| 1 | //  Boost rational.hpp header file  ------------------------------------------// | 
|---|
| 2 |  | 
|---|
| 3 | //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and | 
|---|
| 4 | //  distribute this software is granted provided this copyright notice appears | 
|---|
| 5 | //  in all copies. This software is provided "as is" without express or | 
|---|
| 6 | //  implied warranty, and with no claim as to its suitability for any purpose. | 
|---|
| 7 |  | 
|---|
| 8 | //  See http://www.boost.org/libs/rational for documentation. | 
|---|
| 9 |  | 
|---|
| 10 | //  Credits: | 
|---|
| 11 | //  Thanks to the boost mailing list in general for useful comments. | 
|---|
| 12 | //  Particular contributions included: | 
|---|
| 13 | //    Andrew D Jewell, for reminding me to take care to avoid overflow | 
|---|
| 14 | //    Ed Brey, for many comments, including picking up on some dreadful typos | 
|---|
| 15 | //    Stephen Silver contributed the test suite and comments on user-defined | 
|---|
| 16 | //    IntType | 
|---|
| 17 | //    Nickolay Mladenov, for the implementation of operator+= | 
|---|
| 18 |  | 
|---|
| 19 | //  Revision History | 
|---|
| 20 | //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) | 
|---|
| 21 | //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config | 
|---|
| 22 | //             (Joaquín M López Muñoz) | 
|---|
| 23 | //  27 Dec 05  Add Boolean conversion operator (Daryle Walker) | 
|---|
| 24 | //  28 Sep 02  Use _left versions of operators from operators.hpp | 
|---|
| 25 | //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel) | 
|---|
| 26 | //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams) | 
|---|
| 27 | //  05 Feb 01  Update operator>> to tighten up input syntax | 
|---|
| 28 | //  05 Feb 01  Final tidy up of gcd code prior to the new release | 
|---|
| 29 | //  27 Jan 01  Recode abs() without relying on abs(IntType) | 
|---|
| 30 | //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm, | 
|---|
| 31 | //             tidy up a number of areas, use newer features of operators.hpp | 
|---|
| 32 | //             (reduces space overhead to zero), add operator!, | 
|---|
| 33 | //             introduce explicit mixed-mode arithmetic operations | 
|---|
| 34 | //  12 Jan 01  Include fixes to handle a user-defined IntType better | 
|---|
| 35 | //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David) | 
|---|
| 36 | //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++ | 
|---|
| 37 | //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not | 
|---|
| 38 | //             affected (Beman Dawes) | 
|---|
| 39 | //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer) | 
|---|
| 40 | //  14 Dec 99  Modifications based on comments from the boost list | 
|---|
| 41 | //  09 Dec 99  Initial Version (Paul Moore) | 
|---|
| 42 |  | 
|---|
| 43 | #ifndef BOOST_RATIONAL_HPP | 
|---|
| 44 | #define BOOST_RATIONAL_HPP | 
|---|
| 45 |  | 
|---|
| 46 | #include <iostream>              // for std::istream and std::ostream | 
|---|
| 47 | #include <iomanip>               // for std::noskipws | 
|---|
| 48 | #include <stdexcept>             // for std::domain_error | 
|---|
| 49 | #include <string>                // for std::string implicit constructor | 
|---|
| 50 | #include <boost/operators.hpp>   // for boost::addable etc | 
|---|
| 51 | #include <cstdlib>               // for std::abs | 
|---|
| 52 | #include <boost/call_traits.hpp> // for boost::call_traits | 
|---|
| 53 | #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC | 
|---|
| 54 | #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND | 
