[1] | 1 | /* |
---|
| 2 | ----------------------------------------------------------------------------- |
---|
| 3 | This source file is part of OGRE |
---|
| 4 | (Object-oriented Graphics Rendering Engine) |
---|
| 5 | For the latest info, see http://www.ogre3d.org/ |
---|
| 6 | |
---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd |
---|
| 8 | Also see acknowledgements in Readme.html |
---|
| 9 | |
---|
| 10 | This program is free software; you can redistribute it and/or modify it under |
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software |
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later |
---|
| 13 | version. |
---|
| 14 | |
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. |
---|
| 18 | |
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with |
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to |
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. |
---|
| 23 | |
---|
| 24 | You may alternatively use this source under the terms of a specific version of |
---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from |
---|
| 26 | Torus Knot Software Ltd. |
---|
| 27 | ----------------------------------------------------------------------------- |
---|
| 28 | */ |
---|
| 29 | #include "OgreStableHeaders.h" |
---|
| 30 | |
---|
| 31 | #include "OgreMath.h" |
---|
| 32 | #include "asm_math.h" |
---|
| 33 | #include "OgreVector2.h" |
---|
| 34 | #include "OgreVector3.h" |
---|
| 35 | #include "OgreVector4.h" |
---|
| 36 | #include "OgreRay.h" |
---|
| 37 | #include "OgreSphere.h" |
---|
| 38 | #include "OgreAxisAlignedBox.h" |
---|
| 39 | #include "OgrePlane.h" |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | namespace Ogre |
---|
| 43 | { |
---|
| 44 | |
---|
| 45 | const Real Math::POS_INFINITY = std::numeric_limits<Real>::infinity(); |
---|
| 46 | const Real Math::NEG_INFINITY = -std::numeric_limits<Real>::infinity(); |
---|
| 47 | const Real Math::PI = Real( 4.0 * atan( 1.0 ) ); |
---|
| 48 | const Real Math::TWO_PI = Real( 2.0 * PI ); |
---|
| 49 | const Real Math::HALF_PI = Real( 0.5 * PI ); |
---|
| 50 | const Real Math::fDeg2Rad = PI / Real(180.0); |
---|
| 51 | const Real Math::fRad2Deg = Real(180.0) / PI; |
---|
| 52 | |
---|
| 53 | int Math::mTrigTableSize; |
---|
| 54 | Math::AngleUnit Math::msAngleUnit; |
---|
| 55 | |
---|
| 56 | Real Math::mTrigTableFactor; |
---|
| 57 | Real *Math::mSinTable = NULL; |
---|
| 58 | Real *Math::mTanTable = NULL; |
---|
| 59 | |
---|
| 60 | //----------------------------------------------------------------------- |
---|
| 61 | Math::Math( unsigned int trigTableSize ) |
---|
| 62 | { |
---|
| 63 | msAngleUnit = AU_DEGREE; |
---|
| 64 | |
---|
| 65 | mTrigTableSize = trigTableSize; |
---|
| 66 | mTrigTableFactor = mTrigTableSize / Math::TWO_PI; |
---|
| 67 | |
---|
| 68 | mSinTable = new Real[mTrigTableSize]; |
---|
| 69 | mTanTable = new Real[mTrigTableSize]; |
---|
| 70 | |
---|
| 71 | buildTrigTables(); |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | //----------------------------------------------------------------------- |
---|
| 75 | Math::~Math() |
---|
| 76 | { |
---|
| 77 | delete [] mSinTable; |
---|
| 78 | delete [] mTanTable; |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | //----------------------------------------------------------------------- |
---|
| 82 | void Math::buildTrigTables(void) |
---|
| 83 | { |
---|
| 84 | // Build trig lookup tables |
---|
| 85 | // Could get away with building only PI sized Sin table but simpler this |
---|
| 86 | // way. Who cares, it'll ony use an extra 8k of memory anyway and I like |
---|
| 87 | // simplicity. |
---|
| 88 | Real angle; |
---|
| 89 | for (int i = 0; i < mTrigTableSize; ++i) |
---|
| 90 | { |
---|
| 91 | angle = Math::TWO_PI * i / mTrigTableSize; |
---|
| 92 | mSinTable[i] = sin(angle); |
---|
| 93 | mTanTable[i] = tan(angle); |
---|
| 94 | } |
---|
| 95 | } |
---|
| 96 | //----------------------------------------------------------------------- |
---|
| 97 | Real Math::SinTable (Real fValue) |
---|
| 98 | { |
---|
| 99 | // Convert range to index values, wrap if required |
---|
| 100 | int idx; |
---|
| 101 | if (fValue >= 0) |
---|
| 102 | { |
---|
| 103 | idx = int(fValue * mTrigTableFactor) % mTrigTableSize; |
---|
| 104 | } |
---|
| 105 | else |
---|
| 106 | { |
---|
| 107 | idx = mTrigTableSize - (int(-fValue * mTrigTableFactor) % mTrigTableSize) - 1; |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | return mSinTable[idx]; |
---|
| 111 | } |
---|
| 112 | //----------------------------------------------------------------------- |
---|
| 113 | Real Math::TanTable (Real fValue) |
---|
| 114 | { |
---|
