| 1 | <HTML> |
|---|
| 2 | <!-- |
|---|
| 3 | -- Copyright (c) Jeremy Siek 2000, 2001 |
|---|
| 4 | -- |
|---|
| 5 | -- Distributed under the Boost Software License, Version 1.0. |
|---|
| 6 | -- (See accompanying file LICENSE_1_0.txt or copy at |
|---|
| 7 | -- http://www.boost.org/LICENSE_1_0.txt) |
|---|
| 8 | --> |
|---|
| 9 | <Head> |
|---|
| 10 | <Title>Boost Graph Library: Breadth-First Search</Title> |
|---|
| 11 | <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" |
|---|
| 12 | ALINK="#ff0000"> |
|---|
| 13 | <IMG SRC="../../../boost.png" |
|---|
| 14 | ALT="C++ Boost" width="277" height="86"> |
|---|
| 15 | |
|---|
| 16 | <BR Clear> |
|---|
| 17 | |
|---|
| 18 | <H1><A NAME="sec:bfs"> |
|---|
| 19 | <img src="figs/python.gif" alt="(Python)"/> |
|---|
| 20 | <TT>breadth_first_search</TT> |
|---|
| 21 | </H1> |
|---|
| 22 | |
|---|
| 23 | <P> |
|---|
| 24 | <PRE> |
|---|
| 25 | <i>// named parameter version</i> |
|---|
| 26 | template <class Graph, class P, class T, class R> |
|---|
| 27 | void breadth_first_search(Graph& G, |
|---|
| 28 | typename graph_traits<Graph>::vertex_descriptor s, |
|---|
| 29 | const bgl_named_params<P, T, R>& params); |
|---|
| 30 | |
|---|
| 31 | <i>// non-named parameter version</i> |
|---|
| 32 | template <class Graph, class Buffer, class BFSVisitor, |
|---|
| 33 | class ColorMap> |
|---|
| 34 | void breadth_first_search(const Graph& g, |
|---|
| 35 | typename graph_traits<Graph>::vertex_descriptor s, |
|---|
| 36 | Buffer& Q, BFSVisitor vis, ColorMap color); |
|---|
| 37 | </PRE> |
|---|
| 38 | |
|---|
| 39 | |
|---|
| 40 | <p> |
|---|
| 41 | The <tt>breadth_first_search()</tt> function performs a breadth-first |
|---|
| 42 | traversal [<a href="./bibliography.html#moore59">49</a>] of a directed |
|---|
| 43 | or undirected graph. A breadth-first traversal visits vertices that |
|---|
| 44 | are closer to the source before visiting vertices that are further |
|---|
| 45 | away. In this context ``distance'' is defined as the number of edges |
|---|
| 46 | in the shortest path from the source vertex. The |
|---|
| 47 | <tt>breadth_first_search()</tt> function can be used to compute the |
|---|
| 48 | shortest path from the source to all reachable vertices and the |
|---|
| 49 | resulting shortest-path distances. For more definitions related to BFS |
|---|
| 50 | see section <a href="./graph_theory_review.html#sec:bfs-algorithm"> |
|---|
| 51 | Breadth-First Search</a>. |
|---|
| 52 | </p> |
|---|
| 53 | |
|---|
| 54 | <p> |
|---|
| 55 | BFS uses two data structures to to implement the traversal: a color |
|---|
| 56 | marker for each vertex and a queue. White vertices are undiscovered |
|---|
| 57 | while gray vertices are discovered but have undiscovered adjacent |
|---|
| 58 | vertices. Black vertices are discovered and are adjacent to only other |
|---|
| 59 | black or gray vertices. The algorithm proceeds by removing a vertex |
|---|
| 60 | </i>u</i> from the queue and examining each out-edge <i>(u,v)</i>. If an |
|---|
| 61 | adjacent vertex <i>v</i> is not already discovered, it is colored gray and |
|---|
| 62 | placed in the queue. After all of the out-edges are examined, vertex |
|---|
