[12] | 1 | #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP |
---|
| 2 | #define BOOST_PYTHON_SLICE_JDB20040105_HPP |
---|
| 3 | |
---|
| 4 | // Copyright (c) 2004 Jonathan Brandmeyer |
---|
| 5 | // Use, modification and distribution are subject to the |
---|
| 6 | // Boost Software License, Version 1.0. (See accompanying file |
---|
| 7 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
---|
| 8 | |
---|
| 9 | #include <boost/python/detail/prefix.hpp> |
---|
| 10 | #include <boost/config.hpp> |
---|
| 11 | #include <boost/python/object.hpp> |
---|
| 12 | #include <boost/python/extract.hpp> |
---|
| 13 | #include <boost/python/converter/pytype_object_mgr_traits.hpp> |
---|
| 14 | |
---|
| 15 | #include <boost/iterator/iterator_traits.hpp> |
---|
| 16 | |
---|
| 17 | #include <iterator> |
---|
| 18 | #include <algorithm> |
---|
| 19 | |
---|
| 20 | namespace boost { namespace python { |
---|
| 21 | |
---|
| 22 | namespace detail |
---|
| 23 | { |
---|
| 24 | class BOOST_PYTHON_DECL slice_base : public object |
---|
| 25 | { |
---|
| 26 | public: |
---|
| 27 | // Get the Python objects associated with the slice. In principle, these |
---|
| 28 | // may be any arbitrary Python type, but in practice they are usually |
---|
| 29 | // integers. If one or more parameter is ommited in the Python expression |
---|
| 30 | // that created this slice, than that parameter is None here, and compares |
---|
| 31 | // equal to a default-constructed boost::python::object. |
---|
| 32 | // If a user-defined type wishes to support slicing, then support for the |
---|
| 33 | // special meaning associated with negative indicies is up to the user. |
---|
| 34 | object start() const; |
---|
| 35 | object stop() const; |
---|
| 36 | object step() const; |
---|
| 37 | |
---|
| 38 | protected: |
---|
| 39 | explicit slice_base(PyObject*, PyObject*, PyObject*); |
---|
| 40 | |
---|
| 41 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object) |
---|
| 42 | }; |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | class slice : public detail::slice_base |
---|
| 46 | { |
---|
| 47 | typedef detail::slice_base base; |
---|
| 48 | public: |
---|
| 49 | // Equivalent to slice(::) |
---|
| 50 | slice() : base(0,0,0) {} |
---|
| 51 | |
---|
| 52 | // Each argument must be slice_nil, or implicitly convertable to object. |
---|
| 53 | // They should normally be integers. |
---|
| 54 | template<typename Integer1, typename Integer2> |
---|
| 55 | slice( Integer1 start, Integer2 stop) |
---|
| 56 | : base( object(start).ptr(), object(stop).ptr(), 0 ) |
---|
| 57 | {} |
---|
| 58 | |
---|
| 59 | template<typename Integer1, typename Integer2, typename Integer3> |
---|
| 60 | slice( Integer1 start, Integer2 stop, Integer3 stride) |
---|
| 61 | : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() ) |
---|
| 62 | {} |
---|
| 63 | |
---|
| 64 | // The following algorithm is intended to automate the process of |
---|
| 65 | // determining a slice range when you want to fully support negative |
---|
| 66 | // indicies and non-singular step sizes. Its functionallity is simmilar to |
---|
| 67 | // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users. |
---|
| 68 | // This template returns a slice::range struct that, when used in the |
---|
| 69 | // following iterative loop, will traverse a slice of the function's |
---|
| 70 | // arguments. |
---|
| 71 | // while (start != end) { |
---|
| 72 | // do_foo(...); |
---|
| 73 | // std::advance( start, step); |
---|
| 74 | // } |
---|
| 75 | // do_foo(...); // repeat exactly once more. |
---|
| 76 | |
---|
| 77 | // Arguments: a [begin, end) pair of STL-conforming random-access iterators. |
---|
| 78 | |
---|
| 79 | // Return: slice::range, where start and stop define a _closed_ interval |
---|
| 80 | // that covers at most [begin, end-1] of the provided arguments, and a step |
---|
| 81 | // that is non-zero. |
---|
| 82 | |
---|
| 83 | // Throws: error_already_set() if any of the indices are neither None nor |
---|