| 115 | // Convert range to index values, wrap if required |
---|
| 116 | int idx = int(fValue *= mTrigTableFactor) % mTrigTableSize; |
---|
| 117 | return mTanTable[idx]; |
---|
| 118 | } |
---|
| 119 | //----------------------------------------------------------------------- |
---|
| 120 | int Math::ISign (int iValue) |
---|
| 121 | { |
---|
| 122 | return ( iValue > 0 ? +1 : ( iValue < 0 ? -1 : 0 ) ); |
---|
| 123 | } |
---|
| 124 | //----------------------------------------------------------------------- |
---|
| 125 | Radian Math::ACos (Real fValue) |
---|
| 126 | { |
---|
| 127 | if ( -1.0 < fValue ) |
---|
| 128 | { |
---|
| 129 | if ( fValue < 1.0 ) |
---|
| 130 | return Radian(acos(fValue)); |
---|
| 131 | else |
---|
| 132 | return Radian(0.0); |
---|
| 133 | } |
---|
| 134 | else |
---|
| 135 | { |
---|
| 136 | return Radian(PI); |
---|
| 137 | } |
---|
| 138 | } |
---|
| 139 | //----------------------------------------------------------------------- |
---|
| 140 | Radian Math::ASin (Real fValue) |
---|
| 141 | { |
---|
| 142 | if ( -1.0 < fValue ) |
---|
| 143 | { |
---|
| 144 | if ( fValue < 1.0 ) |
---|
| 145 | return Radian(asin(fValue)); |
---|
| 146 | else |
---|
| 147 | return Radian(HALF_PI); |
---|
| 148 | } |
---|
| 149 | else |
---|
| 150 | { |
---|
| 151 | return Radian(-HALF_PI); |
---|
| 152 | } |
---|
| 153 | } |
---|
| 154 | //----------------------------------------------------------------------- |
---|
| 155 | Real Math::Sign (Real fValue) |
---|
| 156 | { |
---|
| 157 | if ( fValue > 0.0 ) |
---|
| 158 | return 1.0; |
---|
| 159 | |
---|
| 160 | if ( fValue < 0.0 ) |
---|
| 161 | return -1.0; |
---|
| 162 | |
---|
| 163 | return 0.0; |
---|
| 164 | } |
---|
| 165 | //----------------------------------------------------------------------- |
---|
| 166 | Real Math::InvSqrt(Real fValue) |
---|
| 167 | { |
---|
| 168 | return Real(asm_rsq(fValue)); |
---|
| 169 | } |
---|
| 170 | //----------------------------------------------------------------------- |
---|
| 171 | Real Math::UnitRandom () |
---|
| 172 | { |
---|
| 173 | return asm_rand() / asm_rand_max(); |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | //----------------------------------------------------------------------- |
---|
| 177 | Real Math::RangeRandom (Real fLow, Real fHigh) |
---|
| 178 | { |
---|
| 179 | return (fHigh-fLow)*UnitRandom() + fLow; |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | //----------------------------------------------------------------------- |
---|
| 183 | Real Math::SymmetricRandom () |
---|
| 184 | { |
---|
| 185 | return 2.0f * UnitRandom() - 1.0f; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | //----------------------------------------------------------------------- |
---|
| 189 | void Math::setAngleUnit(Math::AngleUnit unit) |
---|
| 190 | { |
---|
| 191 | msAngleUnit = unit; |
---|
| 192 | } |
---|
| 193 | //----------------------------------------------------------------------- |
---|
| 194 | Math::AngleUnit Math::getAngleUnit(void) |
---|
| 195 | { |
---|
| 196 | return msAngleUnit; |
---|
| 197 | } |
---|
| 198 | //----------------------------------------------------------------------- |
---|
| 199 | Real Math::AngleUnitsToRadians(Real angleunits) |
---|
| 200 | { |
---|
| 201 | if (msAngleUnit == AU_DEGREE) |
---|
| 202 | return angleunits * fDeg2Rad; |
---|
| 203 | else |
---|
| 204 | return angleunits; |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | //----------------------------------------------------------------------- |
---|
| 208 | Real Math::RadiansToAngleUnits(Real radians) |
---|
| 209 | { |
---|
| 210 | if (msAngleUnit == AU_DEGREE) |
---|
| 211 | return radians * fRad2Deg; |
---|
| 212 | else |
---|
| 213 | return radians; |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | //----------------------------------------------------------------------- |
---|
| 217 | Real Math::AngleUnitsToDegrees(Real angleunits) |
---|
| 218 | { |
---|
| 219 | if (msAngleUnit == AU_RADIAN) |
---|
| 220 | return angleunits * fRad2Deg; |
---|
| 221 | else |
---|
| 222 | return angleunits; |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | //----------------------------------------------------------------------- |
---|
| 226 | Real Math::DegreesToAngleUnits(Real degrees) |
---|
| 227 | { |
---|
| 228 | if (msAngleUnit == AU_RADIAN) |
---|
| 229 | return degrees * fDeg2Rad; |
---|
| 230 | else |
---|
| 231 | return degrees; |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | //----------------------------------------------------------------------- |
---|
| 235 | bool Math::pointInTri2D(const Vector2& p, const Vector2& a, |
---|
| 236 | const Vector2& b, const Vector2& c) |
