| [12] | 1 | // Boost Lambda Library -- if.hpp ------------------------------------------ |
|---|
| 2 | |
|---|
| 3 | // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi) |
|---|
| 4 | // Copyright (C) 2000 Gary Powell (powellg@amazon.com) |
|---|
| 5 | // Copyright (C) 2001-2002 Joel de Guzman |
|---|
| 6 | // |
|---|
| 7 | // Distributed under the Boost Software License, Version 1.0. (See |
|---|
| 8 | // accompanying file LICENSE_1_0.txt or copy at |
|---|
| 9 | // http://www.boost.org/LICENSE_1_0.txt) |
|---|
| 10 | // |
|---|
| 11 | // For more information, see www.boost.org |
|---|
| 12 | |
|---|
| 13 | // -------------------------------------------------------------------------- |
|---|
| 14 | |
|---|
| 15 | #if !defined(BOOST_LAMBDA_IF_HPP) |
|---|
| 16 | #define BOOST_LAMBDA_IF_HPP |
|---|
| 17 | |
|---|
| 18 | #include "boost/lambda/core.hpp" |
|---|
| 19 | |
|---|
| 20 | // Arithmetic type promotion needed for if_then_else_return |
|---|
| 21 | #include "boost/lambda/detail/operator_actions.hpp" |
|---|
| 22 | #include "boost/lambda/detail/operator_return_type_traits.hpp" |
|---|
| 23 | |
|---|
| 24 | namespace boost { |
|---|
| 25 | namespace lambda { |
|---|
| 26 | |
|---|
| 27 | // -- if control construct actions ---------------------- |
|---|
| 28 | |
|---|
| 29 | class ifthen_action {}; |
|---|
| 30 | class ifthenelse_action {}; |
|---|
| 31 | class ifthenelsereturn_action {}; |
|---|
| 32 | |
|---|
| 33 | // Specialization for if_then. |
|---|
| 34 | template<class Args> |
|---|
| 35 | class |
|---|
| 36 | lambda_functor_base<ifthen_action, Args> { |
|---|
| 37 | public: |
|---|
| 38 | Args args; |
|---|
| 39 | template <class T> struct sig { typedef void type; }; |
|---|
| 40 | public: |
|---|
| 41 | explicit lambda_functor_base(const Args& a) : args(a) {} |
|---|
| 42 | |
|---|
| 43 | template<class RET, CALL_TEMPLATE_ARGS> |
|---|
| 44 | RET call(CALL_FORMAL_ARGS) const { |
|---|
| 45 | if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) |
|---|
| 46 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); |
|---|
| 47 | } |
|---|
| 48 | }; |
|---|
| 49 | |
|---|
| 50 | // If Then |
|---|
| 51 | template <class Arg1, class Arg2> |
|---|
| 52 | inline const |
|---|
| 53 | lambda_functor< |
|---|
| 54 | lambda_functor_base< |
|---|
| 55 | ifthen_action, |
|---|
| 56 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2> > |
|---|
| 57 | > |
|---|
| 58 | > |
|---|
| 59 | if_then(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2) { |
|---|
| 60 | return |
|---|
| 61 | lambda_functor_base< |
|---|
| 62 | ifthen_action, |
|---|
| 63 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2> > |
|---|
| 64 | > |
|---|
| 65 | ( tuple<lambda_functor<Arg1>, lambda_functor<Arg2> >(a1, a2) ); |
|---|
| 66 | } |
|---|
| 67 | |
|---|
| 68 | |
|---|
| 69 | // Specialization for if_then_else. |
|---|
| 70 | template<class Args> |
|---|
| 71 | class |
|---|
| 72 | lambda_functor_base<ifthenelse_action, Args> { |
|---|
| 73 | public: |
|---|
| 74 | Args args; |
|---|
| 75 | template <class T> struct sig { typedef void type; }; |
|---|
| 76 | public: |
|---|
| 77 | explicit lambda_functor_base(const Args& a) : args(a) {} |
|---|
