| 1 | \documentclass[11pt]{report} |
|---|
| 2 | |
|---|
| 3 | %\input{defs} |
|---|
| 4 | \usepackage{math} |
|---|
| 5 | \usepackage{jweb} |
|---|
| 6 | \usepackage{lgrind} |
|---|
| 7 | \usepackage{times} |
|---|
| 8 | \usepackage{fullpage} |
|---|
| 9 | \usepackage{graphicx} |
|---|
| 10 | |
|---|
| 11 | \newif\ifpdf |
|---|
| 12 | \ifx\pdfoutput\undefined |
|---|
| 13 | \pdffalse |
|---|
| 14 | \else |
|---|
| 15 | \pdfoutput=1 |
|---|
| 16 | \pdftrue |
|---|
| 17 | \fi |
|---|
| 18 | |
|---|
| 19 | \ifpdf |
|---|
| 20 | \usepackage[ |
|---|
| 21 | pdftex, |
|---|
| 22 | colorlinks=true, %change to true for the electronic version |
|---|
| 23 | linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue |
|---|
| 24 | ]{hyperref} |
|---|
| 25 | \fi |
|---|
| 26 | |
|---|
| 27 | \ifpdf |
|---|
| 28 | \newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{{\small \textsf{#1}}}} |
|---|
| 29 | \newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}} |
|---|
| 30 | \newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}} |
|---|
| 31 | \newcommand{\myhyperref}[2]{\hyperref[#1]{#2}} |
|---|
| 32 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 33 | \else |
|---|
| 34 | \newcommand{\myhyperref}[2]{#2} |
|---|
| 35 | \newcommand{\bglconcept}[1]{{\small \textsf{#1}}} |
|---|
| 36 | \newcommand{\pmconcept}[1]{{\small \textsf{#1}}} |
|---|
| 37 | \newcommand{\stlconcept}[1]{{\small \textsf{#1}}} |
|---|
| 38 | \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}} |
|---|
| 39 | \fi |
|---|
| 40 | |
|---|
| 41 | \newcommand{\code}[1]{{\small{\em \textbf{#1}}}} |
|---|
| 42 | |
|---|
| 43 | |
|---|
| 44 | \newcommand{\isomorphic}{\cong} |
|---|
| 45 | |
|---|
| 46 | \begin{document} |
|---|
| 47 | |
|---|
| 48 | \title{An Implementation of Isomorphism Testing} |
|---|
| 49 | \author{Jeremy G. Siek} |
|---|
| 50 | |
|---|
| 51 | \maketitle |
|---|
| 52 | |
|---|
| 53 | \section{Introduction} |
|---|
| 54 | |
|---|
| 55 | This paper documents the implementation of the \code{isomorphism()} |
|---|
| 56 | function of the Boost Graph Library. The implementation was by Jeremy |
|---|
| 57 | Siek with algorithmic improvements and test code from Douglas Gregor |
|---|
| 58 | and Brian Osman. The \code{isomorphism()} function answers the |
|---|
| 59 | question, ``are these two graphs equal?'' By \emph{equal} we mean |
|---|
| 60 | the two graphs have the same structure---the vertices and edges are |
|---|
| 61 | connected in the same way. The mathematical name for this kind of |
|---|
| 62 | equality is \emph{isomorphism}. |
|---|
| 63 | |
|---|
| 64 | More precisely, an \emph{isomorphism} is a one-to-one mapping of the |
|---|
| 65 | vertices in one graph to the vertices of another graph such that |
|---|
| 66 | adjacency is preserved. Another words, given graphs $G_{1} = |
|---|
| 67 | (V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a |
|---|
| 68 | function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$, |
|---|
| 69 | edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in |
|---|
| 70 | $E_{2}$. |
|---|
| 71 | |
|---|
| 72 | Both graphs must be the same size, so let $N = |V_1| = |V_2|$. The |
|---|
| 73 | graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists |
|---|
| 74 | between the two graphs, which we denote by $G_1 \isomorphic G_2$. |
|---|
| 75 | |
|---|
| 76 | In the following discussion we will need to use several notions from |
|---|
| 77 | graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of graph |
|---|
| 78 | $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An |
|---|
| 79 | \emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$ |
|---|
| 80 | consists of the vertices in $V_s$, which is a subset of $V$, and every |
|---|
| 81 | edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use |
|---|
| 82 | the notation $E[V_s]$ to mean the edges in $G[V_s]$. |
|---|
| 83 | |
|---|
| 84 | In some places we express a function as a set of pairs, so the set $f |
|---|
| 85 | = \{ \pair{a_1}{b_1}, \ldots, \pair{a_n}{b_n} \}$ |
|---|
| 86 | means $f(a_i) = b_i$ for $i=1,\ldots,n$. |
|---|
| 87 | |
|---|
| 88 | \section{Exhaustive Backtracking Search} |
|---|
| 89 | \label{sec:backtracking} |
|---|
| 90 | |
|---|
| 91 | The algorithm used by the \code{isomorphism()} function is, at |
|---|
| 92 | first approximation, an exhaustive search implemented via |
|---|
| 93 | backtracking. The backtracking algorithm is a recursive function. At |
|---|
| 94 | each stage we will try to extend the match that we have found so far. |
|---|
| 95 | So suppose that we have already determined that some subgraph of $G_1$ |
|---|
| 96 | is isomorphic to a subgraph of $G_2$. We then try to add a vertex to |
|---|
| 97 | each subgraph such that the new subgraphs are still isomorphic to one |
|---|
| 98 | another. At some point we may hit a dead end---there are no vertices |
|---|
| 99 | that can be added to extend the isomorphic subgraphs. We then |
|---|
| 100 | backtrack to previous smaller matching subgraphs, and try extending |
|---|
| 101 | with a different vertex choice. The process ends by either finding a |
|---|
| 102 | complete mapping between $G_1$ and $G_2$ and return true, or by |
|---|
| 103 | exhausting all possibilities and returning false. |
|---|
| 104 | |
|---|
| 105 | We consider the vertices of $G_1$ for addition to the matched subgraph |
|---|
| 106 | in a specific order, so assume that the vertices of $G_1$ are labeled |
|---|
| 107 | $1,\ldots,N$ according to that order. As we will see later, a good |
|---|
| 108 | ordering of the vertices is by DFS discover time. Let $G_1[k]$ denote |
|---|
| 109 | the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$ |
|---|
| 110 | being an empty graph. We also consider the edges of $G_1$ in a |
|---|
| 111 | specific order. We always examine edges in the current subgraph |
|---|
| 112 | $G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v |
|---|
| 113 | \leq k$. This ordering of edges can be acheived by sorting the edges |
|---|
| 114 | according to number of the larger of the source and target vertex. |
|---|
| 115 | |
|---|
| 116 | Each step of the backtracking search examines an edge $(u,v)$ of $G_1$ |
|---|
| 117 | and decides whether to continue or go back. There are three cases to |
|---|
| 118 | consider: |
|---|
| 119 | |
|---|
| 120 | \begin{enumerate} |
|---|
| 121 | |
|---|
| 122 | \item $i \leq k \Land j \leq k$. Both $i$ and $j$ are in $G_1[k]$. We |
|---|
| 123 | check to make sure the $(f(i),f(j)) \in E_2[S]$. |