---|
| 237 | { |
---|
| 238 | // Winding must be consistent from all edges for point to be inside |
---|
| 239 | Vector2 v1, v2; |
---|
| 240 | Real dot[3]; |
---|
| 241 | bool zeroDot[3]; |
---|
| 242 | |
---|
| 243 | v1 = b - a; |
---|
| 244 | v2 = p - a; |
---|
| 245 | |
---|
| 246 | // Note we don't care about normalisation here since sign is all we need |
---|
| 247 | // It means we don't have to worry about magnitude of cross products either |
---|
| 248 | dot[0] = v1.crossProduct(v2); |
---|
| 249 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3); |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | v1 = c - b; |
---|
| 253 | v2 = p - b; |
---|
| 254 | |
---|
| 255 | dot[1] = v1.crossProduct(v2); |
---|
| 256 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3); |
---|
| 257 | |
---|
| 258 | // Compare signs (ignore colinear / coincident points) |
---|
| 259 | if(!zeroDot[0] && !zeroDot[1] |
---|
| 260 | && Math::Sign(dot[0]) != Math::Sign(dot[1])) |
---|
| 261 | { |
---|
| 262 | return false; |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | v1 = a - c; |
---|
| 266 | v2 = p - c; |
---|
| 267 | |
---|
| 268 | dot[2] = v1.crossProduct(v2); |
---|
| 269 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3); |
---|
| 270 | // Compare signs (ignore colinear / coincident points) |
---|
| 271 | if((!zeroDot[0] && !zeroDot[2] |
---|
| 272 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) || |
---|
| 273 | (!zeroDot[1] && !zeroDot[2] |
---|
| 274 | && Math::Sign(dot[1]) != Math::Sign(dot[2]))) |
---|
| 275 | { |
---|
| 276 | return false; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | return true; |
---|
| 281 | } |
---|
| 282 | //----------------------------------------------------------------------- |
---|
| 283 | bool Math::pointInTri3D(const Vector3& p, const Vector3& a, |
---|
| 284 | const Vector3& b, const Vector3& c, const Vector3& normal) |
---|
| 285 | { |
---|
| 286 | // Winding must be consistent from all edges for point to be inside |
---|
| 287 | Vector3 v1, v2; |
---|
| 288 | Real dot[3]; |
---|
| 289 | bool zeroDot[3]; |
---|
| 290 | |
---|
| 291 | v1 = b - a; |
---|
| 292 | v2 = p - a; |
---|
| 293 | |
---|
| 294 | // Note we don't care about normalisation here since sign is all we need |
---|
| 295 | // It means we don't have to worry about magnitude of cross products either |
---|
| 296 | dot[0] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 297 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3); |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | v1 = c - b; |
---|
| 301 | v2 = p - b; |
---|
| 302 | |
---|
| 303 | dot[1] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 304 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3); |
---|
| 305 | |
---|
| 306 | // Compare signs (ignore colinear / coincident points) |
---|
| 307 | if(!zeroDot[0] && !zeroDot[1] |
---|
| 308 | && Math::Sign(dot[0]) != Math::Sign(dot[1])) |
---|
| 309 | { |
---|
| 310 | return false; |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | v1 = a - c; |
---|
| 314 | v2 = p - c; |
---|
| 315 | |
---|
| 316 | dot[2] = v1.crossProduct(v2).dotProduct(normal); |
---|
| 317 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3); |
---|
| 318 | // Compare signs (ignore colinear / coincident points) |
---|
| 319 | if((!zeroDot[0] && !zeroDot[2] |
---|
| 320 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) || |
---|
| 321 | (!zeroDot[1] && !zeroDot[2] |
---|
| 322 | && Math::Sign(dot[1]) != Math::Sign(dot[2]))) |
---|
| 323 | { |
---|
| 324 | return false; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | return true; |
---|
| 329 | } |
---|
| 330 | //----------------------------------------------------------------------- |
---|
| 331 | bool Math::RealEqual( Real a, Real b, Real tolerance ) |
---|
| 332 | { |
---|
| 333 | if (fabs(b-a) <= tolerance) |
---|
| 334 | return true; |
---|
| 335 | else |
---|
| 336 | return false; |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | //----------------------------------------------------------------------- |
---|
| 340 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Plane& plane) |
---|
| 341 | { |
---|
| 342 | |
---|
| 343 | Real denom = plane.normal.dotProduct(ray.getDirection()); |
---|
| 344 | if (Math::Abs(denom) < std::numeric_limits<Real>::epsilon()) |
---|
| 345 | { |
---|
| 346 | // Parallel |
---|
| 347 | return std::pair<bool, Real>(false, 0); |
---|
| 348 | } |
---|
| 349 | else |
---|
| 350 | { |
---|
| 351 | Real nom = plane.normal.dotProduct(ray.getOrigin()) + plane.d; |
---|
| 352 | Real t = -(nom/denom); |
---|
| 353 | return std::pair<bool, Real>(t >= 0, t); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | } |
---|
| 357 | //----------------------------------------------------------------------- |
---|
| 358 | std::pair<bool, Real> Math::intersects(const Ray& ray, |
---|
| 359 | const std::vector<Plane>& planes, bool normalIsOutside) |
---|
| 360 | { |
---|
| 361 | std::vector<Plane>::const_iterator planeit, planeitend; |
---|
| 362 | planeitend = planes.end(); |
---|
| 363 | bool allInside = true; |
---|
| 364 | std::pair<bool, Real> ret; |
---|
| 365 | ret.first = false; |
---|
| 366 | ret.second = 0.0f; |
---|
| 367 | |
---|
| 368 | // derive side |
---|
| 369 | // NB we don't pass directly since that would require Plane::Side in |
---|
| 370 | // interface, which results in recursive includes since Math is so fundamental |
---|
| 371 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE; |
---|
| 372 | |
---|
| 373 | for (planeit = planes.begin(); planeit != planeitend; ++planeit) |
---|
| 374 | { |
---|
| 375 | const Plane& plane = *planeit; |
---|
| 376 | // is origin outside? |
---|
| 377 | if (plane.getSide(ray.getOrigin()) == outside) |
---|
| 378 | { |
---|
| 379 | allInside = false; |
---|
| 380 | // Test single plane |
---|
| 381 | std::pair<bool, Real> planeRes = |
---|
| 382 | ray.intersects(plane); |
---|
| 383 | if (planeRes.first) |
---|
| 384 | { |
---|
| 385 | // Ok, we intersected |
---|
| 386 | ret.first = true; |
---|
| 387 | // Use the most distant result since convex volume |
---|
| 388 | ret.second = std::max(ret.second, planeRes.second); |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | } |
---|
| 392 | |
---|
| 393 | if (allInside) |
---|
| 394 | { |
---|
| 395 | // Intersecting at 0 distance since inside the volume! |
---|
| 396 | ret.first = true; |
---|
| 397 | ret.second = 0.0f; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | return ret; |
---|
| 401 | } |
---|
| 402 | //----------------------------------------------------------------------- |
---|
| 403 | std::pair<bool, Real> Math::intersects(const Ray& ray, |
---|
| 404 | const std::list<Plane>& planes, bool normalIsOutside) |
---|
| 405 | { |
---|
| 406 | std::list<Plane>::const_iterator planeit, planeitend; |
---|
| 407 | planeitend = planes.end(); |
---|
| 408 | bool allInside = true; |
---|
| 409 | std::pair<bool, Real> ret; |
---|
| 410 | ret.first = false; |
---|
| 411 | ret.second = 0.0f; |
---|
| 412 | |
---|
| 413 | // derive side |
---|
| 414 | // NB we don't pass directly since that would require Plane::Side in |
---|
| 415 | // interface, which results in recursive includes since Math is so fundamental |
---|
| 416 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE; |
---|
| 417 | |
---|
| 418 | for (planeit = planes.begin(); planeit != planeitend; ++planeit) |
---|
| 419 | { |
---|
| 420 | const Plane& plane = *planeit; |
---|
| 421 | // is origin outside? |
---|
| 422 | if (plane.getSide(ray.getOrigin()) == outside) |
---|
| 423 | { |
---|
| 424 | allInside = false; |
---|
| 425 | // Test single plane |
---|
| 426 | std::pair<bool, Real> planeRes = |
---|
| 427 | ray.intersects(plane); |
---|
| 428 | if (planeRes.first) |
---|
| 429 | { |
---|
| 430 | // Ok, we intersected |
---|
| 431 | ret.first = true; |
---|
| 432 | // Use the most distant result since convex volume |
---|
| 433 | ret.second = std::max(ret.second, planeRes.second); |
---|
| 434 | } |
---|
| 435 | } |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | if (allInside) |
---|
| 439 | { |
---|
| 440 | // Intersecting at 0 distance since inside the volume! |
---|
| 441 | ret.first = true; |
---|
| 442 | ret.second = 0.0f; |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | return ret; |
---|
| 446 | } |
---|
| 447 | //----------------------------------------------------------------------- |
---|
| 448 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Sphere& sphere, |
---|
| 449 | bool discardInside) |
---|
| 450 | { |
---|
| 451 | const Vector3& raydir = ray.getDirection(); |
---|
| 452 | // Adjust ray origin relative to sphere center |
---|
| 453 | const Vector3& rayorig = ray.getOrigin() - sphere.getCenter(); |
---|
| 454 | Real radius = sphere.getRadius(); |
---|
| 455 | |
---|
| 456 | // Check origin inside first |
---|
| 457 | if (rayorig.squaredLength() <= radius*radius && discardInside) |
---|
| 458 | { |
---|
| 459 | return std::pair<bool, Real>(true, 0); |
---|
| 460 | } |
---|
| 461 | |
---|
| 462 | // Mmm, quadratics |
---|
| 463 | // Build coeffs which can be used with std quadratic solver |
---|
| 464 | // ie t = (-b +/- sqrt(b*b + 4ac)) / 2a |
---|
| 465 | Real a = raydir.dotProduct(raydir); |
---|
| 466 | Real b = 2 * rayorig.dotProduct(raydir); |
---|