|---|
| 55 |  | 
|---|
| 56 | namespace boost { | 
|---|
| 57 |  | 
|---|
| 58 | // Note: We use n and m as temporaries in this function, so there is no value | 
|---|
| 59 | // in using const IntType& as we would only need to make a copy anyway... | 
|---|
| 60 | template <typename IntType> | 
|---|
| 61 | IntType gcd(IntType n, IntType m) | 
|---|
| 62 | { | 
|---|
| 63 |     // Avoid repeated construction | 
|---|
| 64 |     IntType zero(0); | 
|---|
| 65 |  | 
|---|
| 66 |     // This is abs() - given the existence of broken compilers with Koenig | 
|---|
| 67 |     // lookup issues and other problems, I code this explicitly. (Remember, | 
|---|
| 68 |     // IntType may be a user-defined type). | 
|---|
| 69 |     if (n < zero) | 
|---|
| 70 |         n = -n; | 
|---|
| 71 |     if (m < zero) | 
|---|
| 72 |         m = -m; | 
|---|
| 73 |  | 
|---|
| 74 |     // As n and m are now positive, we can be sure that %= returns a | 
|---|
| 75 |     // positive value (the standard guarantees this for built-in types, | 
|---|
| 76 |     // and we require it of user-defined types). | 
|---|
| 77 |     for(;;) { | 
|---|
| 78 |       if(m == zero) | 
|---|
| 79 |         return n; | 
|---|
| 80 |       n %= m; | 
|---|
| 81 |       if(n == zero) | 
|---|
| 82 |         return m; | 
|---|
| 83 |       m %= n; | 
|---|
| 84 |     } | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | template <typename IntType> | 
|---|
| 88 | IntType lcm(IntType n, IntType m) | 
|---|
| 89 | { | 
|---|
| 90 |     // Avoid repeated construction | 
|---|
| 91 |     IntType zero(0); | 
|---|
| 92 |  | 
|---|
| 93 |     if (n == zero || m == zero) | 
|---|
| 94 |         return zero; | 
|---|
| 95 |  | 
|---|
| 96 |     n /= gcd(n, m); | 
|---|
| 97 |     n *= m; | 
|---|
| 98 |  | 
|---|
| 99 |     if (n < zero) | 
|---|
| 100 |         n = -n; | 
|---|
| 101 |     return n; | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | class bad_rational : public std::domain_error | 
|---|
| 105 | { | 
|---|
| 106 | public: | 
|---|
| 107 |     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} | 
|---|
| 108 | }; | 
|---|
| 109 |  | 
|---|
| 110 | template <typename IntType> | 
|---|
| 111 | class rational; | 
|---|
| 112 |  | 
|---|
| 113 | template <typename IntType> | 
|---|
| 114 | rational<IntType> abs(const rational<IntType>& r); | 
|---|
| 115 |  | 
|---|
| 116 | template <typename IntType> | 
|---|
| 117 | class rational : | 
|---|
| 118 |     less_than_comparable < rational<IntType>, | 
|---|
| 119 |     equality_comparable < rational<IntType>, | 
|---|
| 120 |     less_than_comparable2 < rational<IntType>, IntType, | 
|---|
| 121 |     equality_comparable2 < rational<IntType>, IntType, | 
|---|
| 122 |     addable < rational<IntType>, | 
|---|
| 123 |     subtractable < rational<IntType>, | 
|---|
| 124 |     multipliable < rational<IntType>, | 
|---|
| 125 |     dividable < rational<IntType>, | 
|---|
| 126 |     addable2 < rational<IntType>, IntType, | 
|---|
| 127 |     subtractable2 < rational<IntType>, IntType, | 
|---|
| 128 |     subtractable2_left < rational<IntType>, IntType, | 
|---|
| 129 |     multipliable2 < rational<IntType>, IntType, | 
|---|
| 130 |     dividable2 < rational<IntType>, IntType, | 
|---|
| 131 |     dividable2_left < rational<IntType>, IntType, | 
|---|
| 132 |     incrementable < rational<IntType>, | 
|---|
| 133 |     decrementable < rational<IntType> | 
|---|
| 134 |     > > > > > > > > > > > > > > > > | 
|---|
| 135 | { | 
|---|
| 136 |     typedef typename boost::call_traits<IntType>::param_type param_type; | 