| 78 | |
|---|
| 79 | template<class RET, CALL_TEMPLATE_ARGS> |
|---|
| 80 | RET call(CALL_FORMAL_ARGS) const { |
|---|
| 81 | if (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) |
|---|
| 82 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); |
|---|
| 83 | else |
|---|
| 84 | detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS); |
|---|
| 85 | } |
|---|
| 86 | }; |
|---|
| 87 | |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | // If then else |
|---|
| 91 | |
|---|
| 92 | template <class Arg1, class Arg2, class Arg3> |
|---|
| 93 | inline const |
|---|
| 94 | lambda_functor< |
|---|
| 95 | lambda_functor_base< |
|---|
| 96 | ifthenelse_action, |
|---|
| 97 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> > |
|---|
| 98 | > |
|---|
| 99 | > |
|---|
| 100 | if_then_else(const lambda_functor<Arg1>& a1, const lambda_functor<Arg2>& a2, |
|---|
| 101 | const lambda_functor<Arg3>& a3) { |
|---|
| 102 | return |
|---|
| 103 | lambda_functor_base< |
|---|
| 104 | ifthenelse_action, |
|---|
| 105 | tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> > |
|---|
| 106 | > |
|---|
| 107 | (tuple<lambda_functor<Arg1>, lambda_functor<Arg2>, lambda_functor<Arg3> > |
|---|
| 108 | (a1, a2, a3) ); |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | // Our version of operator?:() |
|---|
| 112 | |
|---|
| 113 | template <class Arg1, class Arg2, class Arg3> |
|---|
| 114 | inline const |
|---|
| 115 | lambda_functor< |
|---|
| 116 | lambda_functor_base< |
|---|
| 117 | other_action<ifthenelsereturn_action>, |
|---|
| 118 | tuple<lambda_functor<Arg1>, |
|---|
| 119 | typename const_copy_argument<Arg2>::type, |
|---|
| 120 | typename const_copy_argument<Arg3>::type> |
|---|
| 121 | > |
|---|
| 122 | > |
|---|
| 123 | if_then_else_return(const lambda_functor<Arg1>& a1, |
|---|
| 124 | const Arg2 & a2, |
|---|
| 125 | const Arg3 & a3) { |
|---|
| 126 | return |
|---|
| 127 | lambda_functor_base< |
|---|
| 128 | other_action<ifthenelsereturn_action>, |
|---|
| 129 | tuple<lambda_functor<Arg1>, |
|---|
| 130 | typename const_copy_argument<Arg2>::type, |
|---|
| 131 | typename const_copy_argument<Arg3>::type> |
|---|
| 132 | > ( tuple<lambda_functor<Arg1>, |
|---|
| 133 | typename const_copy_argument<Arg2>::type, |
|---|
| 134 | typename const_copy_argument<Arg3>::type> (a1, a2, a3) ); |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | namespace detail { |
|---|
| 138 | |
|---|
| 139 | // return type specialization for conditional expression begins ----------- |
|---|
| 140 | // start reading below and move upwards |
|---|
| 141 | |
|---|
| 142 | // PHASE 6:1 |
|---|
| 143 | // check if A is conbertible to B and B to A |
|---|
| 144 | template<int Phase, bool AtoB, bool BtoA, bool SameType, class A, class B> |
|---|
| 145 | struct return_type_2_ifthenelsereturn; |
|---|
| 146 | |
|---|
| 147 | // if A can be converted to B and vice versa -> ambiguous |
|---|
| 148 | template<int Phase, class A, class B> |
|---|
| 149 | struct return_type_2_ifthenelsereturn<Phase, true, true, false, A, B> { |
|---|
| 150 | typedef |
|---|
| 151 | detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type; |
|---|