| 467 | Real c = rayorig.dotProduct(rayorig) - radius*radius; |
---|
| 468 | |
---|
| 469 | // Calc determinant |
---|
| 470 | Real d = (b*b) - (4 * a * c); |
---|
| 471 | if (d < 0) |
---|
| 472 | { |
---|
| 473 | // No intersection |
---|
| 474 | return std::pair<bool, Real>(false, 0); |
---|
| 475 | } |
---|
| 476 | else |
---|
| 477 | { |
---|
| 478 | // BTW, if d=0 there is one intersection, if d > 0 there are 2 |
---|
| 479 | // But we only want the closest one, so that's ok, just use the |
---|
| 480 | // '-' version of the solver |
---|
| 481 | Real t = ( -b - Math::Sqrt(d) ) / (2 * a); |
---|
| 482 | if (t < 0) |
---|
| 483 | t = ( -b + Math::Sqrt(d) ) / (2 * a); |
---|
| 484 | return std::pair<bool, Real>(true, t); |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | } |
---|
| 489 | //----------------------------------------------------------------------- |
---|
| 490 | std::pair<bool, Real> Math::intersects(const Ray& ray, const AxisAlignedBox& box) |
---|
| 491 | { |
---|
| 492 | if (box.isNull()) return std::pair<bool, Real>(false, 0); |
---|
| 493 | if (box.isInfinite()) return std::pair<bool, Real>(true, 0); |
---|
| 494 | |
---|
| 495 | Real lowt = 0.0f; |
---|
| 496 | Real t; |
---|
| 497 | bool hit = false; |
---|
| 498 | Vector3 hitpoint; |
---|
| 499 | const Vector3& min = box.getMinimum(); |
---|
| 500 | const Vector3& max = box.getMaximum(); |
---|
| 501 | const Vector3& rayorig = ray.getOrigin(); |
---|
| 502 | const Vector3& raydir = ray.getDirection(); |
---|
| 503 | |
---|
| 504 | // Check origin inside first |
---|
| 505 | if ( rayorig > min && rayorig < max ) |
---|
| 506 | { |
---|
| 507 | return std::pair<bool, Real>(true, 0); |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | // Check each face in turn, only check closest 3 |
---|
| 511 | // Min x |
---|
| 512 | if (rayorig.x <= min.x && raydir.x > 0) |
---|
| 513 | { |
---|
| 514 | t = (min.x - rayorig.x) / raydir.x; |
---|
| 515 | if (t >= 0) |
---|
| 516 | { |
---|
| 517 | // Substitute t back into ray and check bounds and dist |
---|
| 518 | hitpoint = rayorig + raydir * t; |
---|
| 519 | if (hitpoint.y >= min.y && hitpoint.y <= max.y && |
---|
| 520 | hitpoint.z >= min.z && hitpoint.z <= max.z && |
---|
| 521 | (!hit || t < lowt)) |
---|
| 522 | { |
---|
| 523 | hit = true; |
---|
| 524 | lowt = t; |
---|
| 525 | } |
---|
| 526 | } |
---|
| 527 | } |
---|
| 528 | // Max x |
---|
| 529 | if (rayorig.x >= max.x && raydir.x < 0) |
---|
| 530 | { |
---|
| 531 | t = (max.x - rayorig.x) / raydir.x; |
---|
| 532 | if (t >= 0) |
---|
| 533 | { |
---|
| 534 | // Substitute t back into ray and check bounds and dist |
---|
| 535 | hitpoint = rayorig + raydir * t; |
---|
| 536 | if (hitpoint.y >= min.y && hitpoint.y <= max.y && |
---|
| 537 | hitpoint.z >= min.z && hitpoint.z <= max.z && |
---|
| 538 | (!hit || t < lowt)) |
---|
| 539 | { |
---|
| 540 | hit = true; |
---|
| 541 | lowt = t; |
---|
| 542 | } |
---|
| 543 | } |
---|
| 544 | } |
---|
| 545 | // Min y |
---|
| 546 | if (rayorig.y <= min.y && raydir.y > 0) |
---|
| 547 | { |
---|
| 548 | t = (min.y - rayorig.y) / raydir.y; |
---|
| 549 | if (t >= 0) |
---|
| 550 | { |
---|
| 551 | // Substitute t back into ray and check bounds and dist |
---|
| 552 | hitpoint = rayorig + raydir * t; |
---|
| 553 | if (hitpoint.x >= min.x && hitpoint.x <= max.x && |
---|
| 554 | hitpoint.z >= min.z && hitpoint.z <= max.z && |
---|
| 555 | (!hit || t < lowt)) |
---|
| 556 | { |
---|
| 557 | hit = true; |
---|
| 558 | lowt = t; |
---|
| 559 | } |
---|
| 560 | } |
---|
| 561 | } |
---|
| 562 | // Max y |
---|
| 563 | if (rayorig.y >= max.y && raydir.y < 0) |
---|
| 564 | { |
---|
| 565 | t = (max.y - rayorig.y) / raydir.y; |
---|
| 566 | if (t >= 0) |
---|
| 567 | { |
---|
| 568 | // Substitute t back into ray and check bounds and dist |
---|
| 569 | hitpoint = rayorig + raydir * t; |
---|
| 570 | if (hitpoint.x >= min.x && hitpoint.x <= max.x && |
---|
| 571 | hitpoint.z >= min.z && hitpoint.z <= max.z && |
---|
| 572 | (!hit || t < lowt)) |
---|
| 573 | { |
---|
| 574 | hit = true; |
---|
| 575 | lowt = t; |
---|
| 576 | } |
---|
| 577 | } |
---|
| 578 | } |
---|
| 579 | // Min z |
---|
| 580 | if (rayorig.z <= min.z && raydir.z > 0) |
---|
| 581 | { |
---|
| 582 | t = (min.z - rayorig.z) / raydir.z; |
---|
| 583 | if (t >= 0) |
---|
| 584 | { |
---|
| 585 | // Substitute t back into ray and check bounds and dist |
---|
| 586 | hitpoint = rayorig + raydir * t; |
---|
| 587 | if (hitpoint.x >= min.x && hitpoint.x <= max.x && |
---|
| 588 | hitpoint.y >= min.y && hitpoint.y <= max.y && |
---|
| 589 | (!hit || t < lowt)) |
---|
| 590 | { |
---|
| 591 | hit = true; |
---|
| 592 | lowt = t; |
---|
