[12] | 1 | // Copyright 2004 The Trustees of Indiana University. |
---|
| 2 | |
---|
| 3 | // Use, modification and distribution is subject to the Boost Software |
---|
| 4 | // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
---|
| 5 | // http://www.boost.org/LICENSE_1_0.txt) |
---|
| 6 | |
---|
| 7 | // Authors: Douglas Gregor |
---|
| 8 | // Andrew Lumsdaine |
---|
| 9 | #ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|
| 10 | #define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|
| 11 | |
---|
| 12 | #include <boost/graph/betweenness_centrality.hpp> |
---|
| 13 | #include <boost/graph/graph_traits.hpp> |
---|
| 14 | #include <boost/pending/indirect_cmp.hpp> |
---|
| 15 | #include <algorithm> |
---|
| 16 | #include <vector> |
---|
| 17 | #include <boost/property_map.hpp> |
---|
| 18 | |
---|
| 19 | namespace boost { |
---|
| 20 | |
---|
| 21 | /** Threshold termination function for the betweenness centrality |
---|
| 22 | * clustering algorithm. |
---|
| 23 | */ |
---|
| 24 | template<typename T> |
---|
| 25 | struct bc_clustering_threshold |
---|
| 26 | { |
---|
| 27 | typedef T centrality_type; |
---|
| 28 | |
---|
| 29 | /// Terminate clustering when maximum absolute edge centrality is |
---|
| 30 | /// below the given threshold. |
---|
| 31 | explicit bc_clustering_threshold(T threshold) |
---|
| 32 | : threshold(threshold), dividend(1.0) {} |
---|
| 33 | |
---|
| 34 | /** |
---|
| 35 | * Terminate clustering when the maximum edge centrality is below |
---|
| 36 | * the given threshold. |
---|
| 37 | * |
---|
| 38 | * @param threshold the threshold value |
---|
| 39 | * |
---|
| 40 | * @param g the graph on which the threshold will be calculated |
---|
| 41 | * |
---|
| 42 | * @param normalize when true, the threshold is compared against the |
---|
| 43 | * normalized edge centrality based on the input graph; otherwise, |
---|
| 44 | * the threshold is compared against the absolute edge centrality. |
---|
| 45 | */ |
---|
| 46 | template<typename Graph> |
---|
| 47 | bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true) |
---|
| 48 | : threshold(threshold), dividend(1.0) |
---|
| 49 | { |
---|
| 50 | if (normalize) { |
---|
| 51 | typename graph_traits<Graph>::vertices_size_type n = num_vertices(g); |
---|
| 52 | dividend = T((n - 1) * (n - 2)) / T(2); |
---|
| 53 | } |
---|
| 54 | } |
---|
| 55 | |
---|
| 56 | /** Returns true when the given maximum edge centrality (potentially |
---|
| 57 | * normalized) falls below the threshold. |
---|
| 58 | */ |
---|
| 59 | template<typename Graph, typename Edge> |
---|
| 60 | bool operator()(T max_centrality, Edge, const Graph&) |
---|
| 61 | { |
---|
| 62 | return (max_centrality / dividend) < threshold; |
---|
| 63 | } |
---|
| 64 | |
---|
| 65 | protected: |
---|
| 66 | T threshold; |
---|
| 67 | T dividend; |
---|
| 68 | }; |
---|
| 69 | |
---|
| 70 | /** Graph clustering based on edge betweenness centrality. |
---|
| 71 | * |
---|
| 72 | * This algorithm implements graph clustering based on edge |
---|
| 73 | * betweenness centrality. It is an iterative algorithm, where in each |
---|
| 74 | * step it compute the edge betweenness centrality (via @ref |
---|
| 75 | * brandes_betweenness_centrality) and removes the edge with the |
---|
| 76 | * maximum betweenness centrality. The @p done function object |
---|
| 77 | * determines when the algorithm terminates (the edge found when the |
---|
| 78 | * algorithm terminates will not be removed). |
---|
| 79 | * |
---|
| 80 | * @param g The graph on which clustering will be performed. The type |
---|
| 81 | * of this parameter (@c MutableGraph) must be a model of the |
---|
| 82 | * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph |
---|
| 83 | * concepts. |
---|
| 84 | * |
---|
| 85 | * @param done The function object that indicates termination of the |