| 63 | <i>u</i> is colored black and the process is repeated. Pseudo-code for the |
|---|
| 64 | BFS algorithm is a listed below. |
|---|
| 65 | </p> |
|---|
| 66 | |
|---|
| 67 | <table> |
|---|
| 68 | <tr> |
|---|
| 69 | <td valign="top"> |
|---|
| 70 | <pre> |
|---|
| 71 | BFS(<i>G</i>, <i>s</i>) |
|---|
| 72 | <b>for</b> each vertex <i>u in V[G]</i> |
|---|
| 73 | <i>color[u] :=</i> WHITE |
|---|
| 74 | <i>d[u] := infinity</i> |
|---|
| 75 | <i>p[u] := u</i> |
|---|
| 76 | <b>end for</b> |
|---|
| 77 | <i>color[s] :=</i> GRAY |
|---|
| 78 | <i>d[s] := 0</i> |
|---|
| 79 | ENQUEUE(<i>Q</i>, <i>s</i>) |
|---|
| 80 | <b>while</b> (<i>Q != Ø</i>) |
|---|
| 81 | <i>u :=</i> DEQUEUE(Q) |
|---|
| 82 | <b>for</b> each vertex <i>v in Adj[u]</i> |
|---|
| 83 | <b>if</b> (<i>color[v] =</i> WHITE) |
|---|
| 84 | <i>color[v] :=</i> GRAY |
|---|
| 85 | <i>d[v] := d[u] + 1</i> |
|---|
| 86 | <i>p[v] := u</i> |
|---|
| 87 | ENQUEUE(<i>Q</i>, <i>v</i>) |
|---|
| 88 | <b>else</b> |
|---|
| 89 | <b>if</b> (<i>color[v] =</i> GRAY) |
|---|
| 90 | ... |
|---|
| 91 | <b>else</b> |
|---|
| 92 | ... |
|---|
| 93 | <b>end for</b> |
|---|
| 94 | <i>color[u] :=</i> BLACK |
|---|
| 95 | <b>end while</b> |
|---|
| 96 | return (<i>d</i>, <i>p</i>) |
|---|
| 97 | </pre> |
|---|
| 98 | </td> |
|---|
| 99 | <td valign="top"> |
|---|
| 100 | <pre> |
|---|
| 101 | |
|---|
| 102 | initialize vertex <i>u</i> |
|---|
| 103 | |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | |
|---|
| 107 | |
|---|
| 108 | |
|---|
| 109 | discover vertex <i>s</i> |
|---|
| 110 | |
|---|
| 111 | examine vertex <i>u</i> |
|---|
| 112 | examine edge <i>(u,v)</i> |
|---|
| 113 | <i>(u,v)</i> is a tree edge |
|---|
| 114 | |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | discover vertex <i>v</i> |
|---|
| 118 | <i>(u,v)</i> is a non-tree edge |
|---|
| 119 | |
|---|
| 120 | <i>(u,v)</i> has a gray target |
|---|
| 121 | |
|---|
| 122 | <i>(u,v)</i> has a black target |
|---|
| 123 | |
|---|
| 124 | finish vertex <i>u</i> |
|---|
| 125 | </pre> |
|---|
| 126 | </tr> |
|---|
| 127 | </table> |
|---|
| 128 | |
|---|
| 129 | The <tt>breadth_first_search()</tt> function can be extended with |
|---|
| 130 | user-defined actions that will be called a certain event points. The |
|---|
| 131 | actions must be provided in the form of a visitor object, that is, an |
|---|
| 132 | object who's type meets the requirements for a <a |
|---|
| 133 | href="./BFSVisitor.html">BFS Visitor</a>. In the above pseudo-code, |
|---|
| 134 | the event points are the labels on the right. Also a description of |
|---|
| 135 | each event point is given below. By default, the |
|---|
| 136 | <tt>breadth_first_search()</tt> function does not carry out any |
|---|
| 137 | actions, not even recording distances or predecessors. However these |
|---|
| 138 | can be easily added using the <a |
|---|
| 139 | href="./distance_recorder.html"><tt>distance_recorder</tt></a> and <a |
|---|
| 140 | href="./predecessor_recorder.html"><tt>predecessor_recorder</tt></a> |
|---|
| 141 | event visitors. |
|---|
| 142 | |
|---|
| 143 | |
|---|
| 144 | <H3>Where Defined</H3> |
|---|
| 145 | |
|---|
| 146 | <P> |
|---|
| 147 | <a href="../../../boost/graph/breadth_first_search.hpp"><TT>boost/graph/breadth_first_search.hpp</TT></a> |