| 593 | } |
---|
| 594 | } |
---|
| 595 | } |
---|
| 596 | // Max z |
---|
| 597 | if (rayorig.z >= max.z && raydir.z < 0) |
---|
| 598 | { |
---|
| 599 | t = (max.z - rayorig.z) / raydir.z; |
---|
| 600 | if (t >= 0) |
---|
| 601 | { |
---|
| 602 | // Substitute t back into ray and check bounds and dist |
---|
| 603 | hitpoint = rayorig + raydir * t; |
---|
| 604 | if (hitpoint.x >= min.x && hitpoint.x <= max.x && |
---|
| 605 | hitpoint.y >= min.y && hitpoint.y <= max.y && |
---|
| 606 | (!hit || t < lowt)) |
---|
| 607 | { |
---|
| 608 | hit = true; |
---|
| 609 | lowt = t; |
---|
| 610 | } |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | return std::pair<bool, Real>(hit, lowt); |
---|
| 615 | |
---|
| 616 | } |
---|
| 617 | //----------------------------------------------------------------------- |
---|
| 618 | bool Math::intersects(const Ray& ray, const AxisAlignedBox& box, |
---|
| 619 | Real* d1, Real* d2) |
---|
| 620 | { |
---|
| 621 | if (box.isNull()) |
---|
| 622 | return false; |
---|
| 623 | |
---|
| 624 | if (box.isInfinite()) |
---|
| 625 | { |
---|
| 626 | if (d1) *d1 = 0; |
---|
| 627 | if (d2) *d2 = Math::POS_INFINITY; |
---|
| 628 | return true; |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | const Vector3& min = box.getMinimum(); |
---|
| 632 | const Vector3& max = box.getMaximum(); |
---|
| 633 | const Vector3& rayorig = ray.getOrigin(); |
---|
| 634 | const Vector3& raydir = ray.getDirection(); |
---|
| 635 | |
---|
| 636 | Vector3 absDir; |
---|
| 637 | absDir[0] = Math::Abs(raydir[0]); |
---|
| 638 | absDir[1] = Math::Abs(raydir[1]); |
---|
| 639 | absDir[2] = Math::Abs(raydir[2]); |
---|
| 640 | |
---|
| 641 | // Sort the axis, ensure check minimise floating error axis first |
---|
| 642 | int imax = 0, imid = 1, imin = 2; |
---|
| 643 | if (absDir[0] < absDir[2]) |
---|
| 644 | { |
---|
| 645 | imax = 2; |
---|
| 646 | imin = 0; |
---|
| 647 | } |
---|
| 648 | if (absDir[1] < absDir[imin]) |
---|
| 649 | { |
---|
| 650 | imid = imin; |
---|
| 651 | imin = 1; |
---|
| 652 | } |
---|
| 653 | else if (absDir[1] > absDir[imax]) |
---|
| 654 | { |
---|
| 655 | imid = imax; |
---|
| 656 | imax = 1; |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | Real start = 0, end = Math::POS_INFINITY; |
---|
| 660 | |
---|
| 661 | #define _CALC_AXIS(i) \ |
---|
| 662 | do { \ |
---|
| 663 | Real denom = 1 / raydir[i]; \ |
---|
| 664 | Real newstart = (min[i] - rayorig[i]) * denom; \ |
---|
| 665 | Real newend = (max[i] - rayorig[i]) * denom; \ |
---|
| 666 | if (newstart > newend) std::swap(newstart, newend); \ |
---|
| 667 | if (newstart > end || newend < start) return false; \ |
---|
| 668 | if (newstart > start) start = newstart; \ |
---|
| 669 | if (newend < end) end = newend; \ |
---|
| 670 | } while(0) |
---|
| 671 | |
---|
| 672 | // Check each axis in turn |
---|
| 673 | |
---|
| 674 | _CALC_AXIS(imax); |
---|
| 675 | |
---|
| 676 | if (absDir[imid] < std::numeric_limits<Real>::epsilon()) |
---|
| 677 | { |
---|
| 678 | // Parallel with middle and minimise axis, check bounds only |
---|
| 679 | if (rayorig[imid] < min[imid] || rayorig[imid] > max[imid] || |
---|
| 680 | rayorig[imin] < min[imin] || rayorig[imin] > max[imin]) |
---|
| 681 | return false; |
---|
| 682 | } |
---|
| 683 | else |
---|
| 684 | { |
---|
| 685 | _CALC_AXIS(imid); |
---|
| 686 | |
---|
| 687 | if (absDir[imin] < std::numeric_limits<Real>::epsilon()) |
---|
| 688 | { |
---|
| 689 | // Parallel with minimise axis, check bounds only |
---|
| 690 | if (rayorig[imin] < min[imin] || rayorig[imin] > max[imin]) |
---|
| 691 | return false; |
---|
| 692 | } |
---|
| 693 | else |
---|
| 694 | { |
---|
| 695 | _CALC_AXIS(imin); |
---|
| 696 | } |
---|
| 697 | } |
---|
| 698 | #undef _CALC_AXIS |
---|
| 699 | |
---|
| 700 | if (d1) *d1 = start; |
---|
| 701 | if (d2) *d2 = end; |
---|
| 702 | |
---|
| 703 | return true; |
---|
| 704 | } |
---|
| 705 | //----------------------------------------------------------------------- |
---|
| 706 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Vector3& a, |
---|
| 707 | const Vector3& b, const Vector3& c, const Vector3& normal, |
---|
| 708 | bool positiveSide, bool negativeSide) |
---|
| 709 | { |
---|
| 710 | // |
---|
| 711 | // Calculate intersection with plane. |
---|
| 712 | // |
---|
| 713 | Real t; |
---|
| 714 | { |
---|
| 715 | Real denom = normal.dotProduct(ray.getDirection()); |
---|
| 716 | |
---|
| 717 | // Check intersect side |
---|
| 718 | if (denom > + std::numeric_limits<Real>::epsilon()) |
---|
| 719 | { |
---|
| 720 | if (!negativeSide) |
---|
| 721 | return std::pair<bool, Real>(false, 0); |
---|
| 722 | } |
---|
