1 | // Copyright 2004 The Trustees of Indiana University. |
---|
2 | |
---|
3 | // Distributed under the Boost Software License, Version 1.0. |
---|
4 | // (See accompanying file LICENSE_1_0.txt or copy at |
---|
5 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
6 | |
---|
7 | // Authors: Douglas Gregor |
---|
8 | // Andrew Lumsdaine |
---|
9 | #ifndef BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP |
---|
10 | #define BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP |
---|
11 | |
---|
12 | #include <boost/graph/graph_traits.hpp> |
---|
13 | #include <boost/graph/johnson_all_pairs_shortest.hpp> |
---|
14 | #include <boost/type_traits/is_convertible.hpp> |
---|
15 | #include <utility> |
---|
16 | #include <iterator> |
---|
17 | #include <vector> |
---|
18 | #include <boost/limits.hpp> |
---|
19 | #include <cmath> |
---|
20 | |
---|
21 | namespace boost { |
---|
22 | namespace detail { namespace graph { |
---|
23 | /** |
---|
24 | * Denotes an edge or display area side length used to scale a |
---|
25 | * Kamada-Kawai drawing. |
---|
26 | */ |
---|
27 | template<bool Edge, typename T> |
---|
28 | struct edge_or_side |
---|
29 | { |
---|
30 | explicit edge_or_side(T value) : value(value) {} |
---|
31 | |
---|
32 | T value; |
---|
33 | }; |
---|
34 | |
---|
35 | /** |
---|
36 | * Compute the edge length from an edge length. This is trivial. |
---|
37 | */ |
---|
38 | template<typename Graph, typename DistanceMap, typename IndexMap, |
---|
39 | typename T> |
---|
40 | T compute_edge_length(const Graph&, DistanceMap, IndexMap, |
---|
41 | edge_or_side<true, T> length) |
---|
42 | { return length.value; } |
---|
43 | |
---|
44 | /** |
---|
45 | * Compute the edge length based on the display area side |
---|
46 | length. We do this by dividing the side length by the largest |
---|
47 | shortest distance between any two vertices in the graph. |
---|
48 | */ |
---|
49 | template<typename Graph, typename DistanceMap, typename IndexMap, |
---|
50 | typename T> |
---|
51 | T |
---|
52 | compute_edge_length(const Graph& g, DistanceMap distance, IndexMap index, |
---|
53 | edge_or_side<false, T> length) |
---|
54 | { |
---|
55 | T result(0); |
---|
56 | |
---|
57 | typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator; |
---|
58 | |
---|
59 | for (vertex_iterator ui = vertices(g).first, end = vertices(g).second; |
---|
60 | ui != end; ++ui) { |
---|
61 | vertex_iterator vi = ui; |
---|
62 | for (++vi; vi != end; ++vi) { |
---|
63 | T dij = distance[get(index, *ui)][get(index, *vi)]; |
---|
64 | if (dij > result) result = dij; |
---|
65 | } |
---|
66 | } |
---|
67 | return length.value / result; |
---|
68 | } |
---|
69 | |
---|
70 | /** |
---|
71 | * Implementation of the Kamada-Kawai spring layout algorithm. |
---|
72 | */ |
---|
73 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
74 | typename EdgeOrSideLength, typename Done, |
---|
75 | typename VertexIndexMap, typename DistanceMatrix, |
---|
76 | typename SpringStrengthMatrix, typename PartialDerivativeMap> |
---|
77 | struct kamada_kawai_spring_layout_impl |
---|
78 | { |
---|
79 | typedef typename property_traits<WeightMap>::value_type weight_type; |
---|
80 | typedef std::pair<weight_type, weight_type> deriv_type; |
---|
81 | typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator; |
---|
82 | typedef typename graph_traits<Graph>::vertex_descriptor |
---|
