously described. The last step of this function is to |
|---|
| 579 | begin the backtracking search. |
|---|
| 580 | |
|---|
| 581 | @d Test isomorphism member function |
|---|
| 582 | @{ |
|---|
| 583 | bool test_isomorphism() |
|---|
| 584 | { |
|---|
| 585 | @<Quick return if the vertex invariants do not match up@> |
|---|
| 586 | @<Sort vertices according to invariant multiplicity@> |
|---|
| 587 | @<Order vertices and edges by DFS@> |
|---|
| 588 | @<Sort edges according to vertex DFS order@> |
|---|
| 589 | |
|---|
| 590 | int dfs_num_k = -1; |
|---|
| 591 | return this->match(ordered_edges.begin(), dfs_num_k); |
|---|
| 592 | } |
|---|
| 593 | @} |
|---|
| 594 | |
|---|
| 595 | As a first check to rule out graphs that have no possibility of |
|---|
| 596 | matching, one can create a list of computed vertex invariant numbers |
|---|
| 597 | for the vertices in each graph, sort the two lists, and then compare |
|---|
| 598 | them. If the two lists are different then the two graphs are not |
|---|
| 599 | isomorphic. If the two lists are the same then the two graphs may be |
|---|
| 600 | isomorphic. |
|---|
| 601 | |
|---|
| 602 | @d Quick return if the vertex invariants do not match up |
|---|
| 603 | @{ |
|---|
| 604 | { |
|---|
| 605 | std::vector<invar1_value> invar1_array; |
|---|
| 606 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 607 | invar1_array.push_back(invariant1(v)); |
|---|
| 608 | sort(invar1_array); |
|---|
| 609 | |
|---|
| 610 | std::vector<invar2_value> invar2_array; |
|---|
| 611 | BGL_FORALL_VERTICES_T(v, G2, Graph2) |
|---|
| 612 | invar2_array.push_back(invariant2(v)); |
|---|
| 613 | sort(invar2_array); |
|---|
| 614 | if (! equal(invar1_array, invar2_array)) |
|---|
| 615 | return false; |
|---|
| 616 | } |
|---|
| 617 | @} |
|---|
| 618 | |
|---|
| 619 | Next we compute the invariant multiplicity, the number of vertices |
|---|
| 620 | with the same invariant number. The \code{invar\_mult} vector is |
|---|
| 621 | indexed by invariant number. We loop through all the vertices in the |
|---|
| 622 | graph to record the multiplicity. We then order the vertices by their |
|---|
| 623 | invariant multiplicity. This will allow us to search the more |
|---|
| 624 | constrained vertices first. |
|---|
| 625 | |
|---|
| 626 | @d Sort vertices according to invariant multiplicity |
|---|
| 627 | @{ |
|---|
| 628 | std::vector<vertex1_t> V_mult; |
|---|
| 629 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 630 | V_mult.push_back(v); |
|---|
| 631 | { |
|---|
| 632 | std::vector<size_type> multiplicity(max_invariant, 0); |
|---|
| 633 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 634 | ++multiplicity[invariant1(v)]; |
|---|
| 635 | sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0])); |
|---|
| 636 | } |
|---|
| 637 | @} |
|---|
| 638 | |
|---|
| 639 | \noindent The definition of the \code{compare\_multiplicity} predicate |
|---|
| 640 | is shown below. This predicate provides the glue that binds |
|---|
| 641 | \code{std::sort} to our current purpose. |
|---|
| 642 | |
|---|
| 643 | @d Invariant multiplicity comparison functor |
|---|
| 644 | @{ |
|---|
| 645 | struct compare_multiplicity |
|---|
| 646 | { |
|---|
| 647 | compare_multiplicity(Invariant1 invariant1, size_type* multiplicity) |
|---|
| 648 | : invariant1(invariant1), multiplicity(multiplicity) { } |
|---|
| 649 | bool operator()(const vertex1_t& x, const vertex1_t& y) const { |
|---|
| 650 | return multiplicity[invariant1(x)] < multiplicity[invariant1(y)]; |
|---|
| 651 | } |
|---|
| 652 | Invariant1 invariant1; |
|---|
| 653 | size_type* multiplicity; |
|---|
| 654 | }; |
|---|
| 655 | @} |
|---|
| 656 | |
|---|
| 657 | \subsection{Ordering by DFS Discover Time} |
|---|
| 658 | |
|---|
| 659 | Next we order the vertices and edges by DFS discover time. We would |
