[1] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | #ifndef __SIMDHelper_H__ |
---|
| 30 | #define __SIMDHelper_H__ |
---|
| 31 | |
---|
| 32 | #include "OgrePrerequisites.h" |
---|
| 33 | #include "OgrePlatformInformation.h" |
---|
| 34 | |
---|
| 35 | // Stack-alignment hackery. |
---|
| 36 | // |
---|
| 37 | // If macro __OGRE_SIMD_ALIGN_STACK defined, means there requests |
---|
| 38 | // special code to ensure stack align to a 16-bytes boundary. |
---|
| 39 | // |
---|
| 40 | // Note: |
---|
| 41 | // This macro can only guarantee callee stack pointer (esp) align |
---|
| 42 | // to a 16-bytes boundary, but not that for frame pointer (ebp). |
---|
| 43 | // Because most compiler might use frame pointer to access to stack |
---|
| 44 | // variables, so you need to wrap those alignment required functions |
---|
| 45 | // with extra function call. |
---|
| 46 | // |
---|
| 47 | #if defined(__INTEL_COMPILER) |
---|
| 48 | // For intel's compiler, simply calling alloca seems to do the right |
---|
| 49 | // thing. The size of the allocated block seems to be irrelevant. |
---|
| 50 | #define __OGRE_SIMD_ALIGN_STACK() _alloca(16) |
---|
| 51 | |
---|
| 52 | #elif OGRE_CPU == OGRE_CPU_X86 && OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
| 53 | // |
---|
| 54 | // Horrible hack to align the stack to a 16-bytes boundary for gcc. |
---|
| 55 | // |
---|
| 56 | // We assume a gcc version >= 2.95 so that |
---|
| 57 | // -mpreferred-stack-boundary works. Otherwise, all bets are |
---|
| 58 | // off. However, -mpreferred-stack-boundary does not create a |
---|
| 59 | // stack alignment, but it only preserves it. Unfortunately, |
---|
| 60 | // since Ogre are designed as a flexibility library, user might |
---|
| 61 | // compile their application with wrong stack alignment, even |
---|
| 62 | // if user taken care with stack alignment, but many versions |
---|
| 63 | // of libc on linux call main() with the wrong initial stack |
---|
| 64 | // alignment the result that the code is now pessimally aligned |
---|
| 65 | // instead of having a 50% chance of being correct. |
---|
| 66 | // |
---|
| 67 | #define __OGRE_SIMD_ALIGN_STACK() \ |
---|
| 68 | { \ |
---|
| 69 | /* Use alloca to allocate some memory on the stack. */ \ |
---|
| 70 | /* This alerts gcc that something funny is going on, */ \ |
---|
| 71 | /* so that it does not omit the frame pointer etc. */ \ |
---|
| 72 | (void)__builtin_alloca(16); \ |
---|
| 73 | /* Now align the stack pointer */ \ |
---|
| 74 | __asm__ __volatile__ ("andl $-16, %esp"); \ |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | #elif defined(_MSC_VER) |
---|
| 78 | // Fortunately, MSVC will align the stack automatically |
---|
| 79 | |
---|
| 80 | #endif |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | // Additional platform-dependent header files and declares. |
---|
| 84 | // |
---|
| 85 | // NOTE: Should be sync with __OGRE_HAVE_SSE macro. |
---|
| 86 | // |
---|
| 87 | |
---|
| 88 | #if OGRE_DOUBLE_PRECISION == 0 && OGRE_CPU == OGRE_CPU_X86 |
---|
| 89 | |
---|
| 90 | #if OGRE_COMPILER == OGRE_COMPILER_MSVC || defined(__INTEL_COMPILER) |
---|
| 91 | #include "OgreNoMemoryMacros.h" |
---|
| 92 | #include <xmmintrin.h> |
---|
| 93 | #include "OgreMemoryMacros.h" |
---|