83 | vertex_descriptor; |
---|
84 | |
---|
85 | kamada_kawai_spring_layout_impl( |
---|
86 | const Graph& g, |
---|
87 | PositionMap position, |
---|
88 | WeightMap weight, |
---|
89 | EdgeOrSideLength edge_or_side_length, |
---|
90 | Done done, |
---|
91 | weight_type spring_constant, |
---|
92 | VertexIndexMap index, |
---|
93 | DistanceMatrix distance, |
---|
94 | SpringStrengthMatrix spring_strength, |
---|
95 | PartialDerivativeMap partial_derivatives) |
---|
96 | : g(g), position(position), weight(weight), |
---|
97 | edge_or_side_length(edge_or_side_length), done(done), |
---|
98 | spring_constant(spring_constant), index(index), distance(distance), |
---|
99 | spring_strength(spring_strength), |
---|
100 | partial_derivatives(partial_derivatives) {} |
---|
101 | |
---|
102 | // Compute contribution of vertex i to the first partial |
---|
103 | // derivatives (dE/dx_m, dE/dy_m) (for vertex m) |
---|
104 | deriv_type |
---|
105 | compute_partial_derivative(vertex_descriptor m, vertex_descriptor i) |
---|
106 | { |
---|
107 | #ifndef BOOST_NO_STDC_NAMESPACE |
---|
108 | using std::sqrt; |
---|
109 | #endif // BOOST_NO_STDC_NAMESPACE |
---|
110 | |
---|
111 | deriv_type result(0, 0); |
---|
112 | if (i != m) { |
---|
113 | weight_type x_diff = position[m].x - position[i].x; |
---|
114 | weight_type y_diff = position[m].y - position[i].y; |
---|
115 | weight_type dist = sqrt(x_diff * x_diff + y_diff * y_diff); |
---|
116 | result.first = spring_strength[get(index, m)][get(index, i)] |
---|
117 | * (x_diff - distance[get(index, m)][get(index, i)]*x_diff/dist); |
---|
118 | result.second = spring_strength[get(index, m)][get(index, i)] |
---|
119 | * (y_diff - distance[get(index, m)][get(index, i)]*y_diff/dist); |
---|
120 | } |
---|
121 | |
---|
122 | return result; |
---|
123 | } |
---|
124 | |
---|
125 | // Compute partial derivatives dE/dx_m and dE/dy_m |
---|
126 | deriv_type |
---|
127 | compute_partial_derivatives(vertex_descriptor m) |
---|
128 | { |
---|
129 | #ifndef BOOST_NO_STDC_NAMESPACE |
---|
130 | using std::sqrt; |
---|
131 | #endif // BOOST_NO_STDC_NAMESPACE |
---|
132 | |
---|
133 | deriv_type result(0, 0); |
---|
134 | |
---|
135 | // TBD: looks like an accumulate to me |
---|
136 | std::pair<vertex_iterator, vertex_iterator> verts = vertices(g); |
---|
137 | for (/* no init */; verts.first != verts.second; ++verts.first) { |
---|
138 | vertex_descriptor i = *verts.first; |
---|
139 | deriv_type deriv = compute_partial_derivative(m, i); |
---|
140 | result.first += deriv.first; |
---|
141 | result.second += deriv.second; |
---|
142 | } |
---|
143 | |
---|
144 | return result; |
---|
145 | } |
---|
146 | |
---|
147 | // The actual Kamada-Kawai spring layout algorithm implementation |
---|
148 | bool run() |
---|
149 | { |
---|
150 | #ifndef BOOST_NO_STDC_NAMESPACE |
---|
151 | using std::sqrt; |
---|
152 | #endif // BOOST_NO_STDC_NAMESPACE |
---|
153 | |
---|
154 | // Compute d_{ij} and place it in the distance matrix |
---|
155 | if (!johnson_all_pairs_shortest_paths(g, distance, index, weight, |
---|
156 | weight_type(0))) |
---|
157 | return false; |
---|
158 | |
---|
159 | // Compute L based on side length (if needed), or retrieve L |
---|
160 | weight_type edge_length = |
---|
161 | detail::graph::compute_edge_length(g, distance, index, |
---|
162 | edge_or_side_length); |
---|
163 | |
---|
164 | // Compute l_{ij} and k_{ij} |