|---|
| 660 | normally call the BGL \code{depth\_first\_search} function to do this, |
|---|
| 661 | but we want the roots of the DFS tree's to be ordered by invariant |
|---|
| 662 | multiplicity. Therefore we implement the outer-loop of the DFS here |
|---|
| 663 | and then call \code{depth\_\-first\_\-visit} to handle the recursive |
|---|
| 664 | portion of the DFS. The \code{record\_dfs\_order} adapts the DFS to |
|---|
| 665 | record the ordering, storing the results in in the |
|---|
| 666 | \code{dfs\_vertices} and \code{ordered\_edges} arrays. We then create |
|---|
| 667 | the \code{dfs\_num} array which provides a mapping from vertex to DFS |
|---|
| 668 | number. |
|---|
| 669 | |
|---|
| 670 | @d Order vertices and edges by DFS |
|---|
| 671 | @{ |
|---|
| 672 | std::vector<default_color_type> color_vec(num_vertices(G1)); |
|---|
| 673 | safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1> |
|---|
| 674 | color_map(color_vec.begin(), color_vec.size(), index_map1); |
|---|
| 675 | record_dfs_order dfs_visitor(dfs_vertices, ordered_edges); |
|---|
| 676 | typedef color_traits<default_color_type> Color; |
|---|
| 677 | for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) { |
|---|
| 678 | if (color_map[*u] == Color::white()) { |
|---|
| 679 | dfs_visitor.start_vertex(*u, G1); |
|---|
| 680 | depth_first_visit(G1, *u, dfs_visitor, color_map); |
|---|
| 681 | } |
|---|
| 682 | } |
|---|
| 683 | // Create the dfs_num array and dfs_num_map |
|---|
| 684 | dfs_num_vec.resize(num_vertices(G1)); |
|---|
| 685 | dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(), |
|---|
| 686 | dfs_num_vec.size(), index_map1); |
|---|
| 687 | size_type n = 0; |
|---|
| 688 | for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v) |
|---|
| 689 | dfs_num[*v] = n++; |
|---|
| 690 | @} |
|---|
| 691 | |
|---|
| 692 | \noindent The definition of the \code{record\_dfs\_order} visitor |
|---|
| 693 | class is as follows. |
|---|
| 694 | |
|---|
| 695 | @d DFS visitor to record vertex and edge order |
|---|
| 696 | @{ |
|---|
| 697 | struct record_dfs_order : default_dfs_visitor |
|---|
| 698 | { |
|---|
| 699 | record_dfs_order(std::vector<vertex1_t>& v, std::vector<edge1_t>& e) |
|---|
| 700 | : vertices(v), edges(e) { } |
|---|
| 701 | |
|---|
| 702 | void discover_vertex(vertex1_t v, const Graph1&) const { |
|---|
| 703 | vertices.push_back(v); |
|---|
| 704 | } |
|---|
| 705 | void examine_edge(edge1_t e, const Graph1& G1) const { |
|---|
| 706 | edges.push_back(e); |
|---|
| 707 | } |
|---|
| 708 | std::vector<vertex1_t>& vertices; |
|---|
| 709 | std::vector<edge1_t>& edges; |
|---|
| 710 | }; |
|---|
| 711 | @} |
|---|
| 712 | |
|---|
| 713 | The final stage of the setup is to reorder the edges so that all edges |
|---|
| 714 | belonging to $G_1[k]$ appear before any edges not in $G_1[k]$, for |
|---|
| 715 | $k=1,...,n$. |
|---|
| 716 | |
|---|
| 717 | @d Sort edges according to vertex DFS order |
|---|
| 718 | @{ |
|---|
| 719 | sort(ordered_edges, edge_cmp(G1, dfs_num)); |
|---|
| 720 | @} |
|---|
| 721 | |
|---|
| 722 | \noindent The edge comparison function object is defined as follows. |
|---|
| 723 | |
|---|
| 724 | @d Edge comparison predicate |
|---|
| 725 | @{ |
|---|
| 726 | struct edge_cmp { |
|---|
| 727 | edge_cmp(const Graph1& G1, DFSNumMap dfs_num) |
|---|
| 728 | : G1(G1), dfs_num(dfs_num) { } |
|---|
| 729 | bool operator()(const edge1_t& e1, const edge1_t& e2) const { |
|---|
| 730 | using namespace std; |
|---|
| 731 | vertex1_t u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)]; |
|---|
| 732 | vertex1_t u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)]; |
|---|
| 733 | int m1 = max(u1, v1); |
|---|
| 734 | int m2 = max(u2, v2); |
|---|
| 735 | // lexicographical comparison |
|---|