|---|
| 137 |  | 
|---|
| 138 |     struct helper { IntType parts[2]; }; | 
|---|
| 139 |     typedef IntType (helper::* bool_type)[2]; | 
|---|
| 140 |  | 
|---|
| 141 | public: | 
|---|
| 142 |     typedef IntType int_type; | 
|---|
| 143 |     rational() : num(0), den(1) {} | 
|---|
| 144 |     rational(param_type n) : num(n), den(1) {} | 
|---|
| 145 |     rational(param_type n, param_type d) : num(n), den(d) { normalize(); } | 
|---|
| 146 |  | 
|---|
| 147 |     // Default copy constructor and assignment are fine | 
|---|
| 148 |  | 
|---|
| 149 |     // Add assignment from IntType | 
|---|
| 150 |     rational& operator=(param_type n) { return assign(n, 1); } | 
|---|
| 151 |  | 
|---|
| 152 |     // Assign in place | 
|---|
| 153 |     rational& assign(param_type n, param_type d); | 
|---|
| 154 |  | 
|---|
| 155 |     // Access to representation | 
|---|
| 156 |     IntType numerator() const { return num; } | 
|---|
| 157 |     IntType denominator() const { return den; } | 
|---|
| 158 |  | 
|---|
| 159 |     // Arithmetic assignment operators | 
|---|
| 160 |     rational& operator+= (const rational& r); | 
|---|
| 161 |     rational& operator-= (const rational& r); | 
|---|
| 162 |     rational& operator*= (const rational& r); | 
|---|
| 163 |     rational& operator/= (const rational& r); | 
|---|
| 164 |  | 
|---|
| 165 |     rational& operator+= (param_type i); | 
|---|
| 166 |     rational& operator-= (param_type i); | 
|---|
| 167 |     rational& operator*= (param_type i); | 
|---|
| 168 |     rational& operator/= (param_type i); | 
|---|
| 169 |  | 
|---|
| 170 |     // Increment and decrement | 
|---|
| 171 |     const rational& operator++(); | 
|---|
| 172 |     const rational& operator--(); | 
|---|
| 173 |  | 
|---|
| 174 |     // Operator not | 
|---|
| 175 |     bool operator!() const { return !num; } | 
|---|
| 176 |  | 
|---|
| 177 |     // Boolean conversion | 
|---|
| 178 |      | 
|---|
| 179 | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) | 
|---|
| 180 |     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the | 
|---|
| 181 |     // following, hence we selectively disable that option for the | 
|---|
| 182 |     // offending memfun. | 
|---|
| 183 | #pragma parse_mfunc_templ off | 
|---|
| 184 | #endif | 
|---|
| 185 |  | 
|---|
| 186 |     operator bool_type() const { return operator !() ? 0 : &helper::parts; } | 
|---|
| 187 |  | 
|---|
| 188 | #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) | 
|---|
| 189 | #pragma parse_mfunc_templ reset | 
|---|
| 190 | #endif | 
|---|
| 191 |  | 
|---|
| 192 |     // Comparison operators | 
|---|
| 193 |     bool operator< (const rational& r) const; | 
|---|
| 194 |     bool operator== (const rational& r) const; | 
|---|
| 195 |  | 
|---|
| 196 |     bool operator< (param_type i) const; | 
|---|
| 197 |     bool operator> (param_type i) const; | 
|---|
| 198 |     bool operator== (param_type i) const; | 
|---|
| 199 |  | 
|---|
| 200 | private: | 
|---|
| 201 |     // Implementation - numerator and denominator (normalized). | 
|---|
| 202 |     // Other possibilities - separate whole-part, or sign, fields? | 
|---|
| 203 |     IntType num; | 
|---|
| 204 |     IntType den; | 
|---|
| 205 |  | 
|---|
| 206 |     // Representation note: Fractions are kept in normalized form at all | 
|---|
| 207 |     // times. normalized form is defined as gcd(num,den) == 1 and den > 0. | 
|---|
| 208 |     // In particular, note that the implementation of abs() below relies | 
|---|
| 209 |     // on den always being positive. | 
|---|