| 94 | |
---|
| 95 | #elif OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
| 96 | // Don't define ourself version SSE intrinsics if "xmmintrin.h" already included. |
---|
| 97 | // |
---|
| 98 | // Note: gcc in some platform already included "xmmintrin.h" for some reason. |
---|
| 99 | // I pick up macro _XMMINTRIN_H_INCLUDED here which based on the "xmmintrin.h" |
---|
| 100 | // comes with cygwin gcc 3.4.4, guess it should be solved duplicate definition |
---|
| 101 | // problem on gcc for x86. |
---|
| 102 | // |
---|
| 103 | #if !defined(_XMMINTRIN_H_INCLUDED) |
---|
| 104 | |
---|
| 105 | // Simulate VC/ICC intrinsics. Only used intrinsics are declared here. |
---|
| 106 | |
---|
| 107 | typedef float __m128 __attribute__ ((mode(V4SF),aligned(16))); |
---|
| 108 | typedef int __m64 __attribute__ ((mode(V2SI))); |
---|
| 109 | |
---|
| 110 | // Macro for declare intrinsic routines always inline even if in debug build |
---|
| 111 | #define __ALWAYS_INLINE FORCEINLINE __attribute__ ((__always_inline__)) |
---|
| 112 | |
---|
| 113 | // Shuffle instruction must be declare as macro |
---|
| 114 | |
---|
| 115 | #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ |
---|
| 116 | (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) |
---|
| 117 | |
---|
| 118 | #define _mm_shuffle_ps(a, b, imm8) __extension__ \ |
---|
| 119 | ({ \ |
---|
| 120 | __m128 result; \ |
---|
| 121 | __asm__("shufps %3, %2, %0" : "=x" (result) : "0" (a), "xm" (b), "N" (imm8)); \ |
---|
| 122 | result; \ |
---|
| 123 | }) |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | // Load/store instructions |
---|
| 127 | |
---|
| 128 | #define __MM_DECL_LD(name, instruction, type) \ |
---|
| 129 | static __ALWAYS_INLINE __m128 _mm_##name(const type *addr) \ |
---|
| 130 | { \ |
---|
| 131 | __m128 result; \ |
---|
| 132 | __asm__( #instruction " %1, %0" : "=x" (result) : "m" (*addr)); \ |
---|
| 133 | return result; \ |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | #define __MM_DECL_LD2(name, instruction, type) \ |
---|
| 137 | static __ALWAYS_INLINE __m128 _mm_##name(__m128 val, const type *addr) \ |
---|
| 138 | { \ |
---|
| 139 | __m128 result; \ |
---|
| 140 | __asm__( #instruction " %2, %0" : "=x" (result) : "0"(val), "m" (*addr)); \ |
---|
| 141 | return result; \ |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | #define __MM_DECL_ST(name, instruction, type) \ |
---|
| 145 | static __ALWAYS_INLINE void _mm_##name(type *addr, __m128 val) \ |
---|
| 146 | { \ |
---|
| 147 | __asm__( #instruction " %1, %0" : "=m" (*addr) : "x" (val)); \ |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | __MM_DECL_LD(loadu_ps, movups, float) |
---|
| 151 | __MM_DECL_ST(storeu_ps, movups, float) |
---|
| 152 | |
---|
| 153 | __MM_DECL_LD(load_ss, movss, float) |
---|
| 154 | __MM_DECL_ST(store_ss, movss, float) |
---|
| 155 | |
---|
| 156 | __MM_DECL_ST(storel_pi, movlps, __m64) |
---|
| 157 | __MM_DECL_ST(storeh_pi, movhps, __m64) |
---|
| 158 | __MM_DECL_LD2(loadl_pi, movlps, __m64) |
---|
| 159 | __MM_DECL_LD2(loadh_pi, movhps, __m64) |
---|
| 160 | |
---|
| 161 | #undef __MM_DECL_LD |
---|
| 162 | #undef __MM_DECL_LD2 |
---|
| 163 | #undef __MM_DECL_ST |
---|
| 164 | |
---|
| 165 | // Two operand instructions |
---|
| 166 | |
---|