---|
165 | const weight_type K = spring_constant; |
---|
166 | vertex_iterator ui, end = vertices(g).second; |
---|
167 | for (ui = vertices(g).first; ui != end; ++ui) { |
---|
168 | vertex_iterator vi = ui; |
---|
169 | for (++vi; vi != end; ++vi) { |
---|
170 | weight_type dij = distance[get(index, *ui)][get(index, *vi)]; |
---|
171 | if (dij == (std::numeric_limits<weight_type>::max)()) |
---|
172 | return false; |
---|
173 | distance[get(index, *ui)][get(index, *vi)] = edge_length * dij; |
---|
174 | distance[get(index, *vi)][get(index, *ui)] = edge_length * dij; |
---|
175 | spring_strength[get(index, *ui)][get(index, *vi)] = K/(dij*dij); |
---|
176 | spring_strength[get(index, *vi)][get(index, *ui)] = K/(dij*dij); |
---|
177 | } |
---|
178 | } |
---|
179 | |
---|
180 | // Compute Delta_i and find max |
---|
181 | vertex_descriptor p = *vertices(g).first; |
---|
182 | weight_type delta_p(0); |
---|
183 | |
---|
184 | for (ui = vertices(g).first; ui != end; ++ui) { |
---|
185 | deriv_type deriv = compute_partial_derivatives(*ui); |
---|
186 | put(partial_derivatives, *ui, deriv); |
---|
187 | |
---|
188 | weight_type delta = |
---|
189 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second); |
---|
190 | |
---|
191 | if (delta > delta_p) { |
---|
192 | p = *ui; |
---|
193 | delta_p = delta; |
---|
194 | } |
---|
195 | } |
---|
196 | |
---|
197 | while (!done(delta_p, p, g, true)) { |
---|
198 | // The contribution p makes to the partial derivatives of |
---|
199 | // each vertex. Computing this (at O(n) cost) allows us to |
---|
200 | // update the delta_i values in O(n) time instead of O(n^2) |
---|
201 | // time. |
---|
202 | std::vector<deriv_type> p_partials(num_vertices(g)); |
---|
203 | for (ui = vertices(g).first; ui != end; ++ui) { |
---|
204 | vertex_descriptor i = *ui; |
---|
205 | p_partials[get(index, i)] = compute_partial_derivative(i, p); |
---|
206 | } |
---|
207 | |
---|
208 | do { |
---|
209 | // Compute the 4 elements of the Jacobian |
---|
210 | weight_type dE_dx_dx = 0, dE_dx_dy = 0, dE_dy_dx = 0, dE_dy_dy = 0; |
---|
211 | for (ui = vertices(g).first; ui != end; ++ui) { |
---|
212 | vertex_descriptor i = *ui; |
---|
213 | if (i != p) { |
---|
214 | weight_type x_diff = position[p].x - position[i].x; |
---|
215 | weight_type y_diff = position[p].y - position[i].y; |
---|
216 | weight_type dist = sqrt(x_diff * x_diff + y_diff * y_diff); |
---|
217 | weight_type dist_cubed = dist * dist * dist; |
---|
218 | weight_type k_mi = spring_strength[get(index,p)][get(index,i)]; |
---|
219 | weight_type l_mi = distance[get(index, p)][get(index, i)]; |
---|
220 | dE_dx_dx += k_mi * (1 - (l_mi * y_diff * y_diff)/dist_cubed); |
---|
221 | dE_dx_dy += k_mi * l_mi * x_diff * y_diff / dist_cubed; |
---|
222 | dE_dy_dx += k_mi * l_mi * x_diff * y_diff / dist_cubed; |
---|
223 | dE_dy_dy += k_mi * (1 - (l_mi * x_diff * x_diff)/dist_cubed); |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | // Solve for delta_x and delta_y |
---|
228 | weight_type dE_dx = get(partial_derivatives, p).first; |
---|
229 | weight_type dE_dy = get(partial_derivatives, p).second; |
---|
230 | |
---|
231 | weight_type delta_x = |
---|
232 | (dE_dx_dy * dE_dy - dE_dy_dy * dE_dx) |
---|
233 | / (dE_dx_dx * dE_dy_dy - dE_dx_dy * dE_dy_dx); |
---|
234 | |
---|
235 | weight_type delta_y = |
---|
236 | (dE_dx_dx * dE_dy - dE_dy_dx * dE_dx) |