| 210 |     void normalize(); | 
|---|
| 211 | }; | 
|---|
| 212 |  | 
|---|
| 213 | // Assign in place | 
|---|
| 214 | template <typename IntType> | 
|---|
| 215 | inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) | 
|---|
| 216 | { | 
|---|
| 217 |     num = n; | 
|---|
| 218 |     den = d; | 
|---|
| 219 |     normalize(); | 
|---|
| 220 |     return *this; | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | // Unary plus and minus | 
|---|
| 224 | template <typename IntType> | 
|---|
| 225 | inline rational<IntType> operator+ (const rational<IntType>& r) | 
|---|
| 226 | { | 
|---|
| 227 |     return r; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | template <typename IntType> | 
|---|
| 231 | inline rational<IntType> operator- (const rational<IntType>& r) | 
|---|
| 232 | { | 
|---|
| 233 |     return rational<IntType>(-r.numerator(), r.denominator()); | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | // Arithmetic assignment operators | 
|---|
| 237 | template <typename IntType> | 
|---|
| 238 | rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) | 
|---|
| 239 | { | 
|---|
| 240 |     // This calculation avoids overflow, and minimises the number of expensive | 
|---|
| 241 |     // calculations. Thanks to Nickolay Mladenov for this algorithm. | 
|---|
| 242 |     // | 
|---|
| 243 |     // Proof: | 
|---|
| 244 |     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. | 
|---|
| 245 |     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 | 
|---|
| 246 |     // | 
|---|
| 247 |     // The result is (a*d1 + c*b1) / (b1*d1*g). | 
|---|
| 248 |     // Now we have to normalize this ratio. | 
|---|
| 249 |     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 | 
|---|
| 250 |     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. | 
|---|
| 251 |     // But since gcd(a,b1)=1 we have h=1. | 
|---|
| 252 |     // Similarly h|d1 leads to h=1. | 
|---|
| 253 |     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g | 
|---|
| 254 |     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) | 
|---|
| 255 |     // Which proves that instead of normalizing the result, it is better to | 
|---|
| 256 |     // divide num and den by gcd((a*d1 + c*b1), g) | 
|---|
| 257 |  | 
|---|
| 258 |     // Protect against self-modification | 
|---|
| 259 |     IntType r_num = r.num; | 
|---|
| 260 |     IntType r_den = r.den; | 
|---|
| 261 |  | 
|---|
| 262 |     IntType g = gcd(den, r_den); | 
|---|
| 263 |     den /= g;  // = b1 from the calculations above | 
|---|
| 264 |     num = num * (r_den / g) + r_num * den; | 
|---|
| 265 |     g = gcd(num, g); | 
|---|
| 266 |     num /= g; | 
|---|
| 267 |     den *= r_den/g; | 
|---|
| 268 |  | 
|---|
| 269 |     return *this; | 
|---|
| 270 | } | 
|---|
| 271 |  | 
|---|
| 272 | template <typename IntType> | 
|---|
| 273 | rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) | 
|---|
| 274 | { | 
|---|
| 275 |     // Protect against self-modification | 
|---|
| 276 |     IntType r_num = r.num; | 
|---|
| 277 |     IntType r_den = r.den; | 
|---|
| 278 |  | 
|---|
| 279 |     // This calculation avoids overflow, and minimises the number of expensive | 
|---|
| 280 |     // calculations. It corresponds exactly to the += case above | 
|---|
| 281 |     IntType g = gcd(den, r_den); | 
|---|
| 282 |     den /= g; | 
|---|
| 283 |     num = num * (r_den / g) - r_num * den; | 
|---|
| 284 |     g = gcd(num, g); | 
|---|
| 285 |     num /= g; | 
|---|
| 286 |     den *= r_den/g; | 
|---|
| 287 |  | 
|---|
| 288 |     return *this; | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | template <typename IntType> | 