|---|
| 124 | |
|---|
| 125 | \item $i \leq k \Land j > k$. $i$ is in the matched subgraph $G_1[k]$, |
|---|
| 126 | but $j$ is not. We are about to increment $k$ try to grow the matched |
|---|
| 127 | subgraph to include $j$. However, first we need to finalize our check |
|---|
| 128 | of the isomorphism between subgraphs $G_1[k]$ and $G_2[S]$. At this |
|---|
| 129 | point we are guaranteed to have seen all the edges to and from vertex $k$ |
|---|
| 130 | (because the edges are sorted), and in previous steps we have checked |
|---|
| 131 | that for each edge incident on $k$ in $G_1[k]$ there is a matching |
|---|
| 132 | edge in $G_2[S]$. However we have not checked that for each edge |
|---|
| 133 | incident on $f(k)$ in $E_2[S]$, there is a matching edge in $E_1[k]$ |
|---|
| 134 | (we need to check the ``only if'' part of the ``if and only if''). |
|---|
| 135 | Therefore we scan through all the edges $(u,v)$ incident on $f(k)$ and |
|---|
| 136 | make sure that $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. Once this check has |
|---|
| 137 | been performed, we add $f(k)$ to $S$, we increment $k$ (so now $k=j$), |
|---|
| 138 | and then try assigning the new $k$ to any of the eligible vertices in |
|---|
| 139 | $V_2 - S$. More about what ``eligible'' means later. |
|---|
| 140 | |
|---|
| 141 | \item $i > k \Land j \leq k$. This case will not occur due to the DFS |
|---|
| 142 | numbering of the vertices. There is an edge $(i,j)$ so $i$ must be |
|---|
| 143 | less than $j$. |
|---|
| 144 | |
|---|
| 145 | \item $i > k \Land j > k$. Neither $i$ or $j$ is in the matched |
|---|
| 146 | subgraph $G_1[k]$. This situation only happens at the very beginning |
|---|
| 147 | of the search, or when $i$ and $j$ are not reachable from any of the |
|---|
| 148 | vertices in $G_1[k]$. This means the smaller of $i$ and $j$ must be |
|---|
| 149 | the root of a DFS tree. We assign $r$ to any of the eligible vertices |
|---|
| 150 | in $V_2 - S$, and then proceed as if we were in Case 2. |
|---|
| 151 | |
|---|
| 152 | \end{enumerate} |
|---|
| 153 | |
|---|
| 154 | |
|---|
| 155 | |
|---|
| 156 | @d Match function |
|---|
| 157 | @{ |
|---|
| 158 | bool match(edge_iter iter) |
|---|
| 159 | { |
|---|
| 160 | if (iter != ordered_edges.end()) { |
|---|
| 161 | ordered_edge edge = *iter; |
|---|
| 162 | size_type k_num = edge.k_num; |
|---|
| 163 | vertex1_t k = dfs_vertices[k_num]; |
|---|
| 164 | vertex1_t u; |
|---|
| 165 | if (edge.source != -1) // might be a ficticious edge |
|---|
| 166 | u = dfs_vertices[edge.source]; |
|---|
| 167 | vertex1_t v = dfs_vertices[edge.target]; |
|---|
| 168 | if (edge.source == -1) { // root node |
|---|
| 169 | @<$v$ is a DFS tree root@> |
|---|
| 170 | } else if (f_assigned[v] == false) { |
|---|
| 171 | @<$v$ is an unmatched vertex, $(u,v)$ is a tree edge@> |
|---|
| 172 | } else { |
|---|
| 173 | @<Check to see if there is an edge in $G_2$ to match $(u,v)$@> |
|---|
| 174 | } |
|---|
| 175 | } else |
|---|
| 176 | return true; |
|---|
| 177 | return false; |
|---|
| 178 | } // match() |
|---|
| 179 | @} |
|---|
| 180 | |
|---|
| 181 | |
|---|
| 182 | |
|---|
| 183 | |
|---|
| 184 | |
|---|
| 185 | |
|---|
| 186 | The basic idea will be to examine $G_1$ one edge at a time, trying to |
|---|
| 187 | create a vertex mapping such that each edge matches one in $G_2$. We |
|---|
| 188 | are going to consider the edges of $G_1$ in a specific order, so we |
|---|
| 189 | will label the edges $0,\ldots,|E_1|-1$. |
|---|
| 190 | |
|---|
| 191 | At each stage of the recursion we |
|---|
| 192 | start with an isomorphism $f_{k-1}$ between $G_1[k-1]$ and a subgraph |
|---|
| 193 | of $G_2$, which we denote by $G_2[S]$, so $G_1[k-1] \isomorphic |
|---|
| 194 | G_2[S]$. The vertex set $S$ is the subset of $V_2$ that corresponds |
|---|
| 195 | via $f_{k-1}$ to the first $k-1$ vertices in $G_1$. |
|---|
| 196 | |
|---|
| 197 | We also order the edges of $G_1$ |
|---|
| 198 | |
|---|
| 199 | |
|---|
| 200 | |
|---|
| 201 | We try to extend the isomorphism by finding a vertex $v \in V_2 - S$ |
|---|
| 202 | that matches with vertex $k$. If a matching vertex is found, we have a |
|---|
| 203 | new isomorphism $f_k$ with $G_1[k] \isomorphic G_2[S \union \{ v \}]$. |
|---|
| 204 | |
|---|
| 205 | |
|---|
| 206 | |
|---|
| 207 | |
|---|
| 208 | \begin{tabbing} |
|---|
| 209 | IS\=O\=M\=O\=RPH($k$, $S$, $f_{k-1}$) $\equiv$ \\ |
|---|
| 210 | \>\textbf{if} ($k = |V_1|+1$) \\ |
|---|
| 211 | \>\>\textbf{return} true \\ |
|---|
| 212 | \>\textbf{for} each vertex $v \in V_2 - S$ \\ |
|---|
| 213 | \>\>\textbf{if} (MATCH($k$, $v$)) \\ |
|---|
| 214 | \>\>\>$f_k = f_{k-1} \union \pair{k}{v}$ \\ |
|---|
| 215 | \>\>\>ISOMORPH($k+1$, $S \union \{ v \}$, $f_k$)\\ |
|---|
| 216 | \>\>\textbf{else}\\ |
|---|
| 217 | \>\>\>\textbf{return} false \\ |
|---|
| 218 | \\ |
|---|
| 219 | ISOMORPH($0$, $G_1$, $\emptyset$, $G_2$) |
|---|
| 220 | \end{tabbing} |
|---|
| 221 | |
|---|
| 222 | The basic idea of the match operation is to check whether $G_1[k]$ is |
|---|
| 223 | isomorphic to $G_2[S \union \{ v \}]$. We already know that $G_1[k-1] |
|---|
| 224 | \isomorphic G_2[S]$ with the mapping $f_{k-1}$, so all we need to do |
|---|
| 225 | is verify that the edges in $E_1[k] - E_1[k-1]$ connect vertices that |
|---|
| 226 | correspond to the vertices connected by the edges in $E_2[S \union \{ |
|---|
| 227 | v \}] - E_2[S]$. The edges in $E_1[k] - E_1[k-1]$ are all the |
|---|
| 228 | out-edges $(k,j)$ and in-edges $(j,k)$ of $k$ where $j$ is less than |
|---|
| 229 | or equal to $k$ according to the ordering. The edges in $E_2[S \union |
|---|
| 230 | \{ v \}] - E_2[S]$ consists of all the out-edges $(v,u)$ and |
|---|
| 231 | in-edges $(u,v)$ of $v$ where $u \in S$. |
|---|
| 232 | |
|---|
| 233 | \begin{tabbing} |
|---|
| 234 | M\=ATCH($k$, $v$) $\equiv$ \\ |
|---|
| 235 | \>$out_k \leftarrow \forall (k,j) \in E_1[k] - E_1[k-1] \Big( (v,f(j)) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\ |
|---|
| 236 | \>$in_k \leftarrow \forall (j,k) \in E_1[k] - E_1[k-1] \Big( (f(j),v) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\ |
|---|
| 237 | \>$out_v \leftarrow \forall (v,u) \in E_2[S \union \{ v \}] - E_2[S] \Big( (k,f^{-1}(u)) \in E_1[k] - E_1[k-1] \Big)$ \\ |
|---|
| 238 | \>$in_v \leftarrow \forall (u,v) \in E_2[S \union \{ v \}] - E_2[S] \Big( (f^{-1}(u),k) \in E_1[k] - E_1[k-1] \Big)$ \\ |
|---|
| 239 | \>\textbf{return} $out_k \Land in_k \Land out_v \Land in_v$ |
|---|
| 240 | \end{tabbing} |
|---|
| 241 | |
