| 1 | // Copyright 2004 The Trustees of Indiana University. | 
|---|
| 2 |  | 
|---|
| 3 | // Use, modification and distribution is subject to the Boost Software | 
|---|
| 4 | // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at | 
|---|
| 5 | // http://www.boost.org/LICENSE_1_0.txt) | 
|---|
| 6 |  | 
|---|
| 7 | //  Authors: Douglas Gregor | 
|---|
| 8 | //           Andrew Lumsdaine | 
|---|
| 9 | #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP | 
|---|
| 10 | #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP | 
|---|
| 11 |  | 
|---|
| 12 | #include <boost/graph/betweenness_centrality.hpp> | 
|---|
| 13 | #include <boost/graph/graph_traits.hpp> | 
|---|
| 14 | #include <boost/pending/indirect_cmp.hpp> | 
|---|
| 15 | #include <algorithm> | 
|---|
| 16 | #include <vector> | 
|---|
| 17 | #include <boost/property_map.hpp> | 
|---|
| 18 |  | 
|---|
| 19 | namespace boost { | 
|---|
| 20 |  | 
|---|
| 21 | /** Threshold termination function for the betweenness centrality | 
|---|
| 22 |  * clustering algorithm. | 
|---|
| 23 |  */ | 
|---|
| 24 | template<typename T> | 
|---|
| 25 | struct bc_clustering_threshold | 
|---|
| 26 | { | 
|---|
| 27 |   typedef T centrality_type; | 
|---|
| 28 |  | 
|---|
| 29 |   /// Terminate clustering when maximum absolute edge centrality is | 
|---|
| 30 |   /// below the given threshold. | 
|---|
| 31 |   explicit bc_clustering_threshold(T threshold)  | 
|---|
| 32 |     : threshold(threshold), dividend(1.0) {} | 
|---|
| 33 |    | 
|---|
| 34 |   /** | 
|---|
| 35 |    * Terminate clustering when the maximum edge centrality is below | 
|---|
| 36 |    * the given threshold. | 
|---|
| 37 |    * | 
|---|
| 38 |    * @param threshold the threshold value | 
|---|
| 39 |    * | 
|---|
| 40 |    * @param g the graph on which the threshold will be calculated | 
|---|
| 41 |    * | 
|---|
| 42 |    * @param normalize when true, the threshold is compared against the | 
|---|
| 43 |    * normalized edge centrality based on the input graph; otherwise, | 
|---|
| 44 |    * the threshold is compared against the absolute edge centrality. | 
|---|
| 45 |    */ | 
|---|
| 46 |   template<typename Graph> | 
|---|
| 47 |   bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true) | 
|---|
| 48 |     : threshold(threshold), dividend(1.0) | 
|---|
| 49 |   { | 
|---|
| 50 |     if (normalize) { | 
|---|
| 51 |       typename graph_traits<Graph>::vertices_size_type n = num_vertices(g); | 
|---|
| 52 |       dividend = T((n - 1) * (n - 2)) / T(2); | 
|---|
| 53 |     } | 
|---|
| 54 |   } | 
|---|
| 55 |  | 
|---|
| 56 |   /** Returns true when the given maximum edge centrality (potentially | 
|---|
| 57 |    * normalized) falls below the threshold. | 
|---|
| 58 |    */ | 
|---|
| 59 |   template<typename Graph, typename Edge> | 
|---|
| 60 |   bool operator()(T max_centrality, Edge, const Graph&) | 
|---|
| 61 |   { | 
|---|
| 62 |     return (max_centrality / dividend) < threshold; | 
|---|
| 63 |   } | 
|---|
| 64 |  | 
|---|
| 65 |  protected: | 
|---|
| 66 |   T threshold; | 
|---|
| 67 |   T dividend; | 
|---|
| 68 | }; | 
|---|
| 69 |  | 
|---|
| 70 | /** Graph clustering based on edge betweenness centrality. | 
|---|
| 71 |  *  | 
|---|
| 72 |  * This algorithm implements graph clustering based on edge | 
|---|
| 73 |  * betweenness centrality. It is an iterative algorithm, where in each | 
|---|
| 74 |  * step it compute the edge betweenness centrality (via @ref | 
|---|
| 75 |  * brandes_betweenness_centrality) and removes the edge with the | 
|---|
| 76 |  * maximum betweenness centrality. The @p done function object | 
|---|
| 77 |  * determines when the algorithm terminates (the edge found when the | 
|---|
| 78 |  * algorithm terminates will not be removed). | 
|---|
| 79 |  * | 
|---|
| 80 |  * @param g The graph on which clustering will be performed. The type | 
|---|
| 81 |  * of this parameter (@c MutableGraph) must be a model of the | 
|---|
| 82 |  * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph | 
|---|
| 83 |  * concepts. | 
|---|
| 84 |  * | 
|---|
| 85 |  * @param done The function object that indicates termination of the | 
|---|
| 86 |  * algorithm. It must be a ternary function object thats accepts the | 