| 736 | return make_pair(m1, make_pair(u1, v1)) |
|---|
| 737 | < make_pair(m2, make_pair(u2, v2)); |
|---|
| 738 | } |
|---|
| 739 | const Graph1& G1; |
|---|
| 740 | DFSNumMap dfs_num; |
|---|
| 741 | }; |
|---|
| 742 | @} |
|---|
| 743 | |
|---|
| 744 | |
|---|
| 745 | \section{Appendix} |
|---|
| 746 | |
|---|
| 747 | |
|---|
| 748 | @d Typedefs for commonly used types |
|---|
| 749 | @{ |
|---|
| 750 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 751 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 752 | typedef typename graph_traits<Graph1>::edge_descriptor edge1_t; |
|---|
| 753 | typedef typename graph_traits<Graph2>::edge_descriptor edge2_t; |
|---|
| 754 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 755 | typedef typename Invariant1::result_type invar1_value; |
|---|
| 756 | typedef typename Invariant2::result_type invar2_value; |
|---|
| 757 | @} |
|---|
| 758 | |
|---|
| 759 | @d Data members for the parameters |
|---|
| 760 | @{ |
|---|
| 761 | const Graph1& G1; |
|---|
| 762 | const Graph2& G2; |
|---|
| 763 | IsoMapping f; |
|---|
| 764 | Invariant1 invariant1; |
|---|
| 765 | Invariant2 invariant2; |
|---|
| 766 | std::size_t max_invariant; |
|---|
| 767 | EdgeCompare edge_compare; |
|---|
| 768 | IndexMap1 index_map1; |
|---|
| 769 | IndexMap2 index_map2; |
|---|
| 770 | @} |
|---|
| 771 | |
|---|
| 772 | @d Internal data structures |
|---|
| 773 | @{ |
|---|
| 774 | std::vector<vertex1_t> dfs_vertices; |
|---|
| 775 | typedef typename std::vector<vertex1_t>::iterator vertex_iter; |
|---|
| 776 | std::vector<int> dfs_num_vec; |
|---|
| 777 | typedef safe_iterator_property_map<typename std::vector<int>::iterator, |
|---|
| 778 | IndexMap1> DFSNumMap; |
|---|
| 779 | DFSNumMap dfs_num; |
|---|
| 780 | std::vector<edge1_t> ordered_edges; |
|---|
| 781 | typedef typename std::vector<edge1_t>::iterator edge_iter; |
|---|
| 782 | |
|---|
| 783 | std::vector<char> in_S_vec; |
|---|
| 784 | typedef safe_iterator_property_map<typename std::vector<char>::iterator, |
|---|
| 785 | IndexMap2> InSMap; |
|---|
| 786 | InSMap in_S; |
|---|
| 787 | |
|---|
| 788 | int num_edges_on_k; |
|---|
| 789 | @} |
|---|
| 790 | |
|---|
| 791 | @d Isomorphism algorithm constructor |
|---|
| 792 | @{ |
|---|
| 793 | isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f, |
|---|
| 794 | Invariant1 invariant1, Invariant2 invariant2, |
|---|
| 795 | std::size_t max_invariant, |
|---|
| 796 | EdgeCompare edge_compare, |
|---|
| 797 | IndexMap1 index_map1, IndexMap2 index_map2) |
|---|
| 798 | : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2), |
|---|
| 799 | max_invariant(max_invariant), edge_compare(edge_compare), |
|---|
| 800 | index_map1(index_map1), index_map2(index_map2) |
|---|
| 801 | { |
|---|
| 802 | in_S_vec.resize(num_vertices(G1)); |
|---|
| 803 | in_S = make_safe_iterator_property_map |
|---|
| 804 | (in_S_vec.begin(), in_S_vec.size(), index_map2); |
|---|
| 805 | } |
|---|
| 806 | @} |
|---|
| 807 | |
|---|
| 808 | |
|---|
| 809 | @o isomorphism.hpp |
|---|
| 810 | @{ |
|---|
| 811 | // Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman |
|---|
| 812 | // |
|---|
| 813 | // Permission to copy, use, sell and distribute this software is granted |
|---|
| 814 | // provided this copyright notice appears in all copies. |
|---|
| 815 | // Permission to modify the code and to distribute modified code is granted |
|---|
| 816 | // provided this copyright notice appears in all copies, and a notice |
|---|
| 817 | // that the code was modified is included with the copyright notice. |
|---|
| 818 | // |
|---|
| 819 | // This software is provided "as is" without express or implied warranty, |
|---|
| 820 | // and with no claim as to its suitability for any purpose. |
|---|