| 84 | // integers, or the slice has a step value of zero. |
---|
| 85 | // std::invalid_argument if the resulting range would be empty. Normally, |
---|
| 86 | // you should catch this exception and return an empty sequence of the |
---|
| 87 | // appropriate type. |
---|
| 88 | |
---|
| 89 | // Performance: constant time for random-access iterators. |
---|
| 90 | |
---|
| 91 | // Rationale: |
---|
| 92 | // closed-interval: If an open interval were used, then for a non-singular |
---|
| 93 | // value for step, the required state for the end iterator could be |
---|
| 94 | // beyond the one-past-the-end postion of the specified range. While |
---|
| 95 | // probably harmless, the behavior of STL-conforming iterators is |
---|
| 96 | // undefined in this case. |
---|
| 97 | // exceptions on zero-length range: It is impossible to define a closed |
---|
| 98 | // interval over an empty range, so some other form of error checking |
---|
| 99 | // would have to be used by the user to prevent undefined behavior. In |
---|
| 100 | // the case where the user fails to catch the exception, it will simply |
---|
| 101 | // be translated to Python by the default exception handling mechanisms. |
---|
| 102 | |
---|
| 103 | template<typename RandomAccessIterator> |
---|
| 104 | struct range |
---|
| 105 | { |
---|
| 106 | RandomAccessIterator start; |
---|
| 107 | RandomAccessIterator stop; |
---|
| 108 | typename iterator_difference<RandomAccessIterator>::type step; |
---|
| 109 | }; |
---|
| 110 | |
---|
| 111 | template<typename RandomAccessIterator> |
---|
| 112 | slice::range<RandomAccessIterator> |
---|
| 113 | get_indicies( const RandomAccessIterator& begin, |
---|
| 114 | const RandomAccessIterator& end) const |
---|
| 115 | { |
---|
| 116 | // This is based loosely on PySlice_GetIndicesEx(), but it has been |
---|
| 117 | // carefully crafted to ensure that these iterators never fall out of |
---|
| 118 | // the range of the container. |
---|
| 119 | slice::range<RandomAccessIterator> ret; |
---|
| 120 | |
---|
| 121 | typedef typename iterator_difference<RandomAccessIterator>::type difference_type; |
---|
| 122 | difference_type max_dist = boost::detail::distance(begin, end); |
---|
| 123 | |
---|
| 124 | object slice_start = this->start(); |
---|
| 125 | object slice_stop = this->stop(); |
---|
| 126 | object slice_step = this->step(); |
---|
| 127 | |
---|
| 128 | // Extract the step. |
---|
| 129 | if (slice_step == object()) { |
---|
| 130 | ret.step = 1; |
---|
| 131 | } |
---|
| 132 | else { |
---|
| 133 | ret.step = extract<long>( slice_step); |
---|
| 134 | if (ret.step == 0) { |
---|
| 135 | PyErr_SetString( PyExc_IndexError, "step size cannot be zero."); |
---|
| 136 | throw_error_already_set(); |
---|
| 137 | } |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | // Setup the start iterator. |
---|
| 141 | if (slice_start == object()) { |
---|
| 142 | if (ret.step < 0) { |
---|
| 143 | ret.start = end; |
---|
| 144 | --ret.start; |
---|
| 145 | } |
---|
| 146 | else |
---|
| 147 | ret.start = begin; |
---|
| 148 | } |
---|
| 149 | else { |
---|
| 150 | difference_type i = extract<long>( slice_start); |
---|
| 151 | if (i >= max_dist && ret.step > 0) |
---|
| 152 | throw std::invalid_argument( "Zero-length slice"); |
---|
| 153 | if (i >= 0) { |
---|
| 154 | ret.start = begin; |
---|
| 155 | BOOST_USING_STD_MIN(); |
---|
| 156 | std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1)); |
---|
| 157 | } |
---|
| 158 | else { |
---|
| 159 | if (i < -max_dist && ret.step < 0) |
---|
| 160 | throw std::invalid_argument( "Zero-length slice"); |
---|
| 161 | ret.start = end; |
---|
| 162 | // Advance start (towards begin) not farther than begin. |
---|
| 163 | std::advance( ret.start, (-i < max_dist) ? i : -max_dist ); |
---|
| 164 | } |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | // Set up the stop iterator. This one is a little trickier since slices |
---|
| 168 | // define a [) range, and we are returning a [] range. |
---|
| 169 | if (slice_stop == object()) { |
---|