|---|
| 292 | rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) | 
|---|
| 293 | { | 
|---|
| 294 |     // Protect against self-modification | 
|---|
| 295 |     IntType r_num = r.num; | 
|---|
| 296 |     IntType r_den = r.den; | 
|---|
| 297 |  | 
|---|
| 298 |     // Avoid overflow and preserve normalization | 
|---|
| 299 |     IntType gcd1 = gcd<IntType>(num, r_den); | 
|---|
| 300 |     IntType gcd2 = gcd<IntType>(r_num, den); | 
|---|
| 301 |     num = (num/gcd1) * (r_num/gcd2); | 
|---|
| 302 |     den = (den/gcd2) * (r_den/gcd1); | 
|---|
| 303 |     return *this; | 
|---|
| 304 | } | 
|---|
| 305 |  | 
|---|
| 306 | template <typename IntType> | 
|---|
| 307 | rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) | 
|---|
| 308 | { | 
|---|
| 309 |     // Protect against self-modification | 
|---|
| 310 |     IntType r_num = r.num; | 
|---|
| 311 |     IntType r_den = r.den; | 
|---|
| 312 |  | 
|---|
| 313 |     // Avoid repeated construction | 
|---|
| 314 |     IntType zero(0); | 
|---|
| 315 |  | 
|---|
| 316 |     // Trap division by zero | 
|---|
| 317 |     if (r_num == zero) | 
|---|
| 318 |         throw bad_rational(); | 
|---|
| 319 |     if (num == zero) | 
|---|
| 320 |         return *this; | 
|---|
| 321 |  | 
|---|
| 322 |     // Avoid overflow and preserve normalization | 
|---|
| 323 |     IntType gcd1 = gcd<IntType>(num, r_num); | 
|---|
| 324 |     IntType gcd2 = gcd<IntType>(r_den, den); | 
|---|
| 325 |     num = (num/gcd1) * (r_den/gcd2); | 
|---|
| 326 |     den = (den/gcd2) * (r_num/gcd1); | 
|---|
| 327 |  | 
|---|
| 328 |     if (den < zero) { | 
|---|
| 329 |         num = -num; | 
|---|
| 330 |         den = -den; | 
|---|
| 331 |     } | 
|---|
| 332 |     return *this; | 
|---|
| 333 | } | 
|---|
| 334 |  | 
|---|
| 335 | // Mixed-mode operators | 
|---|
| 336 | template <typename IntType> | 
|---|
| 337 | inline rational<IntType>& | 
|---|
| 338 | rational<IntType>::operator+= (param_type i) | 
|---|
| 339 | { | 
|---|
| 340 |     return operator+= (rational<IntType>(i)); | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | template <typename IntType> | 
|---|
| 344 | inline rational<IntType>& | 
|---|
| 345 | rational<IntType>::operator-= (param_type i) | 
|---|
| 346 | { | 
|---|
| 347 |     return operator-= (rational<IntType>(i)); | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | template <typename IntType> | 
|---|
| 351 | inline rational<IntType>& | 
|---|
| 352 | rational<IntType>::operator*= (param_type i) | 
|---|
| 353 | { | 
|---|
| 354 |     return operator*= (rational<IntType>(i)); | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | template <typename IntType> | 
|---|
| 358 | inline rational<IntType>& | 
|---|
| 359 | rational<IntType>::operator/= (param_type i) | 
|---|
| 360 | { | 
|---|
| 361 |     return operator/= (rational<IntType>(i)); | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | // Increment and decrement | 
|---|
| 365 | template <typename IntType> | 
|---|
| 366 | inline const rational<IntType>& rational<IntType>::operator++() | 
|---|
| 367 | { | 
|---|
| 368 |     // This can never denormalise the fraction | 
|---|
| 369 |     num += den; | 
|---|
| 370 |     return *this; | 
|---|
| 371 | } | 
|---|
| 372 |  | 
|---|
| 373 | template <typename IntType> | 
|---|
| 374 | inline const rational<IntType>& rational<IntType>::operator--() | 
|---|
| 375 | { | 
|---|
| 376 |     // This can never denormalise the fraction | 
|---|
| 377 |     num -= den; | 
|---|
| 378 |     return *this; | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | // Comparison operators | 