|---|
| 242 | The problem with the exhaustive backtracking algorithm is that there |
|---|
| 243 | are $N!$ possible vertex mappings, and $N!$ gets very large as $N$ |
|---|
| 244 | increases, so we need to prune the search space. We use the pruning |
|---|
| 245 | techniques described in |
|---|
| 246 | \cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo} |
|---|
| 247 | that originated in |
|---|
| 248 | \cite{sussenguth65:_isomorphism,unger64:_isomorphism}. |
|---|
| 249 | |
|---|
| 250 | \section{Vertex Invariants} |
|---|
| 251 | \label{sec:vertex-invariants} |
|---|
| 252 | |
|---|
| 253 | One way to reduce the search space is through the use of \emph{vertex |
|---|
| 254 | invariants}. The idea is to compute a number for each vertex $i(v)$ |
|---|
| 255 | such that $i(v) = i(v')$ if there exists some isomorphism $f$ where |
|---|
| 256 | $f(v) = v'$. Then when we look for a match to some vertex $v$, we only |
|---|
| 257 | need to consider those vertices that have the same vertex invariant |
|---|
| 258 | number. The number of vertices in a graph with the same vertex |
|---|
| 259 | invariant number $i$ is called the \emph{invariant multiplicity} for |
|---|
| 260 | $i$. In this implementation, by default we use the out-degree of the |
|---|
| 261 | vertex as the vertex invariant, though the user can also supply there |
|---|
| 262 | own invariant function. The ability of the invariant function to prune |
|---|
| 263 | the search space varies widely with the type of graph. |
|---|
| 264 | |
|---|
| 265 | As a first check to rule out graphs that have no possibility of |
|---|
| 266 | matching, one can create a list of computed vertex invariant numbers |
|---|
| 267 | for the vertices in each graph, sort the two lists, and then compare |
|---|
| 268 | them. If the two lists are different then the two graphs are not |
|---|
| 269 | isomorphic. If the two lists are the same then the two graphs may be |
|---|
| 270 | isomorphic. |
|---|
| 271 | |
|---|
| 272 | Also, we extend the MATCH operation to use the vertex invariants to |
|---|
| 273 | help rule out vertices. |
|---|
| 274 | |
|---|
| 275 | \section{Vertex Order} |
|---|
| 276 | |
|---|
| 277 | A good choice of the labeling for the vertices (which determines the |
|---|
| 278 | order in which the subgraph $G_1[k]$ is grown) can also reduce the |
|---|
| 279 | search space. In the following we discuss two labeling heuristics. |
|---|
| 280 | |
|---|
| 281 | \subsection{Most Constrained First} |
|---|
| 282 | |
|---|
| 283 | Consider the most constrained vertices first. That is, examine |
|---|
| 284 | lower-degree vertices before higher-degree vertices. This reduces the |
|---|
| 285 | search space because it chops off a trunk before the trunk has a |
|---|
| 286 | chance to blossom out. We can generalize this to use vertex |
|---|
| 287 | invariants. We examine vertices with low invariant multiplicity |
|---|
| 288 | before examining vertices with high invariant multiplicity. |
|---|
| 289 | |
|---|
| 290 | \subsection{Adjacent First} |
|---|
| 291 | |
|---|
| 292 | The MATCH operation only considers edges when the other vertex already |
|---|
| 293 | has a mapping defined. This means that the MATCH operation can only |
|---|
| 294 | weed out vertices that are adjacent to vertices that have already been |
|---|
| 295 | matched. Therefore, when choosing the next vertex to examine, it is |
|---|
| 296 | desirable to choose one that is adjacent a vertex already in $S_1$. |
|---|
| 297 | |
|---|
| 298 | \subsection{DFS Order, Starting with Lowest Multiplicity} |
|---|
| 299 | |
|---|
| 300 | For this implementation, we combine the above two heuristics in the |
|---|
| 301 | following way. To implement the ``adjacent first'' heuristic we apply |
|---|
| 302 | DFS to the graph, and use the DFS discovery order as our vertex |
|---|
| 303 | order. To comply with the ``most constrained first'' heuristic we |
|---|
| 304 | order the roots of our DFS trees by invariant multiplicity. |
|---|
| 305 | |
|---|
| 306 | |
|---|
| 307 | |
|---|
| 308 | \section{Implementation} |
|---|
| 309 | |
|---|
| 310 | The following is the public interface for the \code{isomorphism} |
|---|
| 311 | function. The input to the function is the two graphs $G_1$ and $G_2$, |
|---|
| 312 | mappings from the vertices in the graphs to integers (in the range |
|---|
| 313 | $[0,|V|)$), and a vertex invariant function object. The output of the |
|---|
| 314 | function is an isomorphism $f$ if there is one. The \code{isomorphism} |
|---|
| 315 | function returns true if the graphs are isomorphic and false |
|---|
| 316 | otherwise. The invariant parameters are function objects that compute |
|---|
| 317 | the vertex invariants for vertices of the two graphs. The |
|---|
| 318 | \code{max\_invariant} parameter is to specify one past the largest |
|---|
| 319 | integer that a vertex invariant number could be (the invariants |
|---|
| 320 | numbers are assumed to span from zero to the number). The |
|---|
| 321 | requirements on type template parameters are described below in the |
|---|
| 322 | ``Concept checking'' part. |
|---|
| 323 | |
|---|
| 324 | |
|---|
| 325 | @d Isomorphism function interface |
|---|
| 326 | @{ |
|---|
| 327 | template <typename Graph1, typename Graph2, typename IsoMapping, |
|---|
| 328 | typename Invariant1, typename Invariant2, |
|---|
| 329 | typename IndexMap1, typename IndexMap2> |
|---|
| 330 | bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, |
|---|
| 331 | Invariant1 invariant1, Invariant2 invariant2, |
|---|
| 332 | std::size_t max_invariant, |
|---|
| 333 | IndexMap1 index_map1, IndexMap2 index_map2) |
|---|
| 334 | @} |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | The function body consists of the concept checks followed by a quick |
|---|
| 338 | check for empty graphs or graphs of different size and then construct |
|---|
| 339 | an algorithm object. We then call the \code{test\_isomorphism} member |
|---|
| 340 | function, which runs the algorithm. The reason that we implement the |
|---|
| 341 | algorithm using a class is that there are a fair number of internal |
|---|
| 342 | data structures required, and it is easier to make these data members |
|---|
| 343 | of a class and make each section of the algorithm a member |
|---|
| 344 | function. This relieves us from the burden of passing lots of |
|---|
| 345 | arguments to each function, while at the same time avoiding the evils |
|---|
| 346 | of global variables (non-reentrant, etc.). |