---|
237 | / (dE_dy_dx * dE_dx_dy - dE_dx_dx * dE_dy_dy); |
---|
238 | |
---|
239 | |
---|
240 | // Move p by (delta_x, delta_y) |
---|
241 | position[p].x += delta_x; |
---|
242 | position[p].y += delta_y; |
---|
243 | |
---|
244 | // Recompute partial derivatives and delta_p |
---|
245 | deriv_type deriv = compute_partial_derivatives(p); |
---|
246 | put(partial_derivatives, p, deriv); |
---|
247 | |
---|
248 | delta_p = |
---|
249 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second); |
---|
250 | } while (!done(delta_p, p, g, false)); |
---|
251 | |
---|
252 | // Select new p by updating each partial derivative and delta |
---|
253 | vertex_descriptor old_p = p; |
---|
254 | for (ui = vertices(g).first; ui != end; ++ui) { |
---|
255 | deriv_type old_deriv_p = p_partials[get(index, *ui)]; |
---|
256 | deriv_type old_p_partial = |
---|
257 | compute_partial_derivative(*ui, old_p); |
---|
258 | deriv_type deriv = get(partial_derivatives, *ui); |
---|
259 | |
---|
260 | deriv.first += old_p_partial.first - old_deriv_p.first; |
---|
261 | deriv.second += old_p_partial.second - old_deriv_p.second; |
---|
262 | |
---|
263 | put(partial_derivatives, *ui, deriv); |
---|
264 | weight_type delta = |
---|
265 | sqrt(deriv.first*deriv.first + deriv.second*deriv.second); |
---|
266 | |
---|
267 | if (delta > delta_p) { |
---|
268 | p = *ui; |
---|
269 | delta_p = delta; |
---|
270 | } |
---|
271 | } |
---|
272 | } |
---|
273 | |
---|
274 | return true; |
---|
275 | } |
---|
276 | |
---|
277 | const Graph& g; |
---|
278 | PositionMap position; |
---|
279 | WeightMap weight; |
---|
280 | EdgeOrSideLength edge_or_side_length; |
---|
281 | Done done; |
---|
282 | weight_type spring_constant; |
---|
283 | VertexIndexMap index; |
---|
284 | DistanceMatrix distance; |
---|
285 | SpringStrengthMatrix spring_strength; |
---|
286 | PartialDerivativeMap partial_derivatives; |
---|
287 | }; |
---|
288 | } } // end namespace detail::graph |
---|
289 | |
---|
290 | /// States that the given quantity is an edge length. |
---|
291 | template<typename T> |
---|
292 | inline detail::graph::edge_or_side<true, T> |
---|
293 | edge_length(T x) |
---|
294 | { return detail::graph::edge_or_side<true, T>(x); } |
---|
295 | |
---|
296 | /// States that the given quantity is a display area side length. |
---|
297 | template<typename T> |
---|
298 | inline detail::graph::edge_or_side<false, T> |
---|
299 | side_length(T x) |
---|
300 | { return detail::graph::edge_or_side<false, T>(x); } |
---|
301 | |
---|
302 | /** |
---|
303 | * \brief Determines when to terminate layout of a particular graph based |
---|
304 | * on a given relative tolerance. |
---|
305 | */ |
---|
306 | template<typename T = double> |
---|
307 | struct layout_tolerance |
---|
308 | { |
---|
309 | layout_tolerance(const T& tolerance = T(0.001)) |
---|
310 | : tolerance(tolerance), last_energy((std::numeric_limits<T>::max)()), |
---|
311 | last_local_energy((std::numeric_limits<T>::max)()) { } |
---|
312 | |
---|
313 | template<typename Graph> |
---|
314 | bool |
---|
315 | operator()(T delta_p, |
---|
316 | typename boost::graph_traits<Graph>::vertex_descriptor p, |
---|
317 | const Graph& g, |
---|
318 | bool global) |
---|
319 | { |
---|
320 | if (global) { |
---|
321 | if (last_energy == (std::numeric_limits<T>::max)()) { |
---|
322 | last_energy = delta_p; |
---|
323 | return false; |