|---|
| 87 |  * maximum centrality, the descriptor of the edge that will be | 
|---|
| 88 |  * removed, and the graph @p g. | 
|---|
| 89 |  * | 
|---|
| 90 |  * @param edge_centrality (UTIL/OUT) The property map that will store | 
|---|
| 91 |  * the betweenness centrality for each edge. When the algorithm | 
|---|
| 92 |  * terminates, it will contain the edge centralities for the | 
|---|
| 93 |  * graph. The type of this property map must model the | 
|---|
| 94 |  * ReadWritePropertyMap concept. Defaults to an @c | 
|---|
| 95 |  * iterator_property_map whose value type is  | 
|---|
| 96 |  * @c Done::centrality_type and using @c get(edge_index, g) for the  | 
|---|
| 97 |  * index map. | 
|---|
| 98 |  * | 
|---|
| 99 |  * @param vertex_index (IN) The property map that maps vertices to | 
|---|
| 100 |  * indices in the range @c [0, num_vertices(g)). This type of this | 
|---|
| 101 |  * property map must model the ReadablePropertyMap concept and its | 
|---|
| 102 |  * value type must be an integral type. Defaults to  | 
|---|
| 103 |  * @c get(vertex_index, g). | 
|---|
| 104 |  */ | 
|---|
| 105 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap, | 
|---|
| 106 |          typename VertexIndexMap> | 
|---|
| 107 | void  | 
|---|
| 108 | betweenness_centrality_clustering(MutableGraph& g, Done done, | 
|---|
| 109 |                                   EdgeCentralityMap edge_centrality, | 
|---|
| 110 |                                   VertexIndexMap vertex_index) | 
|---|
| 111 | { | 
|---|
| 112 |   typedef typename property_traits<EdgeCentralityMap>::value_type | 
|---|
| 113 |     centrality_type; | 
|---|
| 114 |   typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator; | 
|---|
| 115 |   typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor; | 
|---|
| 116 |   typedef typename graph_traits<MutableGraph>::vertices_size_type | 
|---|
| 117 |     vertices_size_type; | 
|---|
| 118 |  | 
|---|
| 119 |   if (edges(g).first == edges(g).second) return; | 
|---|
| 120 |  | 
|---|
| 121 |   // Function object that compares the centrality of edges | 
|---|
| 122 |   indirect_cmp<EdgeCentralityMap, std::less<centrality_type> >  | 
|---|
| 123 |     cmp(edge_centrality); | 
|---|
| 124 |  | 
|---|
| 125 |   bool is_done; | 
|---|
| 126 |   do { | 
|---|
| 127 |     brandes_betweenness_centrality(g,  | 
|---|
| 128 |                                    edge_centrality_map(edge_centrality) | 
|---|
| 129 |                                    .vertex_index_map(vertex_index)); | 
|---|
| 130 |     edge_descriptor e = *max_element(edges(g).first, edges(g).second, cmp); | 
|---|
| 131 |     is_done = done(get(edge_centrality, e), e, g); | 
|---|
| 132 |     if (!is_done) remove_edge(e, g); | 
|---|
| 133 |   } while (!is_done && edges(g).first != edges(g).second); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | /** | 
|---|
| 137 |  * \overload | 
|---|
| 138 |  */  | 
|---|
| 139 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap> | 
|---|
| 140 | void  | 
|---|
| 141 | betweenness_centrality_clustering(MutableGraph& g, Done done, | 
|---|
| 142 |                                   EdgeCentralityMap edge_centrality) | 
|---|
| 143 | { | 
|---|
| 144 |   betweenness_centrality_clustering(g, done, edge_centrality, | 
|---|
| 145 |                                     get(vertex_index, g)); | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | /** | 
|---|
| 149 |  * \overload | 
|---|
| 150 |  */  | 
|---|
| 151 | template<typename MutableGraph, typename Done> | 
|---|
| 152 | void | 
|---|
| 153 | betweenness_centrality_clustering(MutableGraph& g, Done done) | 
|---|
| 154 | { | 
|---|
| 155 |   typedef typename Done::centrality_type centrality_type; | 
|---|
| 156 |   std::vector<centrality_type> edge_centrality(num_edges(g)); | 
|---|
| 157 |   betweenness_centrality_clustering(g, done,  | 
|---|
| 158 |     make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)), | 
|---|
| 159 |     get(vertex_index, g)); | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | } // end namespace boost | 
|---|
| 163 |  | 
|---|
| 164 | #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP | 
|---|