| 167 | #define __MM_DECL_OP2(name, instruction, constraint) \ |
---|
| 168 | static __ALWAYS_INLINE __m128 _mm_##name(__m128 a, __m128 b) \ |
---|
| 169 | { \ |
---|
| 170 | __m128 result; \ |
---|
| 171 | __asm__( #instruction " %2, %0" : "=x" (result) : "0" (a), #constraint (b)); \ |
---|
| 172 | return result; \ |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | __MM_DECL_OP2(add_ps, addps, xm) |
---|
| 176 | __MM_DECL_OP2(add_ss, addss, xm) |
---|
| 177 | __MM_DECL_OP2(sub_ps, subps, xm) |
---|
| 178 | __MM_DECL_OP2(sub_ss, subss, xm) |
---|
| 179 | __MM_DECL_OP2(mul_ps, mulps, xm) |
---|
| 180 | __MM_DECL_OP2(mul_ss, mulss, xm) |
---|
| 181 | |
---|
| 182 | __MM_DECL_OP2(xor_ps, xorps, xm) |
---|
| 183 | |
---|
| 184 | __MM_DECL_OP2(unpacklo_ps, unpcklps, xm) |
---|
| 185 | __MM_DECL_OP2(unpackhi_ps, unpckhps, xm) |
---|
| 186 | |
---|
| 187 | __MM_DECL_OP2(movehl_ps, movhlps, x) |
---|
| 188 | __MM_DECL_OP2(movelh_ps, movlhps, x) |
---|
| 189 | |
---|
| 190 | __MM_DECL_OP2(cmpnle_ps, cmpnleps, xm) |
---|
| 191 | |
---|
| 192 | #undef __MM_DECL_OP2 |
---|
| 193 | |
---|
| 194 | // Other used instructions |
---|
| 195 | |
---|
| 196 | static __ALWAYS_INLINE __m128 _mm_load_ps1(const float *addr) |
---|
| 197 | { |
---|
| 198 | __m128 tmp = _mm_load_ss(addr); |
---|
| 199 | return _mm_shuffle_ps(tmp, tmp, 0); |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | static __ALWAYS_INLINE __m128 _mm_setzero_ps(void) |
---|
| 203 | { |
---|
| 204 | __m128 result; |
---|
| 205 | __asm__("xorps %0, %0" : "=x" (result)); |
---|
| 206 | return result; |
---|
| 207 | } |
---|
| 208 | |
---|
| 209 | static __ALWAYS_INLINE __m128 _mm_rsqrt_ps(__m128 val) |
---|
| 210 | { |
---|
| 211 | __m128 result; |
---|
| 212 | __asm__("rsqrtps %1, %0" : "=x" (result) : "xm" (val)); |
---|
| 213 | //__asm__("rsqrtps %0, %0" : "=x" (result) : "0" (val)); |
---|
| 214 | return result; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | static __ALWAYS_INLINE int _mm_movemask_ps(__m128 val) |
---|
| 218 | { |
---|
| 219 | int result; |
---|
| 220 | __asm__("movmskps %1, %0" : "=r" (result) : "x" (val)); |
---|
| 221 | return result; |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | #endif // !defined(_XMMINTRIN_H_INCLUDED) |
---|
| 225 | |
---|
| 226 | #endif // OGRE_COMPILER == OGRE_COMPILER_GNUC |
---|
| 227 | |
---|
| 228 | #endif // OGRE_DOUBLE_PRECISION == 0 && OGRE_CPU == OGRE_CPU_X86 |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | //--------------------------------------------------------------------- |
---|
| 233 | // SIMD macros and helpers |
---|
| 234 | //--------------------------------------------------------------------- |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | namespace Ogre { |
---|
| 238 | |
---|
| 239 | #if __OGRE_HAVE_SSE |
---|
| 240 | |
---|
| 241 | /** Macro __MM_RSQRT_PS calculate square root, which should be used for |
---|
| 242 | normalise normals only. It might be use NewtonRaphson reciprocal square |
---|
| 243 | root for high precision, or use SSE rsqrt instruction directly, based |
---|
| 244 | on profile to pick up perfect one. |
---|
| 245 | @note: |
---|
| 246 | Prefer to never use NewtonRaphson reciprocal square root at all, since |
---|
| 247 | speed test indicate performance loss 10% for unrolled version, and loss |