---|
324 | } |
---|
325 | |
---|
326 | T diff = last_energy - delta_p; |
---|
327 | if (diff < T(0)) diff = -diff; |
---|
328 | bool done = (delta_p == T(0) || diff / last_energy < tolerance); |
---|
329 | last_energy = delta_p; |
---|
330 | return done; |
---|
331 | } else { |
---|
332 | if (last_local_energy == (std::numeric_limits<T>::max)()) { |
---|
333 | last_local_energy = delta_p; |
---|
334 | return delta_p == T(0); |
---|
335 | } |
---|
336 | |
---|
337 | T diff = last_local_energy - delta_p; |
---|
338 | bool done = (delta_p == T(0) || (diff / last_local_energy) < tolerance); |
---|
339 | last_local_energy = delta_p; |
---|
340 | return done; |
---|
341 | } |
---|
342 | } |
---|
343 | |
---|
344 | private: |
---|
345 | T tolerance; |
---|
346 | T last_energy; |
---|
347 | T last_local_energy; |
---|
348 | }; |
---|
349 | |
---|
350 | /** \brief Kamada-Kawai spring layout for undirected graphs. |
---|
351 | * |
---|
352 | * This algorithm performs graph layout (in two dimensions) for |
---|
353 | * connected, undirected graphs. It operates by relating the layout |
---|
354 | * of graphs to a dynamic spring system and minimizing the energy |
---|
355 | * within that system. The strength of a spring between two vertices |
---|
356 | * is inversely proportional to the square of the shortest distance |
---|
357 | * (in graph terms) between those two vertices. Essentially, |
---|
358 | * vertices that are closer in the graph-theoretic sense (i.e., by |
---|
359 | * following edges) will have stronger springs and will therefore be |
---|
360 | * placed closer together. |
---|
361 | * |
---|
362 | * Prior to invoking this algorithm, it is recommended that the |
---|
363 | * vertices be placed along the vertices of a regular n-sided |
---|
364 | * polygon. |
---|
365 | * |
---|
366 | * \param g (IN) must be a model of Vertex List Graph, Edge List |
---|
367 | * Graph, and Incidence Graph and must be undirected. |
---|
368 | * |
---|
369 | * \param position (OUT) must be a model of Lvalue Property Map, |
---|
370 | * where the value type is a class containing fields @c x and @c y |
---|
371 | * that will be set to the @c x and @c y coordinates of each vertex. |
---|
372 | * |
---|
373 | * \param weight (IN) must be a model of Readable Property Map, |
---|
374 | * which provides the weight of each edge in the graph @p g. |
---|
375 | * |
---|
376 | * \param edge_or_side_length (IN) provides either the unit length |
---|
377 | * @c e of an edge in the layout or the length of a side @c s of the |
---|
378 | * display area, and must be either @c boost::edge_length(e) or @c |
---|
379 | * boost::side_length(s), respectively. |
---|
380 | * |
---|
381 | * \param done (IN) is a 4-argument function object that is passed |
---|
382 | * the current value of delta_p (i.e., the energy of vertex @p p), |
---|
383 | * the vertex @p p, the graph @p g, and a boolean flag indicating |
---|
384 | * whether @p delta_p is the maximum energy in the system (when @c |
---|
385 | * true) or the energy of the vertex being moved. Defaults to @c |
---|
386 | * layout_tolerance instantiated over the value type of the weight |
---|
387 | * map. |
---|
388 | * |
---|
389 | * \param spring_constant (IN) is the constant multiplied by each |
---|
390 | * spring's strength. Larger values create systems with more energy |
---|
391 | * that can take longer to stabilize; smaller values create systems |