| 152 | // ambiguous type in conditional expression |
|---|
| 153 | }; |
|---|
| 154 | // if A can be converted to B and vice versa and are of same type |
|---|
| 155 | template<int Phase, class A, class B> |
|---|
| 156 | struct return_type_2_ifthenelsereturn<Phase, true, true, true, A, B> { |
|---|
| 157 | typedef A type; |
|---|
| 158 | }; |
|---|
| 159 | |
|---|
| 160 | |
|---|
| 161 | // A can be converted to B |
|---|
| 162 | template<int Phase, class A, class B> |
|---|
| 163 | struct return_type_2_ifthenelsereturn<Phase, true, false, false, A, B> { |
|---|
| 164 | typedef B type; |
|---|
| 165 | }; |
|---|
| 166 | |
|---|
| 167 | // B can be converted to A |
|---|
| 168 | template<int Phase, class A, class B> |
|---|
| 169 | struct return_type_2_ifthenelsereturn<Phase, false, true, false, A, B> { |
|---|
| 170 | typedef A type; |
|---|
| 171 | }; |
|---|
| 172 | |
|---|
| 173 | // neither can be converted. Then we drop the potential references, and |
|---|
| 174 | // try again |
|---|
| 175 | template<class A, class B> |
|---|
| 176 | struct return_type_2_ifthenelsereturn<1, false, false, false, A, B> { |
|---|
| 177 | // it is safe to add const, since the result will be an rvalue and thus |
|---|
| 178 | // const anyway. The const are needed eg. if the types |
|---|
| 179 | // are 'const int*' and 'void *'. The remaining type should be 'const void*' |
|---|
| 180 | typedef const typename boost::remove_reference<A>::type plainA; |
|---|
| 181 | typedef const typename boost::remove_reference<B>::type plainB; |
|---|
| 182 | // TODO: Add support for volatile ? |
|---|
| 183 | |
|---|
| 184 | typedef typename |
|---|
| 185 | return_type_2_ifthenelsereturn< |
|---|
| 186 | 2, |
|---|
| 187 | boost::is_convertible<plainA,plainB>::value, |
|---|
| 188 | boost::is_convertible<plainB,plainA>::value, |
|---|
| 189 | boost::is_same<plainA,plainB>::value, |
|---|
| 190 | plainA, |
|---|
| 191 | plainB>::type type; |
|---|
| 192 | }; |
|---|
| 193 | |
|---|
| 194 | // PHASE 6:2 |
|---|
| 195 | template<class A, class B> |
|---|
| 196 | struct return_type_2_ifthenelsereturn<2, false, false, false, A, B> { |
|---|
| 197 | typedef |
|---|
| 198 | detail::return_type_deduction_failure<return_type_2_ifthenelsereturn> type; |
|---|
| 199 | // types_do_not_match_in_conditional_expression |
|---|
| 200 | }; |
|---|
| 201 | |
|---|
| 202 | |
|---|
| 203 | |
|---|
| 204 | // PHASE 5: now we know that types are not arithmetic. |
|---|
| 205 | template<class A, class B> |
|---|
| 206 | struct non_numeric_types { |
|---|
| 207 | typedef typename |
|---|
| 208 | return_type_2_ifthenelsereturn< |
|---|
| 209 | 1, // phase 1 |
|---|
| 210 | is_convertible<A,B>::value, |
|---|
| 211 | is_convertible<B,A>::value, |
|---|
| 212 | is_same<A,B>::value, |
|---|
| 213 | A, |
|---|
| 214 | B>::type type; |
|---|
| 215 | }; |
|---|
| 216 | |
|---|
| 217 | // PHASE 4 : |
|---|
| 218 | // the base case covers arithmetic types with differing promote codes |
|---|
| 219 | // use the type deduction of arithmetic_actions |
|---|
| 220 | template<int CodeA, int CodeB, class A, class B> |
|---|
| 221 | struct arithmetic_or_not { |
|---|
| 222 | typedef typename |
|---|