---|
| 248 | %25 for general version (P4 3.0G HT). A slight loss in precision not |
---|
| 249 | that important in case of normalise normals. |
---|
| 250 | */ |
---|
| 251 | #if 1 |
---|
| 252 | #define __MM_RSQRT_PS(x) _mm_rsqrt_ps(x) |
---|
| 253 | #else |
---|
| 254 | #define __MM_RSQRT_PS(x) __mm_rsqrt_nr_ps(x) // Implemented below |
---|
| 255 | #endif |
---|
| 256 | |
---|
| 257 | /** Performing the transpose of a 4x4 matrix of single precision floating |
---|
| 258 | point values. |
---|
| 259 | Arguments r0, r1, r2, and r3 are __m128 values whose elements |
---|
| 260 | form the corresponding rows of a 4x4 matrix. |
---|
| 261 | The matrix transpose is returned in arguments r0, r1, r2, and |
---|
| 262 | r3 where r0 now holds column 0 of the original matrix, r1 now |
---|
| 263 | holds column 1 of the original matrix, etc. |
---|
| 264 | */ |
---|
| 265 | #define __MM_TRANSPOSE4x4_PS(r0, r1, r2, r3) \ |
---|
| 266 | { \ |
---|
| 267 | __m128 t3, t2, t1, t0; \ |
---|
| 268 | \ |
---|
| 269 | /* r00 r01 r02 r03 */ \ |
---|
| 270 | /* r10 r11 r12 r13 */ \ |
---|
| 271 | /* r20 r21 r22 r23 */ \ |
---|
| 272 | /* r30 r31 r32 r33 */ \ |
---|
| 273 | \ |
---|
| 274 | t0 = _mm_unpacklo_ps(r0, r1); /* r00 r10 r01 r11 */ \ |
---|
| 275 | t2 = _mm_unpackhi_ps(r0, r1); /* r02 r12 r03 r13 */ \ |
---|
| 276 | t1 = _mm_unpacklo_ps(r2, r3); /* r20 r30 r21 r31 */ \ |
---|
| 277 | t3 = _mm_unpackhi_ps(r2, r3); /* r22 r32 r23 r33 */ \ |
---|
| 278 | \ |
---|
| 279 | r0 = _mm_movelh_ps(t0, t1); /* r00 r10 r20 r30 */ \ |
---|
| 280 | r1 = _mm_movehl_ps(t1, t0); /* r01 r11 r21 r31 */ \ |
---|
| 281 | r2 = _mm_movelh_ps(t2, t3); /* r02 r12 r22 r32 */ \ |
---|
| 282 | r3 = _mm_movehl_ps(t3, t2); /* r03 r13 r23 r33 */ \ |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | /** Performing the transpose of a continuous stored rows of a 4x3 matrix to |
---|
| 286 | a 3x4 matrix of single precision floating point values. |
---|
| 287 | Arguments v0, v1, and v2 are __m128 values whose elements form the |
---|
| 288 | corresponding continuous stored rows of a 4x3 matrix. |
---|
| 289 | The matrix transpose is returned in arguments v0, v1, and v2, where |
---|
| 290 | v0 now holds column 0 of the original matrix, v1 now holds column 1 |
---|
| 291 | of the original matrix, etc. |
---|
| 292 | */ |
---|
| 293 | #define __MM_TRANSPOSE4x3_PS(v0, v1, v2) \ |
---|
| 294 | { \ |
---|
| 295 | __m128 t0, t1, t2; \ |
---|
| 296 | \ |
---|
| 297 | /* r00 r01 r02 r10 */ \ |
---|
| 298 | /* r11 r12 r20 r21 */ \ |
---|
| 299 | /* r22 r30 r31 r32 */ \ |
---|
| 300 | \ |
---|
| 301 | t0 = _mm_shuffle_ps(v0, v2, _MM_SHUFFLE(3,0,3,0)); /* r00 r10 r22 r32 */ \ |
---|
| 302 | t1 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(1,0,2,1)); /* r01 r02 r11 r12 */ \ |
---|
| 303 | t2 = _mm_shuffle_ps(v1, v2, _MM_SHUFFLE(2,1,3,2)); /* r20 r21 r30 r31 */ \ |
---|
| 304 | \ |
---|
| 305 | v0 = _mm_shuffle_ps(t0, t2, _MM_SHUFFLE(2,0,1,0)); /* r00 r10 r20 r30 */ \ |
---|
| 306 | v1 = _mm_shuffle_ps(t1, t2, _MM_SHUFFLE(3,1,2,0)); /* r01 r11 r21 r31 */ \ |
---|
| 307 | v2 = _mm_shuffle_ps(t1, t0, _MM_SHUFFLE(3,2,3,1)); /* r02 r12 r22 r32 */ \ |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | /** Performing the transpose of a 3x4 matrix to a continuous stored rows of |