|---|
| 347 | |
|---|
| 348 | |
|---|
| 349 | @d Isomorphism function body |
|---|
| 350 | @{ |
|---|
| 351 | { |
|---|
| 352 | @<Concept checking@> |
|---|
| 353 | @<Quick return based on size@> |
|---|
| 354 | detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1, Invariant2, |
|---|
| 355 | IndexMap1, IndexMap2> |
|---|
| 356 | algo(G1, G2, f, invariant1, invariant2, max_invariant, |
|---|
| 357 | index_map1, index_map2); |
|---|
| 358 | return algo.test_isomorphism(); |
|---|
| 359 | } |
|---|
| 360 | @} |
|---|
| 361 | |
|---|
| 362 | |
|---|
| 363 | \noindent If there are no vertices in either graph, then they are |
|---|
| 364 | trivially isomorphic. If the graphs have different numbers of vertices |
|---|
| 365 | then they are not isomorphic. |
|---|
| 366 | |
|---|
| 367 | @d Quick return based on size |
|---|
| 368 | @{ |
|---|
| 369 | if (num_vertices(G1) != num_vertices(G2)) |
|---|
| 370 | return false; |
|---|
| 371 | if (num_vertices(G1) == 0 && num_vertices(G2) == 0) |
|---|
| 372 | return true; |
|---|
| 373 | @} |
|---|
| 374 | |
|---|
| 375 | We use the Boost Concept Checking Library to make sure that the type |
|---|
| 376 | arguments to the function fulfill there requirements. The graph types |
|---|
| 377 | must model the \bglconcept{VertexListGraph} and |
|---|
| 378 | \bglconcept{AdjacencyGraph} concepts. The vertex invariants must model |
|---|
| 379 | the \stlconcept{AdaptableUnaryFunction} concept, with a vertex as |
|---|
| 380 | their argument and an integer return type. The \code{IsoMapping} type |
|---|
| 381 | that represents the isomorphism $f$ must be a |
|---|
| 382 | \pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to |
|---|
| 383 | vertices in $G_2$. The two other index maps are |
|---|
| 384 | \pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to |
|---|
| 385 | unsigned integers. |
|---|
| 386 | |
|---|
| 387 | |
|---|
| 388 | @d Concept checking |
|---|
| 389 | @{ |
|---|
| 390 | // Graph requirements |
|---|
| 391 | function_requires< VertexListGraphConcept<Graph1> >(); |
|---|
| 392 | function_requires< EdgeListGraphConcept<Graph1> >(); |
|---|
| 393 | function_requires< VertexListGraphConcept<Graph2> >(); |
|---|
| 394 | function_requires< BidirectionalGraphConcept<Graph2> >(); |
|---|
| 395 | |
|---|
| 396 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 397 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 398 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 399 | |
|---|
| 400 | // Vertex invariant requirement |
|---|
| 401 | function_requires< AdaptableUnaryFunctionConcept<Invariant1, |
|---|
| 402 | size_type, vertex1_t> >(); |
|---|
| 403 | function_requires< AdaptableUnaryFunctionConcept<Invariant2, |
|---|
| 404 | size_type, vertex2_t> >(); |
|---|
| 405 | |
|---|
| 406 | // Property map requirements |
|---|
| 407 | function_requires< ReadWritePropertyMapConcept<IsoMapping, vertex1_t> >(); |
|---|
| 408 | typedef typename property_traits<IsoMapping>::value_type IsoMappingValue; |
|---|
| 409 | BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value)); |
|---|
| 410 | |
|---|
| 411 | function_requires< ReadablePropertyMapConcept<IndexMap1, vertex1_t> >(); |
|---|
| 412 | typedef typename property_traits<IndexMap1>::value_type IndexMap1Value; |
|---|
| 413 | BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value)); |
|---|
| 414 | |
|---|
| 415 | function_requires< ReadablePropertyMapConcept<IndexMap2, vertex2_t> >(); |
|---|
| 416 | typedef typename property_traits<IndexMap2>::value_type IndexMap2Value; |
|---|
| 417 | BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value)); |
|---|
| 418 | @} |
|---|
| 419 | |
|---|
| 420 | The following is the outline of the isomorphism algorithm class. The |
|---|
| 421 | class is templated on all of the same parameters of the |
|---|
| 422 | \code{isomorphism} function, and all of the parameter values are |
|---|
| 423 | stored in the class as data members, in addition to the internal data |
|---|
| 424 | structures. |
|---|
| 425 | |
|---|
| 426 | @d Isomorphism algorithm class |
|---|
| 427 | @{ |
|---|
| 428 | template <typename Graph1, typename Graph2, typename IsoMapping, |
|---|
| 429 | typename Invariant1, typename Invariant2, |
|---|
| 430 | typename IndexMap1, typename IndexMap2> |
|---|
| 431 | class isomorphism_algo |
|---|
| 432 | { |
|---|
| 433 | @<Typedefs for commonly used types@> |
|---|
| 434 | @<Data members for the parameters@> |
|---|
| 435 | @<Ordered edge class@> |
|---|
| 436 | @<Internal data structures@> |
|---|
| 437 | friend struct compare_multiplicity; |
|---|
| 438 | @<Invariant multiplicity comparison functor@> |
|---|
| 439 | @<DFS visitor to record vertex and edge order@> |
|---|
| 440 | public: |
|---|
| 441 | @<Isomorphism algorithm constructor@> |
|---|
| 442 | @<Test isomorphism member function@> |
|---|
| 443 | private: |
|---|
| 444 | @<Match function@> |
|---|
| 445 | }; |
|---|
| 446 | @} |
|---|
| 447 | |
|---|
| 448 | The interesting parts of this class are the \code{test\_isomorphism} |
|---|
| 449 | function, and the \code{match} function. We focus on those in in the |
|---|
| 450 | following sections, and mention the other parts of the class when |
|---|
| 451 | needed (and a few are left to the appendix). |
|---|
| 452 | |
|---|
| 453 | The \code{test\_isomorphism} function does all of the setup required |
|---|
| 454 | of the algorithm. This consists of sorting the vertices according to |
|---|
| 455 | invariant multiplicity, and then by DFS order. The edges are then |
|---|
| 456 | sorted by the DFS order of vertices incident on the edges. More |
|---|
| 457 | details about this to come. The last step of this function is to |
|---|
| 458 | invoke the recursive \code{match} function which performs the |
|---|
| 459 | backtracking search. |
|---|
| 460 | |
|---|
| 461 | |
|---|
| 462 | @d Test isomorphism member function |
|---|
| 463 | @{ |
|---|
| 464 | bool test_isomorphism() |
|---|
| 465 | { |
|---|
| 466 | @<Quick return if the vertex invariants do not match up@> |
|---|
| 467 | @<Sort vertices according to invariant multiplicity@> |
|---|
| 468 | @<Order vertices and edges by DFS@> |
|---|
| 469 | @<Sort edges according to vertex DFS order@> |
|---|
| 470 | |
|---|
| 471 | return this->match(ordered_edges.begin()); |
|---|
| 472 | } |
|---|
| 473 | @} |
|---|
| 474 | |
|---|
| 475 | As discussed in \S\ref{sec:vertex-invariants}, we can quickly rule out |
|---|
| 476 | the possibility of any isomorphism between two graphs by checking to |