| 223 | return_type_2<arithmetic_action<plus_action>, A, B>::type type; |
|---|
| 224 | // plus_action is just a random pick, has to be a concrete instance |
|---|
| 225 | }; |
|---|
| 226 | |
|---|
| 227 | // this case covers the case of artihmetic types with the same promote codes. |
|---|
| 228 | // non numeric deduction is used since e.g. integral promotion is not |
|---|
| 229 | // performed with operator ?: |
|---|
| 230 | template<int CodeA, class A, class B> |
|---|
| 231 | struct arithmetic_or_not<CodeA, CodeA, A, B> { |
|---|
| 232 | typedef typename non_numeric_types<A, B>::type type; |
|---|
| 233 | }; |
|---|
| 234 | |
|---|
| 235 | // if either A or B has promote code -1 it is not an arithmetic type |
|---|
| 236 | template<class A, class B> |
|---|
| 237 | struct arithmetic_or_not <-1, -1, A, B> { |
|---|
| 238 | typedef typename non_numeric_types<A, B>::type type; |
|---|
| 239 | }; |
|---|
| 240 | template<int CodeB, class A, class B> |
|---|
| 241 | struct arithmetic_or_not <-1, CodeB, A, B> { |
|---|
| 242 | typedef typename non_numeric_types<A, B>::type type; |
|---|
| 243 | }; |
|---|
| 244 | template<int CodeA, class A, class B> |
|---|
| 245 | struct arithmetic_or_not <CodeA, -1, A, B> { |
|---|
| 246 | typedef typename non_numeric_types<A, B>::type type; |
|---|
| 247 | }; |
|---|
| 248 | |
|---|
| 249 | |
|---|
| 250 | |
|---|
| 251 | |
|---|
| 252 | // PHASE 3 : Are the types same? |
|---|
| 253 | // No, check if they are arithmetic or not |
|---|
| 254 | template <class A, class B> |
|---|
| 255 | struct same_or_not { |
|---|
| 256 | typedef typename detail::remove_reference_and_cv<A>::type plainA; |
|---|
| 257 | typedef typename detail::remove_reference_and_cv<B>::type plainB; |
|---|
| 258 | |
|---|
| 259 | typedef typename |
|---|
| 260 | arithmetic_or_not< |
|---|
| 261 | detail::promote_code<plainA>::value, |
|---|
| 262 | detail::promote_code<plainB>::value, |
|---|
| 263 | A, |
|---|
| 264 | B>::type type; |
|---|
| 265 | }; |
|---|
| 266 | // Yes, clear. |
|---|
| 267 | template <class A> struct same_or_not<A, A> { |
|---|
| 268 | typedef A type; |
|---|
| 269 | }; |
|---|
| 270 | |
|---|
| 271 | } // detail |
|---|
| 272 | |
|---|
| 273 | // PHASE 2 : Perform first the potential array_to_pointer conversion |
|---|
| 274 | template<class A, class B> |
|---|
| 275 | struct return_type_2<other_action<ifthenelsereturn_action>, A, B> { |
|---|
| 276 | |
|---|
| 277 | typedef typename detail::array_to_pointer<A>::type A1; |
|---|
| 278 | typedef typename detail::array_to_pointer<B>::type B1; |
|---|
| 279 | |
|---|
| 280 | typedef typename |
|---|
| 281 | boost::add_const<typename detail::same_or_not<A1, B1>::type>::type type; |
|---|
| 282 | }; |
|---|
| 283 | |
|---|
| 284 | // PHASE 1 : Deduction is based on the second and third operand |
|---|
| 285 | |
|---|
| 286 | |
|---|
| 287 | // return type specialization for conditional expression ends ----------- |
|---|
| 288 | |
|---|
| 289 | |
|---|
| 290 | // Specialization of lambda_functor_base for if_then_else_return. |
|---|
| 291 | template<class Args> |
|---|
| 292 | class |
|---|
| 293 | lambda_functor_base<other_action<ifthenelsereturn_action>, Args> { |
|---|
| 294 | public: |
|---|