| 821 | #ifndef BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 822 | #define BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 823 | |
|---|
| 824 | #include <utility> |
|---|
| 825 | #include <vector> |
|---|
| 826 | #include <iterator> |
|---|
| 827 | #include <algorithm> |
|---|
| 828 | #include <boost/graph/iteration_macros.hpp> |
|---|
| 829 | #include <boost/graph/depth_first_search.hpp> |
|---|
| 830 | #include <boost/utility.hpp> |
|---|
| 831 | #include <boost/detail/algorithm.hpp> |
|---|
| 832 | #include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap |
|---|
| 833 | |
|---|
| 834 | namespace boost { |
|---|
| 835 | |
|---|
| 836 | namespace detail { |
|---|
| 837 | |
|---|
| 838 | @<Isomorphism algorithm class@> |
|---|
| 839 | |
|---|
| 840 | template <typename Graph, typename InDegreeMap> |
|---|
| 841 | void compute_in_degree(const Graph& g, InDegreeMap in_degree_map) |
|---|
| 842 | { |
|---|
| 843 | BGL_FORALL_VERTICES_T(v, g, Graph) |
|---|
| 844 | put(in_degree_map, v, 0); |
|---|
| 845 | |
|---|
| 846 | BGL_FORALL_VERTICES_T(u, g, Graph) |
|---|
| 847 | BGL_FORALL_ADJ_T(u, v, g, Graph) |
|---|
| 848 | put(in_degree_map, v, get(in_degree_map, v) + 1); |
|---|
| 849 | } |
|---|
| 850 | |
|---|
| 851 | } // namespace detail |
|---|
| 852 | |
|---|
| 853 | |
|---|
| 854 | @<Degree vertex invariant functor@> |
|---|
| 855 | |
|---|
| 856 | @<Isomorphism function interface@> |
|---|
| 857 | @<Isomorphism function body@> |
|---|
| 858 | |
|---|
| 859 | namespace detail { |
|---|
| 860 | |
|---|
| 861 | struct default_edge_compare { |
|---|
| 862 | template <typename Edge1, typename Edge2> |
|---|
| 863 | bool operator()(Edge1 e1, Edge2 e2) const { return true; } |
|---|
| 864 | }; |
|---|
| 865 | |
|---|
| 866 | template <typename Graph1, typename Graph2, |
|---|
| 867 | typename IsoMapping, |
|---|
| 868 | typename IndexMap1, typename IndexMap2, |
|---|
| 869 | typename P, typename T, typename R> |
|---|
| 870 | bool isomorphism_impl(const Graph1& G1, const Graph2& G2, |
|---|
| 871 | IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2, |
|---|
| 872 | const bgl_named_params<P,T,R>& params) |
|---|
| 873 | { |
|---|
| 874 | std::vector<std::size_t> in_degree1_vec(num_vertices(G1)); |
|---|
| 875 | typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, |
|---|
| 876 | IndexMap1> InDeg1; |
|---|
| 877 | InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1); |
|---|
| 878 | compute_in_degree(G1, in_degree1); |
|---|
| 879 | |
|---|
| 880 | std::vector<std::size_t> in_degree2_vec(num_vertices(G2)); |
|---|
| 881 | typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, |
|---|
| 882 | IndexMap2> InDeg2; |
|---|
| 883 | InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2); |
|---|
| 884 | compute_in_degree(G2, in_degree2); |
|---|
| 885 | |
|---|
| 886 | degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1); |
|---|
| 887 | degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2); |
|---|
| 888 | default_edge_compare edge_cmp; |
|---|
| 889 | |
|---|
| 890 | return isomorphism(G1, G2, f, |
|---|
| 891 | choose_param(get_param(params, vertex_invariant1_t()), invariant1), |
|---|
| 892 | choose_param(get_param(params, vertex_invariant2_t()), invariant2), |
|---|
| 893 | choose_param(get_param(params, vertex_max_invariant_t()), |
|---|
| 894 | invariant2.max()), |
|---|
| 895 | choose_param(get_param(params, edge_compare_t()), edge_cmp), |
|---|
| 896 | index_map1, index_map2 |
|---|
| 897 | ); |
|---|
| 898 | } |
|---|
| 899 | |
|---|
| 900 | } // namespace detail |
|---|
| 901 | |
|---|
| 902 | |
|---|
| 903 | // Named parameter interface |
|---|
| 904 | template <typename Graph1, typename Graph2, class P, class T, class R> |
|---|
| 905 | bool isomorphism(const Graph1& g1, |
|---|
| 906 | const Graph2& g2, |
|---|
| 907 | const bgl_named_params<P,T,R>& params) |