|---|
| 477 | see if the vertex invariants can match up. We sort both vectors of vertex |
|---|
| 478 | invariants, and then check to see if they are equal. |
|---|
| 479 | |
|---|
| 480 | @d Quick return if the vertex invariants do not match up |
|---|
| 481 | @{ |
|---|
| 482 | { |
|---|
| 483 | std::vector<invar1_value> invar1_array; |
|---|
| 484 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 485 | invar1_array.push_back(invariant1(v)); |
|---|
| 486 | std::sort(invar1_array.begin(), invar1_array.end()); |
|---|
| 487 | |
|---|
| 488 | std::vector<invar2_value> invar2_array; |
|---|
| 489 | BGL_FORALL_VERTICES_T(v, G2, Graph2) |
|---|
| 490 | invar2_array.push_back(invariant2(v)); |
|---|
| 491 | std::sort(invar2_array.begin(), invar2_array.end()); |
|---|
| 492 | |
|---|
| 493 | if (!std::equal(invar1_array.begin(), invar1_array.end(), invar2_array.begin())) |
|---|
| 494 | return false; |
|---|
| 495 | } |
|---|
| 496 | @} |
|---|
| 497 | |
|---|
| 498 | Next we compute the invariant multiplicity, the number of vertices |
|---|
| 499 | with the same invariant number. The \code{invar\_mult} vector is |
|---|
| 500 | indexed by invariant number. We loop through all the vertices in the |
|---|
| 501 | graph to record the multiplicity. We then order the vertices by their |
|---|
| 502 | invariant multiplicity. This will allow us to search the more |
|---|
| 503 | constrained vertices first. |
|---|
| 504 | |
|---|
| 505 | @d Sort vertices according to invariant multiplicity |
|---|
| 506 | @{ |
|---|
| 507 | std::vector<vertex1_t> V_mult; |
|---|
| 508 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 509 | V_mult.push_back(v); |
|---|
| 510 | { |
|---|
| 511 | std::vector<size_type> multiplicity(max_invariant, 0); |
|---|
| 512 | BGL_FORALL_VERTICES_T(v, G1, Graph1) |
|---|
| 513 | ++multiplicity[invariant1(v)]; |
|---|
| 514 | |
|---|
| 515 | std::sort(V_mult.begin(), V_mult.end(), compare_multiplicity(*this, &multiplicity[0])); |
|---|
| 516 | } |
|---|
| 517 | @} |
|---|
| 518 | |
|---|
| 519 | \noindent The definition of the \code{compare\_multiplicity} predicate |
|---|
| 520 | is shown below. This predicate provides the glue that binds |
|---|
| 521 | \code{std::sort} to our current purpose. |
|---|
| 522 | |
|---|
| 523 | @d Invariant multiplicity comparison functor |
|---|
| 524 | @{ |
|---|
| 525 | struct compare_multiplicity |
|---|
| 526 | { |
|---|
| 527 | compare_multiplicity(isomorphism_algo& algo, size_type* multiplicity) |
|---|
| 528 | : algo(algo), multiplicity(multiplicity) { } |
|---|
| 529 | bool operator()(const vertex1_t& x, const vertex1_t& y) const { |
|---|
| 530 | return multiplicity[algo.invariant1(x)] < multiplicity[algo.invariant1(y)]; |
|---|
| 531 | } |
|---|
| 532 | isomorphism_algo& algo; |
|---|
| 533 | size_type* multiplicity; |
|---|
| 534 | }; |
|---|
| 535 | @} |
|---|
| 536 | |
|---|
| 537 | \subsection{Backtracking Search and Matching} |
|---|
| 538 | |
|---|
| 539 | |
|---|
| 540 | |
|---|
| 541 | |
|---|
| 542 | |
|---|
| 543 | |
|---|
| 544 | \subsection{Ordering by DFS Discover Time} |
|---|
| 545 | |
|---|
| 546 | To implement the ``visit adjacent vertices first'' heuristic, we order |
|---|
| 547 | the vertices according to DFS discover time. This will give us the |
|---|
| 548 | order that the subgraph $G_1[k]$ will be expanded. As described in |
|---|
| 549 | \S\ref{sec:backtracking}, when trying to match $k$ with some vertex |
|---|
| 550 | $v$ in $V_2 - S$, we need to examine the edges in $E_1[k] - |
|---|
| 551 | E_1[k-1]$. It would be nice if we had the edges of $G_1$ arranged so |
|---|
| 552 | that when we are interested in vertex $k$, the edges in $E_1[k] - |
|---|
| 553 | E_1[k-1]$ are easy to find. This can be achieved by creating an array |
|---|
| 554 | of edges sorted by the DFS number of the larger of the source and |
|---|
| 555 | target vertex. The following array of ordered edges corresponds |
|---|
| 556 | to the graph in Figure~\ref{fig:edge-order}. |
|---|
| 557 | |
|---|
| 558 | \begin{tabular}{cccccccccc} |
|---|
| 559 | &0&1&2&3&4&5&6&7&8\\ \hline |
|---|
| 560 | source&0&1&1&3&3&4&4&5&6\\ |
|---|
| 561 | target&1&2&3&1&2&3&5&6&4 |
|---|
| 562 | \end{tabular} |
|---|
| 563 | |
|---|
| 564 | The backtracking algorithm will scan through the edge array from left |
|---|
| 565 | to right to extend isomorphic subgraphs, and move back to the right |
|---|
| 566 | when a match fails. We will want to |
|---|
| 567 | |
|---|
| 568 | |
|---|
| 569 | |
|---|
| 570 | |
|---|
| 571 | |
|---|
| 572 | |
|---|
| 573 | |
|---|
| 574 | |
|---|
| 575 | |
|---|
| 576 | |
|---|
| 577 | For example, suppose we have already matched the vertices |
|---|
| 578 | \{0,1,2\}, and |
|---|
| 579 | |
|---|
| 580 | |
|---|
| 581 | |
|---|
| 582 | \vizfig{edge-order}{Vertices with DFS numbering. The DFS trees are the solid edges.} |
|---|
| 583 | |
|---|
| 584 | @c edge-order.dot |
|---|
| 585 | @{ |
|---|
| 586 | digraph G { |
|---|
| 587 | size="3,2" |
|---|
| 588 | ratio=fill |
|---|
| 589 | node[shape=circle] |
|---|
| 590 | 0 -> 1[style=bold] |
|---|
| 591 | 1 -> 2[style=bold] |
|---|
| 592 | 1 -> 3[style=bold] |
|---|
| 593 | 3 -> 1[style=dashed] |
|---|
| 594 | 3 -> 2[style=dashed] |
|---|
| 595 | 4 -> 3[style=dashed] |
|---|
| 596 | 4 -> 5[style=bold] |
|---|
| 597 | 5 -> 6[style=bold] |
|---|
| 598 | 6 -> 4[style=dashed] |
|---|
| 599 | } |
|---|
| 600 | @} |
|---|
| 601 | |
|---|
| 602 | |
|---|
| 603 | |
|---|
| 604 | |
|---|
| 605 | We implement the outer-loop of the DFS here, instead of calling the |
|---|
| 606 | \code{depth\_first\_search} function, because we want the roots of the |
|---|
| 607 | DFS tree's to be ordered by invariant multiplicity. We call |
|---|
| 608 | \code{depth\_\-first\_\-visit} to implement the recursive portion of |
|---|
| 609 | the DFS. The \code{record\_dfs\_order} adapts the DFS to record the |
|---|
| 610 | order in which DFS discovers the vertices, storing the results in in |
|---|
| 611 | the \code{dfs\_vertices} and \code{ordered\_edges} arrays. We then |
|---|
| 612 | create the \code{dfs\_number} array which provides a mapping from |
|---|
| 613 | vertex to DFS number, and renumber the edges with the DFS numbers. |
|---|
| 614 | |
|---|
| 615 | @d Order vertices and edges by DFS |
|---|
| 616 | @{ |
|---|
| 617 | std::vector<default_color_type> color_vec(num_vertices(G1)); |
|---|
| 618 | safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1> |
|---|
| 619 | color_map(color_vec.begin(), color_vec.size(), index_map1); |