|---|
| 382 | template <typename IntType> | 
|---|
| 383 | bool rational<IntType>::operator< (const rational<IntType>& r) const | 
|---|
| 384 | { | 
|---|
| 385 |     // Avoid repeated construction | 
|---|
| 386 |     IntType zero(0); | 
|---|
| 387 |  | 
|---|
| 388 |     // If the two values have different signs, we don't need to do the | 
|---|
| 389 |     // expensive calculations below. We take advantage here of the fact | 
|---|
| 390 |     // that the denominator is always positive. | 
|---|
| 391 |     if (num < zero && r.num >= zero) // -ve < +ve | 
|---|
| 392 |         return true; | 
|---|
| 393 |     if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero | 
|---|
| 394 |         return false; | 
|---|
| 395 |  | 
|---|
| 396 |     // Avoid overflow | 
|---|
| 397 |     IntType gcd1 = gcd<IntType>(num, r.num); | 
|---|
| 398 |     IntType gcd2 = gcd<IntType>(r.den, den); | 
|---|
| 399 |     return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | template <typename IntType> | 
|---|
| 403 | bool rational<IntType>::operator< (param_type i) const | 
|---|
| 404 | { | 
|---|
| 405 |     // Avoid repeated construction | 
|---|
| 406 |     IntType zero(0); | 
|---|
| 407 |  | 
|---|
| 408 |     // If the two values have different signs, we don't need to do the | 
|---|
| 409 |     // expensive calculations below. We take advantage here of the fact | 
|---|
| 410 |     // that the denominator is always positive. | 
|---|
| 411 |     if (num < zero && i >= zero) // -ve < +ve | 
|---|
| 412 |         return true; | 
|---|
| 413 |     if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero | 
|---|
| 414 |         return false; | 
|---|
| 415 |  | 
|---|
| 416 |     // Now, use the fact that n/d truncates towards zero as long as n and d | 
|---|
| 417 |     // are both positive. | 
|---|
| 418 |     // Divide instead of multiplying to avoid overflow issues. Of course, | 
|---|
| 419 |     // division may be slower, but accuracy is more important than speed... | 
|---|
| 420 |     if (num > zero) | 
|---|
| 421 |         return (num/den) < i; | 
|---|
| 422 |     else | 
|---|
| 423 |         return -i < (-num/den); | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|
| 426 | template <typename IntType> | 
|---|
| 427 | bool rational<IntType>::operator> (param_type i) const | 
|---|
| 428 | { | 
|---|
| 429 |     // Trap equality first | 
|---|
| 430 |     if (num == i && den == IntType(1)) | 
|---|
| 431 |         return false; | 
|---|
| 432 |  | 
|---|
| 433 |     // Otherwise, we can use operator< | 
|---|
| 434 |     return !operator<(i); | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 | template <typename IntType> | 
|---|
| 438 | inline bool rational<IntType>::operator== (const rational<IntType>& r) const | 
|---|
| 439 | { | 
|---|
| 440 |     return ((num == r.num) && (den == r.den)); | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | template <typename IntType> | 
|---|
| 444 | inline bool rational<IntType>::operator== (param_type i) const | 
|---|
| 445 | { | 
|---|
| 446 |     return ((den == IntType(1)) && (num == i)); | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | // Normalisation | 
|---|
| 450 | template <typename IntType> | 
|---|
| 451 | void rational<IntType>::normalize() | 
|---|
| 452 | { | 
|---|
| 453 |     // Avoid repeated construction | 
|---|
| 454 |     IntType zero(0); | 
|---|
| 455 |  | 
|---|
| 456 |     if (den == zero) | 
|---|
| 457 |         throw bad_rational(); | 
|---|
| 458 |  | 
|---|