|---|
| 148 | |
|---|
| 149 | <P> |
|---|
| 150 | |
|---|
| 151 | <h3>Parameters</h3> |
|---|
| 152 | |
|---|
| 153 | IN: <tt>Graph& g</tt> |
|---|
| 154 | <blockquote> |
|---|
| 155 | A directed or undirected graph. The graph type must |
|---|
| 156 | be a model of <a href="./VertexListGraph.html">Vertex List Graph</a> |
|---|
| 157 | and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br> |
|---|
| 158 | |
|---|
| 159 | <b>Python</b>: The parameter is named <tt>graph</tt>. |
|---|
| 160 | </blockquote> |
|---|
| 161 | |
|---|
| 162 | IN: <tt>vertex_descriptor s</tt> |
|---|
| 163 | <blockquote> |
|---|
| 164 | The source vertex where the search is started.<br> |
|---|
| 165 | |
|---|
| 166 | <b>Python</b>: The parameter is named <tt>root_vertex</tt>. |
|---|
| 167 | </blockquote> |
|---|
| 168 | |
|---|
| 169 | |
|---|
| 170 | <h3>Named Parameters</h3> |
|---|
| 171 | |
|---|
| 172 | IN: <tt>visitor(BFSVisitor vis)</tt> |
|---|
| 173 | <blockquote> |
|---|
| 174 | A visitor object that is invoked inside the algorithm at the |
|---|
| 175 | event-points specified by the <a href="BFSVisitor.html">BFS |
|---|
| 176 | Visitor</a> concept. The visitor object is passed by value <a |
|---|
| 177 | href="#1">[1]</a>.<br> <b>Default:</b> |
|---|
| 178 | <tt>bfs_visitor<null_visitor></tt> <br> |
|---|
| 179 | |
|---|
| 180 | <b>Python</b>: The parameter should be an object that derives from |
|---|
| 181 | the <a href="BFSVisitor.html#python"><tt>BFSVisitor</tt></a> type of the graph. |
|---|
| 182 | |
|---|
| 183 | </blockquote> |
|---|
| 184 | |
|---|
| 185 | UTIL/OUT: <tt>color_map(ColorMap color)</tt> |
|---|
| 186 | <blockquote> |
|---|
| 187 | This is used by the algorithm to keep track of its progress through |
|---|
| 188 | the graph. The user need not initialize the color map before calling |
|---|
| 189 | <tt>breadth_first_search()</tt> since the algorithm initializes the |
|---|
| 190 | color of every vertex to white at the start of the algorihtm. If you |
|---|
| 191 | need to perform multiple breadth-first searches on a graph (for |
|---|
| 192 | example, if there are some disconnected components) then use the <a |
|---|
| 193 | href="./breadth_first_visit.html"><tt>breadth_first_visit()</tt></a> |
|---|
| 194 | function and do your own color initialization. |
|---|
| 195 | |
|---|
| 196 | <p>The type <tt>ColorMap</tt> must be a model of <a |
|---|
| 197 | href="../../property_map/ReadWritePropertyMap.html">Read/Write |
|---|
| 198 | Property Map</a> and its key type must be the graph's vertex |
|---|
| 199 | descriptor type and the value type of the color map must model |
|---|
| 200 | <a href="./ColorValue.html">ColorValue</a>.<br> |
|---|
| 201 | <b>Default:</b> an <a |
|---|
| 202 | href="../../property_map/iterator_property_map.html"> |
|---|
| 203 | </tt>iterator_property_map</tt></a> created from a |
|---|
| 204 | <tt>std::vector</tt> of <tt>default_color_type</tt> of size |
|---|
| 205 | <tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index |
|---|
| 206 | map.<br> |
|---|
| 207 | |
|---|
| 208 | <b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for |
|---|
| 209 | the graph. |
|---|
| 210 | </blockquote> |
|---|
| 211 | |