|---|
| 620 | record_dfs_order dfs_visitor(dfs_vertices, ordered_edges); |
|---|
| 621 | typedef color_traits<default_color_type> Color; |
|---|
| 622 | for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) { |
|---|
| 623 | if (color_map[*u] == Color::white()) { |
|---|
| 624 | dfs_visitor.start_vertex(*u, G1); |
|---|
| 625 | depth_first_visit(G1, *u, dfs_visitor, color_map); |
|---|
| 626 | } |
|---|
| 627 | } |
|---|
| 628 | // Create the dfs_number array and dfs_number_map |
|---|
| 629 | dfs_number_vec.resize(num_vertices(G1)); |
|---|
| 630 | dfs_number = make_safe_iterator_property_map(dfs_number_vec.begin(), |
|---|
| 631 | dfs_number_vec.size(), index_map1); |
|---|
| 632 | size_type n = 0; |
|---|
| 633 | for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v) |
|---|
| 634 | dfs_number[*v] = n++; |
|---|
| 635 | |
|---|
| 636 | // Renumber ordered_edges array according to DFS number |
|---|
| 637 | for (edge_iter e = ordered_edges.begin(); e != ordered_edges.end(); ++e) { |
|---|
| 638 | if (e->source >= 0) |
|---|
| 639 | e->source = dfs_number_vec[e->source]; |
|---|
| 640 | e->target = dfs_number_vec[e->target]; |
|---|
| 641 | } |
|---|
| 642 | @} |
|---|
| 643 | |
|---|
| 644 | \noindent The definition of the \code{record\_dfs\_order} visitor |
|---|
| 645 | class is as follows. EXPLAIN ficticious edges |
|---|
| 646 | |
|---|
| 647 | @d DFS visitor to record vertex and edge order |
|---|
| 648 | @{ |
|---|
| 649 | struct record_dfs_order : default_dfs_visitor |
|---|
| 650 | { |
|---|
| 651 | record_dfs_order(std::vector<vertex1_t>& v, std::vector<ordered_edge>& e) |
|---|
| 652 | : vertices(v), edges(e) { } |
|---|
| 653 | |
|---|
| 654 | void start_vertex(vertex1_t v, const Graph1&) const { |
|---|
| 655 | edges.push_back(ordered_edge(-1, v)); |
|---|
| 656 | } |
|---|
| 657 | void discover_vertex(vertex1_t v, const Graph1&) const { |
|---|
| 658 | vertices.push_back(v); |
|---|
| 659 | } |
|---|
| 660 | void examine_edge(edge1_t e, const Graph1& G1) const { |
|---|
| 661 | edges.push_back(ordered_edge(source(e, G1), target(e, G1))); |
|---|
| 662 | } |
|---|
| 663 | std::vector<vertex1_t>& vertices; |
|---|
| 664 | std::vector<ordered_edge>& edges; |
|---|
| 665 | }; |
|---|
| 666 | @} |
|---|
| 667 | |
|---|
| 668 | |
|---|
| 669 | Reorder the edges so that all edges belonging to $G_1[k]$ |
|---|
| 670 | appear before any edges not in $G_1[k]$, for $k=1,...,n$. |
|---|
| 671 | |
|---|
| 672 | The order field needs a better name. How about k? |
|---|
| 673 | |
|---|
| 674 | @d Sort edges according to vertex DFS order |
|---|
| 675 | @{ |
|---|
| 676 | std::stable_sort(ordered_edges.begin(), ordered_edges.end()); |
|---|
| 677 | // Fill in i->k_num field |
|---|
| 678 | if (!ordered_edges.empty()) { |
|---|
| 679 | ordered_edges[0].k_num = 0; |
|---|
| 680 | for (edge_iter i = next(ordered_edges.begin()); i != ordered_edges.end(); ++i) |
|---|
| 681 | i->k_num = std::max(prior(i)->source, prior(i)->target); |
|---|
| 682 | } |
|---|
| 683 | @} |
|---|
| 684 | |
|---|
| 685 | |
|---|
| 686 | |
|---|
| 687 | |
|---|
| 688 | |
|---|
| 689 | |
|---|
| 690 | @d Typedefs for commonly used types |
|---|
| 691 | @{ |
|---|
| 692 | typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t; |
|---|
| 693 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 694 | typedef typename graph_traits<Graph1>::edge_descriptor edge1_t; |
|---|
| 695 | typedef typename graph_traits<Graph1>::vertices_size_type size_type; |
|---|
| 696 | typedef typename Invariant1::result_type invar1_value; |
|---|
| 697 | typedef typename Invariant2::result_type invar2_value; |
|---|
| 698 | @} |
|---|
| 699 | |
|---|
| 700 | @d Data members for the parameters |
|---|
| 701 | @{ |
|---|
| 702 | const Graph1& G1; |
|---|
| 703 | const Graph2& G2; |
|---|
| 704 | IsoMapping f; |
|---|
| 705 | Invariant1 invariant1; |
|---|
| 706 | Invariant2 invariant2; |
|---|
| 707 | std::size_t max_invariant; |
|---|
| 708 | IndexMap1 index_map1; |
|---|
| 709 | IndexMap2 index_map2; |
|---|
| 710 | @} |
|---|
| 711 | |
|---|
| 712 | @d Internal data structures |
|---|
| 713 | @{ |
|---|
| 714 | std::vector<vertex1_t> dfs_vertices; |
|---|
| 715 | typedef std::vector<vertex1_t>::iterator vertex_iter; |
|---|
| 716 | std::vector<size_type> dfs_number_vec; |
|---|
| 717 | safe_iterator_property_map<typename std::vector<size_type>::iterator, IndexMap1> |
|---|
| 718 | dfs_number; |
|---|
| 719 | std::vector<ordered_edge> ordered_edges; |
|---|
| 720 | typedef std::vector<ordered_edge>::iterator edge_iter; |
|---|
| 721 | |
|---|
| 722 | std::vector<vertex1_t> f_inv_vec; |
|---|
| 723 | safe_iterator_property_map<typename std::vector<vertex1_t>::iterator, |
|---|
| 724 | IndexMap2> f_inv; |
|---|
| 725 | |
|---|
| 726 | std::vector<char> f_assigned_vec; |
|---|
| 727 | safe_iterator_property_map<typename std::vector<char>::iterator, |
|---|
| 728 | IndexMap1> f_assigned; |
|---|
| 729 | |
|---|
| 730 | std::vector<char> f_inv_assigned_vec; |
|---|
| 731 | safe_iterator_property_map<typename std::vector<char>::iterator, |
|---|
| 732 | IndexMap2> f_inv_assigned; |
|---|
| 733 | |
|---|
| 734 | int num_edges_incident_on_k; |
|---|
| 735 | @} |
|---|
| 736 | |
|---|
| 737 | @d Isomorphism algorithm constructor |
|---|
| 738 | @{ |
|---|
| 739 | isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f, |
|---|
| 740 | Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant, |
|---|
| 741 | IndexMap1 index_map1, IndexMap2 index_map2) |
|---|
| 742 | : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2), |
|---|
| 743 | max_invariant(max_invariant), |
|---|
| 744 | index_map1(index_map1), index_map2(index_map2) |
|---|
| 745 | { |
|---|
| 746 | f_assigned_vec.resize(num_vertices(G1)); |
|---|
| 747 | f_assigned = make_safe_iterator_property_map |
|---|
| 748 | (f_assigned_vec.begin(), f_assigned_vec.size(), index_map1); |
|---|
| 749 | f_inv_vec.resize(num_vertices(G1)); |
|---|
| 750 | f_inv = make_safe_iterator_property_map |
|---|
| 751 | (f_inv_vec.begin(), f_inv_vec.size(), index_map2); |
|---|
| 752 | |
|---|
| 753 | f_inv_assigned_vec.resize(num_vertices(G1)); |
|---|
| 754 | f_inv_assigned = make_safe_iterator_property_map |
|---|
| 755 | (f_inv_assigned_vec.begin(), f_inv_assigned_vec.size(), index_map2); |
|---|
| 756 | } |
|---|
| 757 | @} |
|---|
| 758 | |
|---|
| 759 | |
|---|
| 760 | |
|---|
| 761 | |
|---|
| 762 | @d Degree vertex invariant functor |
|---|
| 763 | @{ |
|---|
| 764 | template <typename InDegreeMap, typename Graph> |
