1 | // (C) Copyright John Maddock 2005. |
---|
2 | // Use, modification and distribution are subject to the |
---|
3 | // Boost Software License, Version 1.0. (See accompanying file |
---|
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
---|
5 | |
---|
6 | #ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED |
---|
7 | #define BOOST_MATH_COMPLEX_ATANH_INCLUDED |
---|
8 | |
---|
9 | #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED |
---|
10 | # include <boost/math/complex/details.hpp> |
---|
11 | #endif |
---|
12 | #ifndef BOOST_MATH_LOG1P_INCLUDED |
---|
13 | # include <boost/math/special_functions/log1p.hpp> |
---|
14 | #endif |
---|
15 | #include <boost/assert.hpp> |
---|
16 | |
---|
17 | #ifdef BOOST_NO_STDC_NAMESPACE |
---|
18 | namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } |
---|
19 | #endif |
---|
20 | |
---|
21 | namespace boost{ namespace math{ |
---|
22 | |
---|
23 | template<class T> |
---|
24 | std::complex<T> atanh(const std::complex<T>& z) |
---|
25 | { |
---|
26 | // |
---|
27 | // References: |
---|
28 | // |
---|
29 | // Eric W. Weisstein. "Inverse Hyperbolic Tangent." |
---|
30 | // From MathWorld--A Wolfram Web Resource. |
---|
31 | // http://mathworld.wolfram.com/InverseHyperbolicTangent.html |
---|
32 | // |
---|
33 | // Also: The Wolfram Functions Site, |
---|
34 | // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/ |
---|
35 | // |
---|
36 | // Also "Abramowitz and Stegun. Handbook of Mathematical Functions." |
---|
37 | // at : http://jove.prohosting.com/~skripty/toc.htm |
---|
38 | // |
---|
39 | |
---|
40 | static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); |
---|
41 | static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L); |
---|
42 | static const T one = static_cast<T>(1.0L); |
---|
43 | static const T two = static_cast<T>(2.0L); |
---|
44 | static const T four = static_cast<T>(4.0L); |
---|
45 | static const T zero = static_cast<T>(0); |
---|
46 | static const T a_crossover = static_cast<T>(0.3L); |
---|
47 | |
---|
48 | T x = std::fabs(z.real()); |
---|
49 | T y = std::fabs(z.imag()); |
---|
50 | |
---|
51 | T real, imag; // our results |
---|
52 | |
---|
53 | T safe_upper = detail::safe_max(two); |
---|
54 | T safe_lower = detail::safe_min(static_cast<T>(2)); |
---|
55 | |
---|
56 | // |
---|
57 | // Begin by handling the special cases specified in C99: |
---|
58 | // |
---|
59 | if(detail::test_is_nan(x)) |
---|
60 | { |
---|
61 | if(detail::test_is_nan(y)) |
---|
62 | return std::complex<T>(x, x); |
---|
63 | else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity())) |
---|
64 | return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi)); |
---|
65 | else |
---|
66 | return std::complex<T>(x, x); |
---|
67 | } |
---|
68 | else if(detail::test_is_nan(y)) |
---|
69 | { |
---|
70 | if(x == 0) |
---|
71 | return std::complex<T>(x, y); |
---|
72 | if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity())) |
---|
73 | return std::complex<T>(0, y); |
---|
74 | else |
---|
75 | return std::complex<T>(y, y); |
---|
76 | } |
---|
77 | else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper)) |
---|
78 | { |
---|
79 | |
---|
80 | T xx = x*x; |
---|
81 | T yy = y*y; |
---|
82 | T x2 = x * two; |
---|
83 | |
---|
84 | /// |
---|
85 | // The real part is given by: |
---|
86 | // |
---|
87 | // real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x)) |
---|
88 | // |
---|
89 | // However, when x is either large (x > 1/E) or very small |
---|
90 | // (x < E) then this effectively simplifies |
---|
91 | // to log(1), leading to wildly inaccurate results. |
---|
92 | // By dividing the above (top and bottom) by (1 + x^2 + y^2) we get: |
---|
93 | // |
---|
94 | // real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2)))) |
---|
95 | // |
---|
96 | // which is much more sensitive to the value of x, when x is not near 1 |
---|
97 | // (remember we can compute log(1+x) for small x very accurately). |
---|
98 | // |
---|
99 | // The cross-over from one method to the other has to be determined |
---|
100 | // experimentally, the value used below appears correct to within a |
---|
101 | // factor of 2 (and there are larger errors from other parts |
---|
102 | // of the input domain anyway). |
---|
103 | // |
---|
104 | T alpha = two*x / (one + xx + yy); |
---|
105 | if(alpha < a_crossover) |
---|
106 | { |
---|