|---|
| 908 | { |
|---|
| 909 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 910 | typename std::vector<vertex2_t>::size_type n = num_vertices(g1); |
|---|
| 911 | std::vector<vertex2_t> f(n); |
|---|
| 912 | return detail::isomorphism_impl |
|---|
| 913 | (g1, g2, |
|---|
| 914 | choose_param(get_param(params, vertex_isomorphism_t()), |
|---|
| 915 | make_safe_iterator_property_map(f.begin(), f.size(), |
|---|
| 916 | choose_const_pmap(get_param(params, vertex_index1), |
|---|
| 917 | g1, vertex_index), vertex2_t())), |
|---|
| 918 | choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index), |
|---|
| 919 | choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index), |
|---|
| 920 | params |
|---|
| 921 | ); |
|---|
| 922 | } |
|---|
| 923 | |
|---|
| 924 | // All defaults interface |
|---|
| 925 | template <typename Graph1, typename Graph2> |
|---|
| 926 | bool isomorphism(const Graph1& g1, const Graph2& g2) |
|---|
| 927 | { |
|---|
| 928 | return isomorphism(g1, g2, |
|---|
| 929 | bgl_named_params<int, buffer_param_t>(0));// bogus named param |
|---|
| 930 | } |
|---|
| 931 | |
|---|
| 932 | |
|---|
| 933 | // Verify that the given mapping iso_map from the vertices of g1 to the |
|---|
| 934 | // vertices of g2 describes an isomorphism. |
|---|
| 935 | // Note: this could be made much faster by specializing based on the graph |
|---|
| 936 | // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm, |
|---|
| 937 | // O(n^4) won't hurt us. |
|---|
| 938 | template<typename Graph1, typename Graph2, typename IsoMap> |
|---|
| 939 | inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map) |
|---|
| 940 | { |
|---|
| 941 | #if 0 |
|---|
| 942 | // problematic for filtered_graph! |
|---|
| 943 | if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2)) |
|---|
| 944 | return false; |
|---|
| 945 | #endif |
|---|
| 946 | |
|---|
| 947 | for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first; |
|---|
| 948 | e1 != edges(g1).second; ++e1) { |
|---|
| 949 | bool found_edge = false; |
|---|
| 950 | for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first; |
|---|
| 951 | e2 != edges(g2).second && !found_edge; ++e2) { |
|---|
| 952 | if (source(*e2, g2) == get(iso_map, source(*e1, g1)) && |
|---|
| 953 | target(*e2, g2) == get(iso_map, target(*e1, g1))) { |
|---|
| 954 | found_edge = true; |
|---|
| 955 | } |
|---|
| 956 | } |
|---|
| 957 | |
|---|
| 958 | if (!found_edge) |
|---|
| 959 | return false; |
|---|
| 960 | } |
|---|
| 961 | |
|---|
| 962 | return true; |
|---|
| 963 | } |
|---|
| 964 | |
|---|
| 965 | } // namespace boost |
|---|
| 966 | |
|---|
| 967 | #include <boost/graph/iteration_macros_undef.hpp> |
|---|
| 968 | |
|---|
| 969 | #endif // BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 970 | @} |
|---|
| 971 | |
|---|
| 972 | \bibliographystyle{abbrv} |
|---|
| 973 | \bibliography{ggcl} |
|---|
| 974 | |
|---|
| 975 | \end{document} |
|---|
| 976 | % LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS |
|---|
| 977 | % LocalWords: ISOMORPH Invariants invariants typename IsoMapping bool const |
|---|
| 978 | % LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num |
|---|
| 979 | % LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui |
|---|
| 980 | % LocalWords: dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre |
|---|
| 981 | |
|---|
| 982 | % LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp |
|---|
| 983 | % LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept |
|---|
| 984 | % LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei |
|---|
| 985 | % LocalWords: IsoMappingValue ReadablePropertyMapConcept namespace InvarFun |
|---|
| 986 | % LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params |
|---|
| 987 | % LocalWords: bgl param pmap endif |
|---|