|---|
| 765 | class degree_vertex_invariant |
|---|
| 766 | { |
|---|
| 767 | typedef typename graph_traits<Graph>::vertex_descriptor vertex_t; |
|---|
| 768 | typedef typename graph_traits<Graph>::degree_size_type size_type; |
|---|
| 769 | public: |
|---|
| 770 | typedef vertex_t argument_type; |
|---|
| 771 | typedef size_type result_type; |
|---|
| 772 | |
|---|
| 773 | degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g) |
|---|
| 774 | : m_in_degree_map(in_degree_map), m_g(g) { } |
|---|
| 775 | |
|---|
| 776 | size_type operator()(vertex_t v) const { |
|---|
| 777 | return (num_vertices(m_g) + 1) * out_degree(v, m_g) |
|---|
| 778 | + get(m_in_degree_map, v); |
|---|
| 779 | } |
|---|
| 780 | // The largest possible vertex invariant number |
|---|
| 781 | size_type max() const { |
|---|
| 782 | return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g); |
|---|
| 783 | } |
|---|
| 784 | private: |
|---|
| 785 | InDegreeMap m_in_degree_map; |
|---|
| 786 | const Graph& m_g; |
|---|
| 787 | }; |
|---|
| 788 | @} |
|---|
| 789 | |
|---|
| 790 | |
|---|
| 791 | |
|---|
| 792 | ficticiuos edges for the DFS tree roots |
|---|
| 793 | Use \code{ordered\_edge} instead of \code{edge1\_t} so that we can create ficticious |
|---|
| 794 | edges for the DFS tree roots. |
|---|
| 795 | |
|---|
| 796 | @d Ordered edge class |
|---|
| 797 | @{ |
|---|
| 798 | struct ordered_edge { |
|---|
| 799 | ordered_edge(int s, int t) : source(s), target(t) { } |
|---|
| 800 | |
|---|
| 801 | bool operator<(const ordered_edge& e) const { |
|---|
| 802 | using namespace std; |
|---|
| 803 | int m1 = max(source, target); |
|---|
| 804 | int m2 = max(e.source, e.target); |
|---|
| 805 | // lexicographical comparison of (m1,source,target) and (m2,e.source,e.target) |
|---|
| 806 | return make_pair(m1, make_pair(source, target)) < make_pair(m2, make_pair(e.source, e.target)); |
|---|
| 807 | } |
|---|
| 808 | int source; |
|---|
| 809 | int target; |
|---|
| 810 | int k_num; |
|---|
| 811 | }; |
|---|
| 812 | @} |
|---|
| 813 | |
|---|
| 814 | |
|---|
| 815 | |
|---|
| 816 | |
|---|
| 817 | |
|---|
| 818 | |
|---|
| 819 | \subsection{Recursive Match Function} |
|---|
| 820 | |
|---|
| 821 | |
|---|
| 822 | |
|---|
| 823 | |
|---|
| 824 | |
|---|
| 825 | @d $v$ is a DFS tree root |
|---|
| 826 | @{ |
|---|
| 827 | // Try all possible mappings |
|---|
| 828 | BGL_FORALL_VERTICES_T(y, G2, Graph2) { |
|---|
| 829 | if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) { |
|---|
| 830 | f[v] = y; f_assigned[v] = true; |
|---|
| 831 | f_inv[y] = v; f_inv_assigned[y] = true; |
|---|
| 832 | num_edges_incident_on_k = 0; |
|---|
| 833 | if (match(next(iter))) |
|---|
| 834 | return true; |
|---|
| 835 | f_assigned[v] = false; |
|---|
| 836 | f_inv_assigned[y] = false; |
|---|
| 837 | } |
|---|
| 838 | } |
|---|
| 839 | @} |
|---|
| 840 | |
|---|
| 841 | Growing the subgraph. |
|---|
| 842 | |
|---|
| 843 | @d $v$ is an unmatched vertex, $(u,v)$ is a tree edge |
|---|
| 844 | @{ |
|---|
| 845 | @<Count out-edges of $f(k)$ in $G_2[S]$@> |
|---|
| 846 | @<Count in-edges of $f(k)$ in $G_2[S]$@> |
|---|
| 847 | if (num_edges_incident_on_k != 0) |
|---|
| 848 | return false; |
|---|
| 849 | @<Assign $v$ to some vertex in $V_2 - S$@> |
|---|
| 850 | @} |
|---|
| 851 | @d Count out-edges of $f(k)$ in $G_2[S]$ |
|---|
| 852 | @{ |
|---|
| 853 | BGL_FORALL_ADJACENT_T(f[k], w, G2, Graph2) |
|---|
| 854 | if (f_inv_assigned[w] == true) |
|---|
| 855 | --num_edges_incident_on_k; |
|---|
| 856 | @} |
|---|
| 857 | |
|---|
| 858 | @d Count in-edges of $f(k)$ in $G_2[S]$ |
|---|
| 859 | @{ |
|---|
| 860 | for (std::size_t jj = 0; jj < k_num; ++jj) { |
|---|
| 861 | vertex1_t j = dfs_vertices[jj]; |
|---|
| 862 | BGL_FORALL_ADJACENT_T(f[j], w, G2, Graph2) |
|---|
| 863 | if (w == f[k]) |
|---|
| 864 | --num_edges_incident_on_k; |
|---|
| 865 | } |
|---|
| 866 | @} |
|---|
| 867 | |
|---|
| 868 | @d Assign $v$ to some vertex in $V_2 - S$ |
|---|
| 869 | @{ |
|---|
| 870 | BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2) |
|---|
| 871 | if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) { |
|---|
| 872 | f[v] = y; f_assigned[v] = true; |
|---|
| 873 | f_inv[y] = v; f_inv_assigned[y] = true; |
|---|
| 874 | num_edges_incident_on_k = 1; |
|---|
| 875 | if (match(next(iter))) |
|---|
| 876 | return true; |
|---|
| 877 | f_assigned[v] = false; |
|---|
| 878 | f_inv_assigned[y] = false; |
|---|
| 879 | } |
|---|
| 880 | @} |
|---|
| 881 | |
|---|
| 882 | |
|---|
| 883 | |
|---|
| 884 | @d Check to see if there is an edge in $G_2$ to match $(u,v)$ |
|---|
| 885 | @{ |
|---|
| 886 | bool verify = false; |
|---|
| 887 | assert(f_assigned[u] == true); |
|---|
| 888 | BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2) { |
|---|
| 889 | if (y == f[v]) { |
|---|
| 890 | verify = true; |
|---|
| 891 | break; |
|---|
| 892 | } |
|---|
| 893 | } |
|---|
| 894 | if (verify == true) { |
|---|
| 895 | ++num_edges_incident_on_k; |
|---|
| 896 | if (match(next(iter))) |
|---|
| 897 | return true; |
|---|
| 898 | } |
|---|
| 899 | @} |
|---|
| 900 | |
|---|
| 901 | |
|---|
| 902 | |
|---|
| 903 | @o isomorphism-v2.hpp |
|---|
| 904 | @{ |
|---|
| 905 | // Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman |
|---|
| 906 | // |
|---|
| 907 | // Permission to copy, use, sell and distribute this software is granted |
|---|
| 908 | // provided this copyright notice appears in all copies. |
|---|
| 909 | // Permission to modify the code and to distribute modified code is granted |
|---|
| 910 | // provided this copyright notice appears in all copies, and a notice |
|---|
| 911 | // that the code was modified is included with the copyright notice. |
|---|
| 912 | // |
|---|
| 913 | // This software is provided "as is" without express or implied warranty, |
|---|
| 914 | // and with no claim as to its suitability for any purpose. |
|---|
| 915 | #ifndef BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 916 | #define BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 917 | |
|---|
| 918 | #include <utility> |
|---|
| 919 | #include <vector> |
|---|
| 920 | #include <iterator> |
|---|
| 921 | #include <algorithm> |
|---|
| 922 | #include <boost/graph/iteration_macros.hpp> |
|---|
| 923 | #include <boost/graph/depth_first_search.hpp> |
|---|
| 924 | #include <boost/utility.hpp> |
|---|
| 925 | #include <boost/tuple/tuple.hpp> |
|---|
| 926 | |
|---|
| 927 | namespace boost { |
|---|
| 928 | |
|---|
| 929 | namespace detail { |
|---|
| 930 | |
|---|