| 459 |     // Handle the case of zero separately, to avoid division by zero | 
|---|
| 460 |     if (num == zero) { | 
|---|
| 461 |         den = IntType(1); | 
|---|
| 462 |         return; | 
|---|
| 463 |     } | 
|---|
| 464 |  | 
|---|
| 465 |     IntType g = gcd<IntType>(num, den); | 
|---|
| 466 |  | 
|---|
| 467 |     num /= g; | 
|---|
| 468 |     den /= g; | 
|---|
| 469 |  | 
|---|
| 470 |     // Ensure that the denominator is positive | 
|---|
| 471 |     if (den < zero) { | 
|---|
| 472 |         num = -num; | 
|---|
| 473 |         den = -den; | 
|---|
| 474 |     } | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | namespace detail { | 
|---|
| 478 |  | 
|---|
| 479 |     // A utility class to reset the format flags for an istream at end | 
|---|
| 480 |     // of scope, even in case of exceptions | 
|---|
| 481 |     struct resetter { | 
|---|
| 482 |         resetter(std::istream& is) : is_(is), f_(is.flags()) {} | 
|---|
| 483 |         ~resetter() { is_.flags(f_); } | 
|---|
| 484 |         std::istream& is_; | 
|---|
| 485 |         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base | 
|---|
| 486 |     }; | 
|---|
| 487 |  | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | // Input and output | 
|---|
| 491 | template <typename IntType> | 
|---|
| 492 | std::istream& operator>> (std::istream& is, rational<IntType>& r) | 
|---|
| 493 | { | 
|---|
| 494 |     IntType n = IntType(0), d = IntType(1); | 
|---|
| 495 |     char c = 0; | 
|---|
| 496 |     detail::resetter sentry(is); | 
|---|
| 497 |  | 
|---|
| 498 |     is >> n; | 
|---|
| 499 |     c = is.get(); | 
|---|
| 500 |  | 
|---|
| 501 |     if (c != '/') | 
|---|
| 502 |         is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base | 
|---|
| 503 |  | 
|---|
| 504 | #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT | 
|---|
| 505 |     is >> std::noskipws; | 
|---|
| 506 | #else | 
|---|
| 507 |     is.unsetf(ios::skipws); // compiles, but seems to have no effect. | 
|---|
| 508 | #endif | 
|---|
| 509 |     is >> d; | 
|---|
| 510 |  | 
|---|
| 511 |     if (is) | 
|---|
| 512 |         r.assign(n, d); | 
|---|
| 513 |  | 
|---|
| 514 |     return is; | 
|---|
| 515 | } | 
|---|
| 516 |  | 
|---|
| 517 | // Add manipulators for output format? | 
|---|
| 518 | template <typename IntType> | 
|---|
| 519 | std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) | 
|---|
| 520 | { | 
|---|
| 521 |     os << r.numerator() << '/' << r.denominator(); | 
|---|
| 522 |     return os; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | // Type conversion | 
|---|
| 526 | template <typename T, typename IntType> | 
|---|
| 527 | inline T rational_cast( | 
|---|
| 528 |     const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) | 
|---|
| 529 | { | 
|---|
| 530 |     return static_cast<T>(src.numerator())/src.denominator(); | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | // Do not use any abs() defined on IntType - it isn't worth it, given the | 
|---|
| 534 | // difficulties involved (Koenig lookup required, there may not *be* an abs() | 
|---|
| 535 | // defined, etc etc). | 
|---|
| 536 | template <typename IntType> | 
|---|
| 537 | inline rational<IntType> abs(const rational<IntType>& r) | 
|---|
| 538 | { | 
|---|
| 539 |     if (r.numerator() >= IntType(0)) | 
|---|
| 540 |         return r; | 
|---|
| 541 |  | 
|---|
| 542 |     return rational<IntType>(-r.numerator(), r.denominator()); | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | } // namespace boost | 
|---|
| 546 |  | 
|---|
| 547 | #endif  // BOOST_RATIONAL_HPP | 
|---|
| 548 |  | 
|---|