| 170 | if (ret.step < 0) { |
---|
| 171 | ret.stop = begin; |
---|
| 172 | } |
---|
| 173 | else { |
---|
| 174 | ret.stop = end; |
---|
| 175 | std::advance( ret.stop, -1); |
---|
| 176 | } |
---|
| 177 | } |
---|
| 178 | else { |
---|
| 179 | difference_type i = extract<long>(slice_stop); |
---|
| 180 | // First, branch on which direction we are going with this. |
---|
| 181 | if (ret.step < 0) { |
---|
| 182 | if (i+1 >= max_dist || i == -1) |
---|
| 183 | throw std::invalid_argument( "Zero-length slice"); |
---|
| 184 | |
---|
| 185 | if (i >= 0) { |
---|
| 186 | ret.stop = begin; |
---|
| 187 | std::advance( ret.stop, i+1); |
---|
| 188 | } |
---|
| 189 | else { // i is negative, but more negative than -1. |
---|
| 190 | ret.stop = end; |
---|
| 191 | std::advance( ret.stop, (-i < max_dist) ? i : -max_dist); |
---|
| 192 | } |
---|
| 193 | } |
---|
| 194 | else { // stepping forward |
---|
| 195 | if (i == 0 || -i >= max_dist) |
---|
| 196 | throw std::invalid_argument( "Zero-length slice"); |
---|
| 197 | |
---|
| 198 | if (i > 0) { |
---|
| 199 | ret.stop = begin; |
---|
| 200 | std::advance( ret.stop, (std::min)( i-1, max_dist-1)); |
---|
| 201 | } |
---|
| 202 | else { // i is negative, but not more negative than -max_dist |
---|
| 203 | ret.stop = end; |
---|
| 204 | std::advance( ret.stop, i-1); |
---|
| 205 | } |
---|
| 206 | } |
---|
| 207 | } |
---|
| 208 | |
---|
| 209 | // Now the fun part, handling the possibilites surrounding step. |
---|
| 210 | // At this point, step has been initialized, ret.stop, and ret.step |
---|
| 211 | // represent the widest possible range that could be traveled |
---|
| 212 | // (inclusive), and final_dist is the maximum distance covered by the |
---|
| 213 | // slice. |
---|
| 214 | typename iterator_difference<RandomAccessIterator>::type final_dist = |
---|
| 215 | boost::detail::distance( ret.start, ret.stop); |
---|
| 216 | |
---|
| 217 | // First case, if both ret.start and ret.stop are equal, then step |
---|
| 218 | // is irrelevant and we can return here. |
---|
| 219 | if (final_dist == 0) |
---|
| 220 | return ret; |
---|
| 221 | |
---|
| 222 | // Second, if there is a sign mismatch, than the resulting range and |
---|
| 223 | // step size conflict: std::advance( ret.start, ret.step) goes away from |
---|
| 224 | // ret.stop. |
---|
| 225 | if ((final_dist > 0) != (ret.step > 0)) |
---|
| 226 | throw std::invalid_argument( "Zero-length slice."); |
---|
| 227 | |
---|
| 228 | // Finally, if the last step puts us past the end, we move ret.stop |
---|
| 229 | // towards ret.start in the amount of the remainder. |
---|
| 230 | // I don't remember all of the oolies surrounding negative modulii, |
---|
| 231 | // so I am handling each of these cases separately. |
---|
| 232 | if (final_dist < 0) { |
---|
| 233 | difference_type remainder = -final_dist % -ret.step; |
---|
| 234 | std::advance( ret.stop, remainder); |
---|
| 235 | } |
---|
| 236 | else { |
---|
| 237 | difference_type remainder = final_dist % ret.step; |
---|
| 238 | std::advance( ret.stop, -remainder); |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | return ret; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | public: |
---|
| 245 | // This declaration, in conjunction with the specialization of |
---|
| 246 | // object_manager_traits<> below, allows C++ functions accepting slice |
---|
| 247 | // arguments to be called from from Python. These constructors should never |
---|
| 248 | // be used in client code. |
---|
| 249 | BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base) |
---|
| 250 | }; |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | namespace converter { |
---|
| 254 | |
---|
| 255 | template<> |
---|
| 256 | struct object_manager_traits<slice> |
---|
| 257 | : pytype_object_manager_traits<&PySlice_Type, slice> |
---|
| 258 | { |
---|
| 259 | }; |
---|
| 260 | |
---|
| 261 | } // !namesapce converter |
---|
| 262 | |
---|
| 263 | } } // !namespace ::boost::python |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP |
---|