| 931 | @<Isomorphism algorithm class@> |
|---|
| 932 | |
|---|
| 933 | template <typename Graph, typename InDegreeMap> |
|---|
| 934 | void compute_in_degree(const Graph& g, InDegreeMap in_degree_map) |
|---|
| 935 | { |
|---|
| 936 | BGL_FORALL_VERTICES_T(v, g, Graph) |
|---|
| 937 | put(in_degree_map, v, 0); |
|---|
| 938 | |
|---|
| 939 | BGL_FORALL_VERTICES_T(u, g, Graph) |
|---|
| 940 | BGL_FORALL_ADJACENT_T(u, v, g, Graph) |
|---|
| 941 | put(in_degree_map, v, get(in_degree_map, v) + 1); |
|---|
| 942 | } |
|---|
| 943 | |
|---|
| 944 | } // namespace detail |
|---|
| 945 | |
|---|
| 946 | |
|---|
| 947 | @<Degree vertex invariant functor@> |
|---|
| 948 | |
|---|
| 949 | @<Isomorphism function interface@> |
|---|
| 950 | @<Isomorphism function body@> |
|---|
| 951 | |
|---|
| 952 | namespace detail { |
|---|
| 953 | |
|---|
| 954 | template <typename Graph1, typename Graph2, |
|---|
| 955 | typename IsoMapping, |
|---|
| 956 | typename IndexMap1, typename IndexMap2, |
|---|
| 957 | typename P, typename T, typename R> |
|---|
| 958 | bool isomorphism_impl(const Graph1& G1, const Graph2& G2, |
|---|
| 959 | IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2, |
|---|
| 960 | const bgl_named_params<P,T,R>& params) |
|---|
| 961 | { |
|---|
| 962 | std::vector<std::size_t> in_degree1_vec(num_vertices(G1)); |
|---|
| 963 | typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap1> InDeg1; |
|---|
| 964 | InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1); |
|---|
| 965 | compute_in_degree(G1, in_degree1); |
|---|
| 966 | |
|---|
| 967 | std::vector<std::size_t> in_degree2_vec(num_vertices(G2)); |
|---|
| 968 | typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap2> InDeg2; |
|---|
| 969 | InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2); |
|---|
| 970 | compute_in_degree(G2, in_degree2); |
|---|
| 971 | |
|---|
| 972 | degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1); |
|---|
| 973 | degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2); |
|---|
| 974 | |
|---|
| 975 | return isomorphism(G1, G2, f, |
|---|
| 976 | choose_param(get_param(params, vertex_invariant1_t()), invariant1), |
|---|
| 977 | choose_param(get_param(params, vertex_invariant2_t()), invariant2), |
|---|
| 978 | choose_param(get_param(params, vertex_max_invariant_t()), invariant2.max()), |
|---|
| 979 | index_map1, index_map2 |
|---|
| 980 | ); |
|---|
| 981 | } |
|---|
| 982 | |
|---|
| 983 | } // namespace detail |
|---|
| 984 | |
|---|
| 985 | |
|---|
| 986 | // Named parameter interface |
|---|
| 987 | template <typename Graph1, typename Graph2, class P, class T, class R> |
|---|
| 988 | bool isomorphism(const Graph1& g1, |
|---|
| 989 | const Graph2& g2, |
|---|
| 990 | const bgl_named_params<P,T,R>& params) |
|---|
| 991 | { |
|---|
| 992 | typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t; |
|---|
| 993 | typename std::vector<vertex2_t>::size_type n = num_vertices(g1); |
|---|
| 994 | std::vector<vertex2_t> f(n); |
|---|
| 995 | return detail::isomorphism_impl |
|---|
| 996 | (g1, g2, |
|---|
| 997 | choose_param(get_param(params, vertex_isomorphism_t()), |
|---|
| 998 | make_safe_iterator_property_map(f.begin(), f.size(), |
|---|
| 999 | choose_const_pmap(get_param(params, vertex_index1), |
|---|
| 1000 | g1, vertex_index), vertex2_t())), |
|---|
| 1001 | choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index), |
|---|
| 1002 | choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index), |
|---|
| 1003 | params |
|---|
| 1004 | ); |
|---|
| 1005 | } |
|---|
| 1006 | |
|---|
| 1007 | // All defaults interface |
|---|
| 1008 | template <typename Graph1, typename Graph2> |
|---|
| 1009 | bool isomorphism(const Graph1& g1, const Graph2& g2) |
|---|
| 1010 | { |
|---|
| 1011 | return isomorphism(g1, g2, |
|---|
| 1012 | bgl_named_params<int, buffer_param_t>(0));// bogus named param |
|---|
| 1013 | } |
|---|
| 1014 | |
|---|
| 1015 | |
|---|
| 1016 | // Verify that the given mapping iso_map from the vertices of g1 to the |
|---|
| 1017 | // vertices of g2 describes an isomorphism. |
|---|
| 1018 | // Note: this could be made much faster by specializing based on the graph |
|---|
| 1019 | // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm, |
|---|
| 1020 | // O(n^4) won't hurt us. |
|---|
| 1021 | template<typename Graph1, typename Graph2, typename IsoMap> |
|---|
| 1022 | inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map) |
|---|
| 1023 | { |
|---|
| 1024 | if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2)) |
|---|
| 1025 | return false; |
|---|
| 1026 | |
|---|
| 1027 | for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first; |
|---|
| 1028 | e1 != edges(g1).second; ++e1) { |
|---|
| 1029 | bool found_edge = false; |
|---|
| 1030 | for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first; |
|---|
| 1031 | e2 != edges(g2).second && !found_edge; ++e2) { |
|---|
| 1032 | if (source(*e2, g2) == get(iso_map, source(*e1, g1)) && |
|---|
| 1033 | target(*e2, g2) == get(iso_map, target(*e1, g1))) { |
|---|
| 1034 | found_edge = true; |
|---|
| 1035 | } |
|---|
| 1036 | } |
|---|
| 1037 | |
|---|
| 1038 | if (!found_edge) |
|---|
| 1039 | return false; |
|---|
| 1040 | } |
|---|
| 1041 | |
|---|
| 1042 | return true; |
|---|
| 1043 | } |
|---|
| 1044 | |
|---|
| 1045 | } // namespace boost |
|---|
| 1046 | |
|---|
| 1047 | #include <boost/graph/iteration_macros_undef.hpp> |
|---|
| 1048 | |
|---|
| 1049 | #endif // BOOST_GRAPH_ISOMORPHISM_HPP |
|---|
| 1050 | @} |
|---|
| 1051 | |
|---|
| 1052 | \bibliographystyle{abbrv} |
|---|
| 1053 | \bibliography{ggcl} |
|---|
| 1054 | |
|---|
| 1055 | \end{document} |
|---|
| 1056 | % LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS |
|---|
| 1057 | % LocalWords: ISOMORPH Invariants invariants typename IsoMapping bool const |
|---|
| 1058 | % LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num |
|---|
| 1059 | % LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui |
|---|
| 1060 | % LocalWords: dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre |
|---|
| 1061 | |
|---|
| 1062 | % LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp |
|---|
| 1063 | % LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept |
|---|
| 1064 | % LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei |
|---|
| 1065 | % LocalWords: IsoMappingValue ReadablePropertyMapConcept namespace InvarFun |
|---|
| 1066 | % LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params |
|---|
| 1067 | % LocalWords: bgl param pmap endif |
|---|