| 295 | Args args; |
|---|
| 296 | |
|---|
| 297 | template <class SigArgs> struct sig { |
|---|
| 298 | private: |
|---|
| 299 | typedef typename detail::nth_return_type_sig<1, Args, SigArgs>::type ret1; |
|---|
| 300 | typedef typename detail::nth_return_type_sig<2, Args, SigArgs>::type ret2; |
|---|
| 301 | public: |
|---|
| 302 | typedef typename return_type_2< |
|---|
| 303 | other_action<ifthenelsereturn_action>, ret1, ret2 |
|---|
| 304 | >::type type; |
|---|
| 305 | }; |
|---|
| 306 | |
|---|
| 307 | public: |
|---|
| 308 | explicit lambda_functor_base(const Args& a) : args(a) {} |
|---|
| 309 | |
|---|
| 310 | template<class RET, CALL_TEMPLATE_ARGS> |
|---|
| 311 | RET call(CALL_FORMAL_ARGS) const { |
|---|
| 312 | return (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) ? |
|---|
| 313 | detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS) |
|---|
| 314 | : |
|---|
| 315 | detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS); |
|---|
| 316 | } |
|---|
| 317 | }; |
|---|
| 318 | |
|---|
| 319 | // The code below is from Joel de Guzman, some name changes etc. |
|---|
| 320 | // has been made. |
|---|
| 321 | |
|---|
| 322 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 323 | // |
|---|
| 324 | // if_then_else_composite |
|---|
| 325 | // |
|---|
| 326 | // This composite has two (2) forms: |
|---|
| 327 | // |
|---|
| 328 | // if_(condition) |
|---|
| 329 | // [ |
|---|
| 330 | // statement |
|---|
| 331 | // ] |
|---|
| 332 | // |
|---|
| 333 | // and |
|---|
| 334 | // |
|---|
| 335 | // if_(condition) |
|---|
| 336 | // [ |
|---|
| 337 | // true_statement |
|---|
| 338 | // ] |
|---|
| 339 | // .else_ |
|---|
| 340 | // [ |
|---|
| 341 | // false_statement |
|---|
| 342 | // ] |
|---|
| 343 | // |
|---|
| 344 | // where condition is an lambda_functor that evaluates to bool. If condition |
|---|
| 345 | // is true, the true_statement (again an lambda_functor) is executed |
|---|
| 346 | // otherwise, the false_statement (another lambda_functor) is executed. The |
|---|
| 347 | // result type of this is void. Note the trailing underscore after |
|---|
| 348 | // if_ and the the leading dot and the trailing underscore before |
|---|
| 349 | // and after .else_. |
|---|
| 350 | // |
|---|
| 351 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 352 | template <typename CondT, typename ThenT, typename ElseT> |
|---|
| 353 | struct if_then_else_composite { |
|---|
| 354 | |
|---|
| 355 | typedef if_then_else_composite<CondT, ThenT, ElseT> self_t; |
|---|
| 356 | |
|---|
| 357 | template <class SigArgs> |
|---|
| 358 | struct sig { typedef void type; }; |
|---|
| 359 | |
|---|
| 360 | if_then_else_composite( |
|---|
| 361 | CondT const& cond_, |
|---|
| 362 | ThenT const& then_, |
|---|
| 363 | ElseT const& else__) |
|---|
| 364 | : cond(cond_), then(then_), else_(else__) {} |
|---|
| 365 | |
|---|
| 366 | template <class Ret, CALL_TEMPLATE_ARGS> |
|---|
| 367 | Ret call(CALL_FORMAL_ARGS) const |
|---|
| 368 | { |
|---|
| 369 | if (cond.internal_call(CALL_ACTUAL_ARGS)) |
|---|
| 370 | then.internal_call(CALL_ACTUAL_ARGS); |
|---|
| 371 | else |
|---|
| 372 | else_.internal_call(CALL_ACTUAL_ARGS); |
|---|