| 723 | else if (denom < - std::numeric_limits<Real>::epsilon()) |
---|
| 724 | { |
---|
| 725 | if (!positiveSide) |
---|
| 726 | return std::pair<bool, Real>(false, 0); |
---|
| 727 | } |
---|
| 728 | else |
---|
| 729 | { |
---|
| 730 | // Parallel or triangle area is close to zero when |
---|
| 731 | // the plane normal not normalised. |
---|
| 732 | return std::pair<bool, Real>(false, 0); |
---|
| 733 | } |
---|
| 734 | |
---|
| 735 | t = normal.dotProduct(a - ray.getOrigin()) / denom; |
---|
| 736 | |
---|
| 737 | if (t < 0) |
---|
| 738 | { |
---|
| 739 | // Intersection is behind origin |
---|
| 740 | return std::pair<bool, Real>(false, 0); |
---|
| 741 | } |
---|
| 742 | } |
---|
| 743 | |
---|
| 744 | // |
---|
| 745 | // Calculate the largest area projection plane in X, Y or Z. |
---|
| 746 | // |
---|
| 747 | size_t i0, i1; |
---|
| 748 | { |
---|
| 749 | Real n0 = Math::Abs(normal[0]); |
---|
| 750 | Real n1 = Math::Abs(normal[1]); |
---|
| 751 | Real n2 = Math::Abs(normal[2]); |
---|
| 752 | |
---|
| 753 | i0 = 1; i1 = 2; |
---|
| 754 | if (n1 > n2) |
---|
| 755 | { |
---|
| 756 | if (n1 > n0) i0 = 0; |
---|
| 757 | } |
---|
| 758 | else |
---|
| 759 | { |
---|
| 760 | if (n2 > n0) i1 = 0; |
---|
| 761 | } |
---|
| 762 | } |
---|
| 763 | |
---|
| 764 | // |
---|
| 765 | // Check the intersection point is inside the triangle. |
---|
| 766 | // |
---|
| 767 | { |
---|
| 768 | Real u1 = b[i0] - a[i0]; |
---|
| 769 | Real v1 = b[i1] - a[i1]; |
---|
| 770 | Real u2 = c[i0] - a[i0]; |
---|
| 771 | Real v2 = c[i1] - a[i1]; |
---|
| 772 | Real u0 = t * ray.getDirection()[i0] + ray.getOrigin()[i0] - a[i0]; |
---|
| 773 | Real v0 = t * ray.getDirection()[i1] + ray.getOrigin()[i1] - a[i1]; |
---|
| 774 | |
---|
| 775 | Real alpha = u0 * v2 - u2 * v0; |
---|
| 776 | Real beta = u1 * v0 - u0 * v1; |
---|
| 777 | Real area = u1 * v2 - u2 * v1; |
---|
| 778 | |
---|
| 779 | // epsilon to avoid float precision error |
---|
| 780 | const Real EPSILON = 1e-3f; |
---|
| 781 | |
---|
| 782 | Real tolerance = - EPSILON * area; |
---|
| 783 | |
---|
| 784 | if (area > 0) |
---|
| 785 | { |
---|
| 786 | if (alpha < tolerance || beta < tolerance || alpha+beta > area-tolerance) |
---|
| 787 | return std::pair<bool, Real>(false, 0); |
---|
| 788 | } |
---|
| 789 | else |
---|
| 790 | { |
---|
| 791 | if (alpha > tolerance || beta > tolerance || alpha+beta < area-tolerance) |
---|
| 792 | return std::pair<bool, Real>(false, 0); |
---|
| 793 | } |
---|
| 794 | } |
---|
| 795 | |
---|
| 796 | return std::pair<bool, Real>(true, t); |
---|
| 797 | } |
---|
| 798 | //----------------------------------------------------------------------- |
---|
| 799 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Vector3& a, |
---|
| 800 | const Vector3& b, const Vector3& c, |
---|
| 801 | bool positiveSide, bool negativeSide) |
---|
| 802 | { |
---|
| 803 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(a, b, c); |
---|
| 804 | return intersects(ray, a, b, c, normal, positiveSide, negativeSide); |
---|
| 805 | } |
---|
| 806 | //----------------------------------------------------------------------- |
---|
| 807 | bool Math::intersects(const Sphere& sphere, const AxisAlignedBox& box) |
---|
| 808 | { |
---|
| 809 | if (box.isNull()) return false; |
---|
| 810 | if (box.isInfinite()) return true; |
---|
| 811 | |
---|
| 812 | // Use splitting planes |
---|
| 813 | const Vector3& center = sphere.getCenter(); |
---|
| 814 | Real radius = sphere.getRadius(); |
---|
| 815 | const Vector3& min = box.getMinimum(); |
---|
| 816 | const Vector3& max = box.getMaximum(); |
---|
| 817 | |
---|
| 818 | // Arvo's algorithm |
---|
| 819 | Real s, d = 0; |
---|
| 820 | for (int i = 0; i < 3; ++i) |
---|
| 821 | { |
---|
| 822 | if (center.ptr()[i] < min.ptr()[i]) |
---|
| 823 | { |
---|
| 824 | s = center.ptr()[i] - min.ptr()[i]; |
---|
| 825 | d += s * s; |
---|
| 826 | } |
---|
| 827 | else if(center.ptr()[i] > max.ptr()[i]) |
---|
| 828 | { |
---|
| 829 | s = center.ptr()[i] - max.ptr()[i]; |
---|
| 830 | d += s * s; |
---|
| 831 | } |
---|
| 832 | } |
---|
| 833 | return d <= radius * radius; |
---|
| 834 | |
---|
| 835 | } |
---|
| 836 | //----------------------------------------------------------------------- |
---|
| 837 | bool Math::intersects(const Plane& plane, const AxisAlignedBox& box) |
---|
| 838 | { |
---|
| 839 | return (plane.getSide(box) == Plane::BOTH_SIDE); |
---|
| 840 | } |
---|
| 841 | //----------------------------------------------------------------------- |
---|
| 842 | bool Math::intersects(const Sphere& sphere, const Plane& plane) |
---|
| 843 | { |
---|
| 844 | return ( |
---|
| 845 | Math::Abs(plane.getDistance(sphere.getCenter())) |