|---|
| 212 | IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt> |
|---|
| 213 | <blockquote> |
|---|
| 214 | This maps each vertex to an integer in the range <tt>[0, |
|---|
| 215 | num_vertices(g))</tt>. This parameter is only necessary when the |
|---|
| 216 | default color property map is used. The type <tt>VertexIndexMap</tt> |
|---|
| 217 | must be a model of <a |
|---|
| 218 | href="../../property_map/ReadablePropertyMap.html">Readable Property |
|---|
| 219 | Map</a>. The value type of the map must be an integer type. The |
|---|
| 220 | vertex descriptor type of the graph needs to be usable as the key |
|---|
| 221 | type of the map.<br> |
|---|
| 222 | |
|---|
| 223 | <b>Default:</b> <tt>get(vertex_index, g)</tt>. |
|---|
| 224 | Note: if you use this default, make sure your graph has |
|---|
| 225 | an internal <tt>vertex_index</tt> property. For example, |
|---|
| 226 | <tt>adjacenty_list</tt> with <tt>VertexList=listS</tt> does |
|---|
| 227 | not have an internal <tt>vertex_index</tt> property.<br> |
|---|
| 228 | |
|---|
| 229 | <b>Python</b>: Unsupported parameter. |
|---|
| 230 | </blockquote> |
|---|
| 231 | |
|---|
| 232 | UTIL: <tt>buffer(Buffer& Q)</tt> |
|---|
| 233 | <blockquote> |
|---|
| 234 | The queue used to determine the order in which vertices will be |
|---|
| 235 | discovered. If a FIFO queue is used, then the traversal will |
|---|
| 236 | be according to the usual BFS ordering. Other types of queues |
|---|
| 237 | can be used, but the traversal order will be different. |
|---|
| 238 | For example Dijkstra's algorithm can be implemented |
|---|
| 239 | using a priority queue. The type <tt>Buffer</tt> must be a model of |
|---|
| 240 | <a href="./Buffer.html">Buffer</a>.<br> The <tt>value_type</tt> |
|---|
| 241 | of the buffer must be the <tt>vertex_descriptor</tt> type for the graph.<br> |
|---|
| 242 | <b>Default:</b> <tt>boost::queue</tt><br> |
|---|
| 243 | |
|---|
| 244 | <b>Python</b>: The buffer must derive from the <a |
|---|
| 245 | href="./Buffer.html">Buffer</a> type for the graph. |
|---|
| 246 | |
|---|
| 247 | </blockquote> |
|---|
| 248 | |
|---|
| 249 | |
|---|
| 250 | <H3><A NAME="SECTION001330300000000000000"> |
|---|
| 251 | Complexity</A> |
|---|
| 252 | </H3> |
|---|
| 253 | |
|---|
| 254 | <P> |
|---|
| 255 | The time complexity is <i>O(E + V)</i>. |
|---|
| 256 | |
|---|
| 257 | <P> |
|---|
| 258 | |
|---|
| 259 | <h3>Visitor Event Points</h3> |
|---|
| 260 | |
|---|
| 261 | <ul> |
|---|
| 262 | <li><b><tt>vis.initialize_vertex(v, g)</tt></b> is invoked on every vertex |
|---|
| 263 | before the start of the search. |
|---|
| 264 | |
|---|
| 265 | <li><b><tt>vis.examine_vertex(u, g)</tt></b>r is invoked in each |
|---|
| 266 | vertex as it is removed from the queue. |
|---|
| 267 | |
|---|
| 268 | <li><b><tt>vis.examine_edge(e, g)</tt></b> is invoked on every out-edge |
|---|
| 269 | of each vertex immediately after the vertex is removed from the queue. |
|---|
| 270 | |
|---|
| 271 | <li><b><tt>vis.tree_edge(e, g)</tt></b> is invoked (in addition to |
|---|
| 272 | <tt>examine_edge()</tt>) if the edge is a tree edge. The |
|---|
| 273 | target vertex of edge <tt>e</tt> is discovered at this time. |
|---|
| 274 | |