---|
| 311 | a 4x3 matrix of single precision floating point values. |
---|
| 312 | Arguments v0, v1, and v2 are __m128 values whose elements form the |
---|
| 313 | corresponding columns of a 3x4 matrix. |
---|
| 314 | The matrix transpose is returned in arguments v0, v1, and v2, as a |
---|
| 315 | continuous stored rows of a 4x3 matrix. |
---|
| 316 | */ |
---|
| 317 | #define __MM_TRANSPOSE3x4_PS(v0, v1, v2) \ |
---|
| 318 | { \ |
---|
| 319 | __m128 t0, t1, t2; \ |
---|
| 320 | \ |
---|
| 321 | /* r00 r10 r20 r30 */ \ |
---|
| 322 | /* r01 r11 r21 r31 */ \ |
---|
| 323 | /* r02 r12 r22 r32 */ \ |
---|
| 324 | \ |
---|
| 325 | t0 = _mm_shuffle_ps(v0, v2, _MM_SHUFFLE(2,0,3,1)); /* r10 r30 r02 r22 */ \ |
---|
| 326 | t1 = _mm_shuffle_ps(v1, v2, _MM_SHUFFLE(3,1,3,1)); /* r11 r31 r12 r32 */ \ |
---|
| 327 | t2 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(2,0,2,0)); /* r00 r20 r01 r21 */ \ |
---|
| 328 | \ |
---|
| 329 | v0 = _mm_shuffle_ps(t2, t0, _MM_SHUFFLE(0,2,2,0)); /* r00 r01 r02 r10 */ \ |
---|
| 330 | v1 = _mm_shuffle_ps(t1, t2, _MM_SHUFFLE(3,1,2,0)); /* r11 r12 r20 r21 */ \ |
---|
| 331 | v2 = _mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,1,3)); /* r22 r30 r31 r32 */ \ |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | /** Fill vector of single precision floating point with selected value. |
---|
| 335 | Argument 'fp' is a digit[0123] that represents the fp of argument 'v'. |
---|
| 336 | */ |
---|
| 337 | #define __MM_SELECT(v, fp) \ |
---|
| 338 | _mm_shuffle_ps((v), (v), _MM_SHUFFLE((fp),(fp),(fp),(fp))) |
---|
| 339 | |
---|
| 340 | /// Accumulate four vector of single precision floating point values. |
---|
| 341 | #define __MM_ACCUM4_PS(a, b, c, d) \ |
---|
| 342 | _mm_add_ps(_mm_add_ps(a, b), _mm_add_ps(c, d)) |
---|
| 343 | |
---|
| 344 | /** Performing dot-product between two of four vector of single precision |
---|
| 345 | floating point values. |
---|
| 346 | */ |
---|
| 347 | #define __MM_DOT4x4_PS(a0, a1, a2, a3, b0, b1, b2, b3) \ |
---|
| 348 | __MM_ACCUM4_PS(_mm_mul_ps(a0, b0), _mm_mul_ps(a1, b1), _mm_mul_ps(a2, b2), _mm_mul_ps(a3, b3)) |
---|
| 349 | |
---|
| 350 | /** Performing dot-product between four vector and three vector of single |
---|
| 351 | precision floating point values. |
---|
| 352 | */ |
---|
| 353 | #define __MM_DOT4x3_PS(r0, r1, r2, r3, v0, v1, v2) \ |
---|
| 354 | __MM_ACCUM4_PS(_mm_mul_ps(r0, v0), _mm_mul_ps(r1, v1), _mm_mul_ps(r2, v2), r3) |
---|
| 355 | |
---|
| 356 | /// Accumulate three vector of single precision floating point values. |
---|
| 357 | #define __MM_ACCUM3_PS(a, b, c) \ |
---|
| 358 | _mm_add_ps(_mm_add_ps(a, b), c) |
---|
| 359 | |
---|
| 360 | /** Performing dot-product between two of three vector of single precision |
---|
| 361 | floating point values. |
---|
| 362 | */ |
---|
| 363 | #define __MM_DOT3x3_PS(r0, r1, r2, v0, v1, v2) \ |
---|
| 364 | __MM_ACCUM3_PS(_mm_mul_ps(r0, v0), _mm_mul_ps(r1, v1), _mm_mul_ps(r2, v2)) |
---|
| 365 | |
---|
| 366 | /// Calculate multiply of two vector and plus another vector |
---|
| 367 | #define __MM_MADD_PS(a, b, c) \ |
---|
| 368 | _mm_add_ps(_mm_mul_ps(a, b), c) |
---|
| 369 | |
---|
| 370 | /// Linear interpolation |
---|
| 371 | #define __MM_LERP_PS(t, a, b) \ |