---|
| 86 | * algorithm. It must be a ternary function object thats accepts the |
---|
| 87 | * maximum centrality, the descriptor of the edge that will be |
---|
| 88 | * removed, and the graph @p g. |
---|
| 89 | * |
---|
| 90 | * @param edge_centrality (UTIL/OUT) The property map that will store |
---|
| 91 | * the betweenness centrality for each edge. When the algorithm |
---|
| 92 | * terminates, it will contain the edge centralities for the |
---|
| 93 | * graph. The type of this property map must model the |
---|
| 94 | * ReadWritePropertyMap concept. Defaults to an @c |
---|
| 95 | * iterator_property_map whose value type is |
---|
| 96 | * @c Done::centrality_type and using @c get(edge_index, g) for the |
---|
| 97 | * index map. |
---|
| 98 | * |
---|
| 99 | * @param vertex_index (IN) The property map that maps vertices to |
---|
| 100 | * indices in the range @c [0, num_vertices(g)). This type of this |
---|
| 101 | * property map must model the ReadablePropertyMap concept and its |
---|
| 102 | * value type must be an integral type. Defaults to |
---|
| 103 | * @c get(vertex_index, g). |
---|
| 104 | */ |
---|
| 105 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap, |
---|
| 106 | typename VertexIndexMap> |
---|
| 107 | void |
---|
| 108 | betweenness_centrality_clustering(MutableGraph& g, Done done, |
---|
| 109 | EdgeCentralityMap edge_centrality, |
---|
| 110 | VertexIndexMap vertex_index) |
---|
| 111 | { |
---|
| 112 | typedef typename property_traits<EdgeCentralityMap>::value_type |
---|
| 113 | centrality_type; |
---|
| 114 | typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator; |
---|
| 115 | typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor; |
---|
| 116 | typedef typename graph_traits<MutableGraph>::vertices_size_type |
---|
| 117 | vertices_size_type; |
---|
| 118 | |
---|
| 119 | if (edges(g).first == edges(g).second) return; |
---|
| 120 | |
---|
| 121 | // Function object that compares the centrality of edges |
---|
| 122 | indirect_cmp<EdgeCentralityMap, std::less<centrality_type> > |
---|
| 123 | cmp(edge_centrality); |
---|
| 124 | |
---|
| 125 | bool is_done; |
---|
| 126 | do { |
---|
| 127 | brandes_betweenness_centrality(g, |
---|
| 128 | edge_centrality_map(edge_centrality) |
---|
| 129 | .vertex_index_map(vertex_index)); |
---|
| 130 | edge_descriptor e = *max_element(edges(g).first, edges(g).second, cmp); |
---|
| 131 | is_done = done(get(edge_centrality, e), e, g); |
---|
| 132 | if (!is_done) remove_edge(e, g); |
---|
| 133 | } while (!is_done && edges(g).first != edges(g).second); |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | /** |
---|
| 137 | * \overload |
---|
| 138 | */ |
---|
| 139 | template<typename MutableGraph, typename Done, typename EdgeCentralityMap> |
---|
| 140 | void |
---|
| 141 | betweenness_centrality_clustering(MutableGraph& g, Done done, |
---|
| 142 | EdgeCentralityMap edge_centrality) |
---|
| 143 | { |
---|
| 144 | betweenness_centrality_clustering(g, done, edge_centrality, |
---|
| 145 | get(vertex_index, g)); |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * \overload |
---|
| 150 | */ |
---|
| 151 | template<typename MutableGraph, typename Done> |
---|
| 152 | void |
---|
| 153 | betweenness_centrality_clustering(MutableGraph& g, Done done) |
---|
| 154 | { |
---|
| 155 | typedef typename Done::centrality_type centrality_type; |
---|
| 156 | std::vector<centrality_type> edge_centrality(num_edges(g)); |
---|
| 157 | betweenness_centrality_clustering(g, done, |
---|
| 158 | make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)), |
---|
| 159 | get(vertex_index, g)); |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | } // end namespace boost |
---|
| 163 | |
---|
| 164 | #endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP |
---|