|---|
| 275 | <li><b><tt>vis.discover_vertex(u, g)</tt></b> is invoked the first time the |
|---|
| 276 | algorithm encounters vertex <i>u</i>. All vertices closer to the |
|---|
| 277 | source vertex have been discovered, and vertices further from the |
|---|
| 278 | source have not yet been discovered. |
|---|
| 279 | |
|---|
| 280 | <li><b><tt>vis.non_tree_edge(e, g)</tt></b> is invoked (in addition to |
|---|
| 281 | <tt>examine_edge()</tt>) if the edge is not a tree edge. |
|---|
| 282 | |
|---|
| 283 | <li><b><tt>vis.gray_target(e, g)</tt></b> is invoked (in addition to |
|---|
| 284 | <tt>non_tree_edge()</tt>) if the target vertex is colored gray at the |
|---|
| 285 | time of examination. The color gray indicates that |
|---|
| 286 | the vertex is currently in the queue. |
|---|
| 287 | |
|---|
| 288 | <li><b><tt>vis.black_target(e, g)</tt></b> is invoked (in addition to |
|---|
| 289 | <tt>non_tree_edge()</tt>) if the target vertex is colored black at the |
|---|
| 290 | time of examination. The color black indicates that the |
|---|
| 291 | vertex is no longer in the queue. |
|---|
| 292 | |
|---|
| 293 | <li><b><tt>vis.finish_vertex(u, g)</tt></b> is invoked after all of the out |
|---|
| 294 | edges of <i>u</i> have been examined and all of the adjacent vertices |
|---|
| 295 | have been discovered. |
|---|
| 296 | |
|---|
| 297 | </ul> |
|---|
| 298 | |
|---|
| 299 | <H3><A NAME="SECTION001330400000000000000"> |
|---|
| 300 | Example</A> |
|---|
| 301 | </H3> |
|---|
| 302 | |
|---|
| 303 | <P> |
|---|
| 304 | The example in <a |
|---|
| 305 | href="../example/bfs-example.cpp"><TT>example/bfs-example.cpp</TT></a> |
|---|
| 306 | demonstrates using the BGL Breadth-first search algorithm on the graph |
|---|
| 307 | from <A HREF="./graph_theory_review.html#fig:bfs-example">Figure |
|---|
| 308 | 5</A>. The file |
|---|
| 309 | <a href="../example/bfs-example2.cpp"><TT>example/bfs-example2.cpp</TT></a> |
|---|
| 310 | contains the same example, except that the <tt>adacency_list</tt> |
|---|
| 311 | class used has <tt>VertexList</tt> and <tt>EdgeList</tt> set |
|---|
| 312 | to <tt>listS</tt>. |
|---|
| 313 | </P> |
|---|
| 314 | |
|---|
| 315 | <h3>See Also</h3> |
|---|
| 316 | |
|---|
| 317 | <a href="./bfs_visitor.html"><tt>bfs_visitor</tt></a> and |
|---|
| 318 | <a href="./depth_first_search.html"><tt>depth_first_search()</tt></a> |
|---|
| 319 | |
|---|
| 320 | <h3>Notes</h3> |
|---|
| 321 | |
|---|
| 322 | <p><a name="1">[1]</a> |
|---|
| 323 | Since the visitor parameter is passed by value, if your visitor |
|---|
| 324 | contains state then any changes to the state during the algorithm |
|---|
| 325 | will be made to a copy of the visitor object, not the visitor object |
|---|
| 326 | passed in. Therefore you may want the visitor to hold this state by |
|---|
| 327 | pointer or reference. |
|---|
| 328 | |
|---|
| 329 | <br> |
|---|
| 330 | <HR> |
|---|
| 331 | <TABLE> |
|---|
| 332 | <TR valign=top> |
|---|
| 333 | <TD nowrap>Copyright © 2000-2001</TD><TD> |
|---|
| 334 | <A HREF="../../../people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>) |
|---|
| 335 | </TD></TR></TABLE> |
|---|
| 336 | |
|---|
| 337 | </BODY> |
|---|
| 338 | </HTML> |
|---|