107 | real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); |
---|
108 | } |
---|
109 | else |
---|
110 | { |
---|
111 | T xm1 = x - one; |
---|
112 | real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy); |
---|
113 | } |
---|
114 | real /= four; |
---|
115 | if(z.real() < 0) |
---|
116 | real = -real; |
---|
117 | |
---|
118 | imag = std::atan2((y * two), (one - xx - yy)); |
---|
119 | imag /= two; |
---|
120 | if(z.imag() < 0) |
---|
121 | imag = -imag; |
---|
122 | } |
---|
123 | else |
---|
124 | { |
---|
125 | // |
---|
126 | // This section handles exception cases that would normally cause |
---|
127 | // underflow or overflow in the main formulas. |
---|
128 | // |
---|
129 | // Begin by working out the real part, we need to approximate |
---|
130 | // alpha = 2x / (1 + x^2 + y^2) |
---|
131 | // without either overflow or underflow in the squared terms. |
---|
132 | // |
---|
133 | T alpha = 0; |
---|
134 | if(x >= safe_upper) |
---|
135 | { |
---|
136 | // this is really a test for infinity, |
---|
137 | // but we may not have the necessary numeric_limits support: |
---|
138 | if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)())) |
---|
139 | { |
---|
140 | alpha = 0; |
---|
141 | } |
---|
142 | else if(y >= safe_upper) |
---|
143 | { |
---|
144 | // Big x and y: divide alpha through by x*y: |
---|
145 | alpha = (two/y) / (x/y + y/x); |
---|
146 | } |
---|
147 | else if(y > one) |
---|
148 | { |
---|
149 | // Big x: divide through by x: |
---|
150 | alpha = two / (x + y*y/x); |
---|
151 | } |
---|
152 | else |
---|
153 | { |
---|
154 | // Big x small y, as above but neglect y^2/x: |
---|
155 | alpha = two/x; |
---|
156 | } |
---|
157 | } |
---|
158 | else if(y >= safe_upper) |
---|
159 | { |
---|
160 | if(x > one) |
---|
161 | { |
---|
162 | // Big y, medium x, divide through by y: |
---|
163 | alpha = (two*x/y) / (y + x*x/y); |
---|
164 | } |
---|
165 | else |
---|
166 | { |
---|
167 | // Small x and y, whatever alpha is, it's too small to calculate: |
---|
168 | alpha = 0; |
---|
169 | } |
---|
170 | } |
---|
171 | else |
---|
172 | { |
---|
173 | // one or both of x and y are small, calculate divisor carefully: |
---|
174 | T div = one; |
---|
175 | if(x > safe_lower) |
---|
176 | div += x*x; |
---|
177 | if(y > safe_lower) |
---|
178 | div += y*y; |
---|
179 | alpha = two*x/div; |
---|
180 | } |
---|
181 | if(alpha < a_crossover) |
---|
182 | { |
---|
183 | real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); |
---|
184 | } |
---|
185 | else |
---|
186 | { |
---|
187 | // We can only get here as a result of small y and medium sized x, |
---|
188 | // we can simply neglect the y^2 terms: |
---|
189 | BOOST_ASSERT(x >= safe_lower); |
---|
190 | BOOST_ASSERT(x <= safe_upper); |
---|
191 | //BOOST_ASSERT(y <= safe_lower); |
---|
192 | T xm1 = x - one; |
---|
193 | real = std::log(1 + two*x + x*x) - std::log(xm1*xm1); |
---|
194 | } |
---|
195 | |
---|
196 | real /= four; |
---|
197 | if(z.real() < 0) |
---|
198 | real = -real; |
---|
199 | |
---|
200 | // |
---|
201 | // Now handle imaginary part, this is much easier, |
---|
202 | // if x or y are large, then the formula: |
---|
203 | // atan2(2y, 1 - x^2 - y^2) |
---|
204 | // evaluates to +-(PI - theta) where theta is negligible compared to PI. |
---|
205 | // |
---|
206 | if((x >= safe_upper) || (y >= safe_upper)) |
---|
207 | { |
---|
208 | imag = pi; |
---|
209 | } |
---|
210 | else if(x <= safe_lower) |
---|
211 | { |
---|
212 | // |
---|
213 | // If both x and y are small then atan(2y), |
---|
214 | // otherwise just x^2 is negligible in the divisor: |
---|
215 | // |
---|
216 | if(y <= safe_lower) |
---|
217 | imag = std::atan2(two*y, one); |
---|
218 | else |
---|
219 | { |
---|
220 | if((y == zero) && (x == zero)) |
---|
221 | imag = 0; |
---|
222 | else |
---|
223 | imag = std::atan2(two*y, one - y*y); |
---|
224 | } |
---|
225 | } |
---|
226 | else |
---|
227 | { |
---|
228 | // |
---|
229 | // y^2 is negligible: |
---|
230 | // |
---|
231 | if((y == zero) && (x == one)) |
---|
232 | imag = 0; |
---|
233 | else |
---|
234 | imag = std::atan2(two*y, 1 - x*x); |
---|
235 | } |
---|
236 | imag /= two; |
---|
237 | if(z.imag() < 0) |
---|
238 | imag = -imag; |
---|
239 | } |
---|
240 | return std::complex<T>(real, imag); |
---|
241 | } |
---|
242 | |
---|
243 | } } // namespaces |
---|
244 | |
---|
245 | #endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED |
---|