---|
392 | * with less energy that stabilize quickly but do not necessarily |
---|
393 | * result in pleasing layouts. The default value is 1. |
---|
394 | * |
---|
395 | * \param index (IN) is a mapping from vertices to index values |
---|
396 | * between 0 and @c num_vertices(g). The default is @c |
---|
397 | * get(vertex_index,g). |
---|
398 | * |
---|
399 | * \param distance (UTIL/OUT) will be used to store the distance |
---|
400 | * from every vertex to every other vertex, which is computed in the |
---|
401 | * first stages of the algorithm. This value's type must be a model |
---|
402 | * of BasicMatrix with value type equal to the value type of the |
---|
403 | * weight map. The default is a a vector of vectors. |
---|
404 | * |
---|
405 | * \param spring_strength (UTIL/OUT) will be used to store the |
---|
406 | * strength of the spring between every pair of vertices. This |
---|
407 | * value's type must be a model of BasicMatrix with value type equal |
---|
408 | * to the value type of the weight map. The default is a a vector of |
---|
409 | * vectors. |
---|
410 | * |
---|
411 | * \param partial_derivatives (UTIL) will be used to store the |
---|
412 | * partial derivates of each vertex with respect to the @c x and @c |
---|
413 | * y coordinates. This must be a Read/Write Property Map whose value |
---|
414 | * type is a pair with both types equivalent to the value type of |
---|
415 | * the weight map. The default is an iterator property map. |
---|
416 | * |
---|
417 | * \returns @c true if layout was successful or @c false if a |
---|
418 | * negative weight cycle was detected. |
---|
419 | */ |
---|
420 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
421 | typename T, bool EdgeOrSideLength, typename Done, |
---|
422 | typename VertexIndexMap, typename DistanceMatrix, |
---|
423 | typename SpringStrengthMatrix, typename PartialDerivativeMap> |
---|
424 | bool |
---|
425 | kamada_kawai_spring_layout( |
---|
426 | const Graph& g, |
---|
427 | PositionMap position, |
---|
428 | WeightMap weight, |
---|
429 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length, |
---|
430 | Done done, |
---|
431 | typename property_traits<WeightMap>::value_type spring_constant, |
---|
432 | VertexIndexMap index, |
---|
433 | DistanceMatrix distance, |
---|
434 | SpringStrengthMatrix spring_strength, |
---|
435 | PartialDerivativeMap partial_derivatives) |
---|
436 | { |
---|
437 | BOOST_STATIC_ASSERT((is_convertible< |
---|
438 | typename graph_traits<Graph>::directed_category*, |
---|
439 | undirected_tag* |
---|
440 | >::value)); |
---|
441 | |
---|
442 | detail::graph::kamada_kawai_spring_layout_impl< |
---|
443 | Graph, PositionMap, WeightMap, |
---|
444 | detail::graph::edge_or_side<EdgeOrSideLength, T>, Done, VertexIndexMap, |
---|
445 | DistanceMatrix, SpringStrengthMatrix, PartialDerivativeMap> |
---|
446 | alg(g, position, weight, edge_or_side_length, done, spring_constant, |
---|
447 | index, distance, spring_strength, partial_derivatives); |
---|
448 | return alg.run(); |
---|
449 | } |
---|
450 | |
---|
451 | /** |
---|
452 | * \overload |
---|
453 | */ |
---|
454 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
455 | typename T, bool EdgeOrSideLength, typename Done, |
---|
456 | typename VertexIndexMap> |
---|
457 | bool |
---|
458 | kamada_kawai_spring_layout( |
---|