| 373 | } |
|---|
| 374 | |
|---|
| 375 | CondT cond; ThenT then; ElseT else_; // lambda_functors |
|---|
| 376 | }; |
|---|
| 377 | |
|---|
| 378 | ////////////////////////////////// |
|---|
| 379 | template <typename CondT, typename ThenT> |
|---|
| 380 | struct else_gen { |
|---|
| 381 | |
|---|
| 382 | else_gen(CondT const& cond_, ThenT const& then_) |
|---|
| 383 | : cond(cond_), then(then_) {} |
|---|
| 384 | |
|---|
| 385 | template <typename ElseT> |
|---|
| 386 | lambda_functor<if_then_else_composite<CondT, ThenT, |
|---|
| 387 | typename as_lambda_functor<ElseT>::type> > |
|---|
| 388 | operator[](ElseT const& else_) |
|---|
| 389 | { |
|---|
| 390 | typedef if_then_else_composite<CondT, ThenT, |
|---|
| 391 | typename as_lambda_functor<ElseT>::type> |
|---|
| 392 | result; |
|---|
| 393 | |
|---|
| 394 | return result(cond, then, to_lambda_functor(else_)); |
|---|
| 395 | } |
|---|
| 396 | |
|---|
| 397 | CondT cond; ThenT then; |
|---|
| 398 | }; |
|---|
| 399 | |
|---|
| 400 | ////////////////////////////////// |
|---|
| 401 | template <typename CondT, typename ThenT> |
|---|
| 402 | struct if_then_composite { |
|---|
| 403 | |
|---|
| 404 | template <class SigArgs> |
|---|
| 405 | struct sig { typedef void type; }; |
|---|
| 406 | |
|---|
| 407 | if_then_composite(CondT const& cond_, ThenT const& then_) |
|---|
| 408 | : cond(cond_), then(then_), else_(cond, then) {} |
|---|
| 409 | |
|---|
| 410 | template <class Ret, CALL_TEMPLATE_ARGS> |
|---|
| 411 | Ret call(CALL_FORMAL_ARGS) const |
|---|
| 412 | { |
|---|
| 413 | if (cond.internal_call(CALL_ACTUAL_ARGS)) |
|---|
| 414 | then.internal_call(CALL_ACTUAL_ARGS); |
|---|
| 415 | } |
|---|
| 416 | |
|---|
| 417 | CondT cond; ThenT then; // lambda_functors |
|---|
| 418 | else_gen<CondT, ThenT> else_; |
|---|
| 419 | }; |
|---|
| 420 | |
|---|
| 421 | ////////////////////////////////// |
|---|
| 422 | template <typename CondT> |
|---|
| 423 | struct if_gen { |
|---|
| 424 | |
|---|
| 425 | if_gen(CondT const& cond_) |
|---|
| 426 | : cond(cond_) {} |
|---|
| 427 | |
|---|
| 428 | template <typename ThenT> |
|---|
| 429 | lambda_functor<if_then_composite< |
|---|
| 430 | typename as_lambda_functor<CondT>::type, |
|---|
| 431 | typename as_lambda_functor<ThenT>::type> > |
|---|
| 432 | operator[](ThenT const& then) const |
|---|
| 433 | { |
|---|
| 434 | typedef if_then_composite< |
|---|
| 435 | typename as_lambda_functor<CondT>::type, |
|---|
| 436 | typename as_lambda_functor<ThenT>::type> |
|---|
| 437 | result; |
|---|
| 438 | |
|---|
| 439 | return result( |
|---|
| 440 | to_lambda_functor(cond), |
|---|
| 441 | to_lambda_functor(then)); |
|---|
| 442 | } |
|---|
| 443 | |
|---|
| 444 | CondT cond; |
|---|
| 445 | }; |
|---|
| 446 | |
|---|
| 447 | ////////////////////////////////// |
|---|
| 448 | template <typename CondT> |
|---|
| 449 | inline if_gen<CondT> |
|---|
| 450 | if_(CondT const& cond) |
|---|
| 451 | { |
|---|
| 452 | return if_gen<CondT>(cond); |
|---|
| 453 | } |
|---|
| 454 | |
|---|
| 455 | |
|---|
| 456 | |
|---|
| 457 | } // lambda |
|---|
| 458 | } // boost |
|---|
| 459 | |
|---|
| 460 | #endif // BOOST_LAMBDA_IF_HPP |
|---|
| 461 | |
|---|
| 462 | |
|---|