---|
| 372 | __MM_MADD_PS(_mm_sub_ps(b, a), t, a) |
---|
| 373 | |
---|
| 374 | /// Calculate multiply of two single floating value and plus another floating value |
---|
| 375 | #define __MM_MADD_SS(a, b, c) \ |
---|
| 376 | _mm_add_ss(_mm_mul_ss(a, b), c) |
---|
| 377 | |
---|
| 378 | /// Linear interpolation |
---|
| 379 | #define __MM_LERP_SS(t, a, b) \ |
---|
| 380 | __MM_MADD_SS(_mm_sub_ss(b, a), t, a) |
---|
| 381 | |
---|
| 382 | /// Same as _mm_load_ps, but can help VC generate more optimised code. |
---|
| 383 | #define __MM_LOAD_PS(p) \ |
---|
| 384 | (*(__m128*)(p)) |
---|
| 385 | |
---|
| 386 | /// Same as _mm_store_ps, but can help VC generate more optimised code. |
---|
| 387 | #define __MM_STORE_PS(p, v) \ |
---|
| 388 | (*(__m128*)(p) = (v)) |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | /** Helper to load/store SSE data based on whether or not aligned. |
---|
| 392 | */ |
---|
| 393 | template <bool aligned = false> |
---|
| 394 | struct SSEMemoryAccessor |
---|
| 395 | { |
---|
| 396 | static FORCEINLINE __m128 load(const float *p) |
---|
| 397 | { |
---|
| 398 | return _mm_loadu_ps(p); |
---|
| 399 | } |
---|
| 400 | static FORCEINLINE void store(float *p, const __m128& v) |
---|
| 401 | { |
---|
| 402 | _mm_storeu_ps(p, v); |
---|
| 403 | } |
---|
| 404 | }; |
---|
| 405 | // Special aligned accessor |
---|
| 406 | template <> |
---|
| 407 | struct SSEMemoryAccessor<true> |
---|
| 408 | { |
---|
| 409 | static FORCEINLINE const __m128& load(const float *p) |
---|
| 410 | { |
---|
| 411 | return __MM_LOAD_PS(p); |
---|
| 412 | } |
---|
| 413 | static FORCEINLINE void store(float *p, const __m128& v) |
---|
| 414 | { |
---|
| 415 | __MM_STORE_PS(p, v); |
---|
| 416 | } |
---|
| 417 | }; |
---|
| 418 | |
---|
| 419 | /** Check whether or not the given pointer perfect aligned for SSE. |
---|
| 420 | */ |
---|
| 421 | static FORCEINLINE bool _isAlignedForSSE(const void *p) |
---|
| 422 | { |
---|
| 423 | return (((size_t)p) & 15) == 0; |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | /** Calculate NewtonRaphson Reciprocal Square Root with formula: |
---|
| 427 | 0.5 * rsqrt(x) * (3 - x * rsqrt(x)^2) |
---|
| 428 | */ |
---|
| 429 | static FORCEINLINE __m128 __mm_rsqrt_nr_ps(const __m128& x) |
---|
| 430 | { |
---|
| 431 | static const __m128 v0pt5 = { 0.5f, 0.5f, 0.5f, 0.5f }; |
---|
| 432 | static const __m128 v3pt0 = { 3.0f, 3.0f, 3.0f, 3.0f }; |
---|
| 433 | __m128 t = _mm_rsqrt_ps(x); |
---|
| 434 | return _mm_mul_ps(_mm_mul_ps(v0pt5, t), |
---|
| 435 | _mm_sub_ps(v3pt0, _mm_mul_ps(_mm_mul_ps(x, t), t))); |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | // Macro to check the stack aligned for SSE |
---|
| 439 | #if OGRE_DEBUG_MODE |
---|
| 440 | #define __OGRE_CHECK_STACK_ALIGNED_FOR_SSE() \ |
---|
| 441 | { \ |
---|
| 442 | __m128 test; \ |
---|
| 443 | assert(_isAlignedForSSE(&test)); \ |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | #else // !OGRE_DEBUG_MODE |
---|
| 447 | #define __OGRE_CHECK_STACK_ALIGNED_FOR_SSE() |
---|
| 448 | |
---|
| 449 | #endif // OGRE_DEBUG_MODE |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | #endif // __OGRE_HAVE_SSE |
---|
| 453 | |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | #endif // __SIMDHelper_H__ |
---|