459 | const Graph& g, |
---|
460 | PositionMap position, |
---|
461 | WeightMap weight, |
---|
462 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length, |
---|
463 | Done done, |
---|
464 | typename property_traits<WeightMap>::value_type spring_constant, |
---|
465 | VertexIndexMap index) |
---|
466 | { |
---|
467 | typedef typename property_traits<WeightMap>::value_type weight_type; |
---|
468 | |
---|
469 | typename graph_traits<Graph>::vertices_size_type n = num_vertices(g); |
---|
470 | typedef std::vector<weight_type> weight_vec; |
---|
471 | |
---|
472 | std::vector<weight_vec> distance(n, weight_vec(n)); |
---|
473 | std::vector<weight_vec> spring_strength(n, weight_vec(n)); |
---|
474 | std::vector<std::pair<weight_type, weight_type> > partial_derivatives(n); |
---|
475 | |
---|
476 | return |
---|
477 | kamada_kawai_spring_layout( |
---|
478 | g, position, weight, edge_or_side_length, done, spring_constant, index, |
---|
479 | distance.begin(), |
---|
480 | spring_strength.begin(), |
---|
481 | make_iterator_property_map(partial_derivatives.begin(), index, |
---|
482 | std::pair<weight_type, weight_type>())); |
---|
483 | } |
---|
484 | |
---|
485 | /** |
---|
486 | * \overload |
---|
487 | */ |
---|
488 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
489 | typename T, bool EdgeOrSideLength, typename Done> |
---|
490 | bool |
---|
491 | kamada_kawai_spring_layout( |
---|
492 | const Graph& g, |
---|
493 | PositionMap position, |
---|
494 | WeightMap weight, |
---|
495 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length, |
---|
496 | Done done, |
---|
497 | typename property_traits<WeightMap>::value_type spring_constant) |
---|
498 | { |
---|
499 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length, |
---|
500 | done, spring_constant, |
---|
501 | get(vertex_index, g)); |
---|
502 | } |
---|
503 | |
---|
504 | /** |
---|
505 | * \overload |
---|
506 | */ |
---|
507 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
508 | typename T, bool EdgeOrSideLength, typename Done> |
---|
509 | bool |
---|
510 | kamada_kawai_spring_layout( |
---|
511 | const Graph& g, |
---|
512 | PositionMap position, |
---|
513 | WeightMap weight, |
---|
514 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length, |
---|
515 | Done done) |
---|
516 | { |
---|
517 | typedef typename property_traits<WeightMap>::value_type weight_type; |
---|
518 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length, |
---|
519 | done, weight_type(1)); |
---|
520 | } |
---|
521 | |
---|
522 | /** |
---|
523 | * \overload |
---|
524 | */ |
---|
525 | template<typename Graph, typename PositionMap, typename WeightMap, |
---|
526 | typename T, bool EdgeOrSideLength> |
---|
527 | bool |
---|
528 | kamada_kawai_spring_layout( |
---|
529 | const Graph& g, |
---|
530 | PositionMap position, |
---|
531 | WeightMap weight, |
---|
532 | detail::graph::edge_or_side<EdgeOrSideLength, T> edge_or_side_length) |
---|
533 | { |
---|
534 | typedef typename property_traits<WeightMap>::value_type weight_type; |
---|
535 | return kamada_kawai_spring_layout(g, position, weight, edge_or_side_length, |
---|
536 | layout_tolerance<weight_type>(), |
---|
537 | weight_type(1.0), |
---|
538 | get(vertex_index, g)); |
---|
539 | } |
---|
540 | } // end namespace boost |
---|
541 | |
---|
542 | #endif // BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP |
---|