---|
| 846 | <= sphere.getRadius() ); |
---|
| 847 | } |
---|
| 848 | //----------------------------------------------------------------------- |
---|
| 849 | Vector3 Math::calculateTangentSpaceVector( |
---|
| 850 | const Vector3& position1, const Vector3& position2, const Vector3& position3, |
---|
| 851 | Real u1, Real v1, Real u2, Real v2, Real u3, Real v3) |
---|
| 852 | { |
---|
| 853 | //side0 is the vector along one side of the triangle of vertices passed in, |
---|
| 854 | //and side1 is the vector along another side. Taking the cross product of these returns the normal. |
---|
| 855 | Vector3 side0 = position1 - position2; |
---|
| 856 | Vector3 side1 = position3 - position1; |
---|
| 857 | //Calculate face normal |
---|
| 858 | Vector3 normal = side1.crossProduct(side0); |
---|
| 859 | normal.normalise(); |
---|
| 860 | //Now we use a formula to calculate the tangent. |
---|
| 861 | Real deltaV0 = v1 - v2; |
---|
| 862 | Real deltaV1 = v3 - v1; |
---|
| 863 | Vector3 tangent = deltaV1 * side0 - deltaV0 * side1; |
---|
| 864 | tangent.normalise(); |
---|
| 865 | //Calculate binormal |
---|
| 866 | Real deltaU0 = u1 - u2; |
---|
| 867 | Real deltaU1 = u3 - u1; |
---|
| 868 | Vector3 binormal = deltaU1 * side0 - deltaU0 * side1; |
---|
| 869 | binormal.normalise(); |
---|
| 870 | //Now, we take the cross product of the tangents to get a vector which |
---|
| 871 | //should point in the same direction as our normal calculated above. |
---|
| 872 | //If it points in the opposite direction (the dot product between the normals is less than zero), |
---|
| 873 | //then we need to reverse the s and t tangents. |
---|
| 874 | //This is because the triangle has been mirrored when going from tangent space to object space. |
---|
| 875 | //reverse tangents if necessary |
---|
| 876 | Vector3 tangentCross = tangent.crossProduct(binormal); |
---|
| 877 | if (tangentCross.dotProduct(normal) < 0.0f) |
---|
| 878 | { |
---|
| 879 | tangent = -tangent; |
---|
| 880 | binormal = -binormal; |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | return tangent; |
---|
| 884 | |
---|
| 885 | } |
---|
| 886 | //----------------------------------------------------------------------- |
---|
| 887 | Matrix4 Math::buildReflectionMatrix(const Plane& p) |
---|
| 888 | { |
---|
| 889 | return Matrix4( |
---|
| 890 | -2 * p.normal.x * p.normal.x + 1, -2 * p.normal.x * p.normal.y, -2 * p.normal.x * p.normal.z, -2 * p.normal.x * p.d, |
---|
| 891 | -2 * p.normal.y * p.normal.x, -2 * p.normal.y * p.normal.y + 1, -2 * p.normal.y * p.normal.z, -2 * p.normal.y * p.d, |
---|
| 892 | -2 * p.normal.z * p.normal.x, -2 * p.normal.z * p.normal.y, -2 * p.normal.z * p.normal.z + 1, -2 * p.normal.z * p.d, |
---|
| 893 | 0, 0, 0, 1); |
---|
| 894 | } |
---|
| 895 | //----------------------------------------------------------------------- |
---|
| 896 | Vector4 Math::calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 897 | { |
---|
| 898 | Vector3 normal = calculateBasicFaceNormal(v1, v2, v3); |
---|
| 899 | // Now set up the w (distance of tri from origin |
---|
| 900 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1))); |
---|
| 901 | } |
---|
| 902 | //----------------------------------------------------------------------- |
---|
| 903 | Vector3 Math::calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 904 | { |
---|
| 905 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1); |
---|
| 906 | normal.normalise(); |
---|
| 907 | return normal; |
---|
| 908 | } |
---|
| 909 | //----------------------------------------------------------------------- |
---|
| 910 | Vector4 Math::calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 911 | { |
---|
| 912 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(v1, v2, v3); |
---|
| 913 | // Now set up the w (distance of tri from origin) |
---|
| 914 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1))); |
---|
| 915 | } |
---|
| 916 | //----------------------------------------------------------------------- |
---|
| 917 | Vector3 Math::calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3) |
---|
| 918 | { |
---|
| 919 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1); |
---|
| 920 | return normal; |
---|
| 921 | } |
---|
| 922 | //----------------------------------------------------------------------- |
---|
| 923 | Real Math::gaussianDistribution(Real x, Real offset, Real scale) |
---|
| 924 | { |
---|
| 925 | Real nom = Math::Exp( |
---|
| 926 | -Math::Sqr(x - offset) / (2 * Math::Sqr(scale))); |
---|
| 927 | Real denom = scale * Math::Sqrt(2 * Math::PI); |
---|
| 928 | |
---|
| 929 | return nom / denom; |
---|
| 930 | |
---|
| 931 | } |
---|
| 932 | } |
---|