| [1963] | 1 | /* | 
|---|
|  | 2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 3 |  | 
|---|
|  | 4 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 5 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 6 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 7 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 8 | subject to the following restrictions: | 
|---|
|  | 9 |  | 
|---|
|  | 10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 12 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 13 | */ | 
|---|
|  | 14 |  | 
|---|
|  | 15 |  | 
|---|
|  | 16 |  | 
|---|
| [8393] | 17 | #ifndef BT_SIMD__QUATERNION_H_ | 
|---|
|  | 18 | #define BT_SIMD__QUATERNION_H_ | 
|---|
| [1963] | 19 |  | 
|---|
| [2430] | 20 |  | 
|---|
| [1963] | 21 | #include "btVector3.h" | 
|---|
| [2882] | 22 | #include "btQuadWord.h" | 
|---|
| [1963] | 23 |  | 
|---|
| [2430] | 24 | /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ | 
|---|
| [1963] | 25 | class btQuaternion : public btQuadWord { | 
|---|
|  | 26 | public: | 
|---|
| [2430] | 27 | /**@brief No initialization constructor */ | 
|---|
| [1963] | 28 | btQuaternion() {} | 
|---|
|  | 29 |  | 
|---|
|  | 30 | //              template <typename btScalar> | 
|---|
|  | 31 | //              explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} | 
|---|
| [2430] | 32 | /**@brief Constructor from scalars */ | 
|---|
| [1963] | 33 | btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) | 
|---|
|  | 34 | : btQuadWord(x, y, z, w) | 
|---|
|  | 35 | {} | 
|---|
| [2430] | 36 | /**@brief Axis angle Constructor | 
|---|
|  | 37 | * @param axis The axis which the rotation is around | 
|---|
|  | 38 | * @param angle The magnitude of the rotation around the angle (Radians) */ | 
|---|
| [1963] | 39 | btQuaternion(const btVector3& axis, const btScalar& angle) | 
|---|
|  | 40 | { | 
|---|
|  | 41 | setRotation(axis, angle); | 
|---|
|  | 42 | } | 
|---|
| [2430] | 43 | /**@brief Constructor from Euler angles | 
|---|
|  | 44 | * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z | 
|---|
|  | 45 | * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y | 
|---|
|  | 46 | * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ | 
|---|
| [1963] | 47 | btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) | 
|---|
|  | 48 | { | 
|---|
| [2430] | 49 | #ifndef BT_EULER_DEFAULT_ZYX | 
|---|
| [1963] | 50 | setEuler(yaw, pitch, roll); | 
|---|
| [2430] | 51 | #else | 
|---|
|  | 52 | setEulerZYX(yaw, pitch, roll); | 
|---|
|  | 53 | #endif | 
|---|
| [1963] | 54 | } | 
|---|
| [2430] | 55 | /**@brief Set the rotation using axis angle notation | 
|---|
|  | 56 | * @param axis The axis around which to rotate | 
|---|
|  | 57 | * @param angle The magnitude of the rotation in Radians */ | 
|---|
| [1963] | 58 | void setRotation(const btVector3& axis, const btScalar& angle) | 
|---|
|  | 59 | { | 
|---|
|  | 60 | btScalar d = axis.length(); | 
|---|
| [2882] | 61 | btAssert(d != btScalar(0.0)); | 
|---|
| [1963] | 62 | btScalar s = btSin(angle * btScalar(0.5)) / d; | 
|---|
|  | 63 | setValue(axis.x() * s, axis.y() * s, axis.z() * s, | 
|---|
|  | 64 | btCos(angle * btScalar(0.5))); | 
|---|
|  | 65 | } | 
|---|
| [2430] | 66 | /**@brief Set the quaternion using Euler angles | 
|---|
|  | 67 | * @param yaw Angle around Y | 
|---|
|  | 68 | * @param pitch Angle around X | 
|---|
|  | 69 | * @param roll Angle around Z */ | 
|---|
| [1963] | 70 | void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) | 
|---|
|  | 71 | { | 
|---|
|  | 72 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); | 
|---|
|  | 73 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); | 
|---|
|  | 74 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); | 
|---|
|  | 75 | btScalar cosYaw = btCos(halfYaw); | 
|---|
|  | 76 | btScalar sinYaw = btSin(halfYaw); | 
|---|
|  | 77 | btScalar cosPitch = btCos(halfPitch); | 
|---|
|  | 78 | btScalar sinPitch = btSin(halfPitch); | 
|---|
|  | 79 | btScalar cosRoll = btCos(halfRoll); | 
|---|
|  | 80 | btScalar sinRoll = btSin(halfRoll); | 
|---|
|  | 81 | setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, | 
|---|
|  | 82 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, | 
|---|
|  | 83 | sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, | 
|---|
|  | 84 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); | 
|---|
|  | 85 | } | 
|---|
| [2430] | 86 | /**@brief Set the quaternion using euler angles | 
|---|
|  | 87 | * @param yaw Angle around Z | 
|---|
|  | 88 | * @param pitch Angle around Y | 
|---|
|  | 89 | * @param roll Angle around X */ | 
|---|
|  | 90 | void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) | 
|---|
| [1963] | 91 | { | 
|---|
| [2430] | 92 | btScalar halfYaw = btScalar(yaw) * btScalar(0.5); | 
|---|
|  | 93 | btScalar halfPitch = btScalar(pitch) * btScalar(0.5); | 
|---|
|  | 94 | btScalar halfRoll = btScalar(roll) * btScalar(0.5); | 
|---|
|  | 95 | btScalar cosYaw = btCos(halfYaw); | 
|---|
|  | 96 | btScalar sinYaw = btSin(halfYaw); | 
|---|
|  | 97 | btScalar cosPitch = btCos(halfPitch); | 
|---|
|  | 98 | btScalar sinPitch = btSin(halfPitch); | 
|---|
|  | 99 | btScalar cosRoll = btCos(halfRoll); | 
|---|
|  | 100 | btScalar sinRoll = btSin(halfRoll); | 
|---|
|  | 101 | setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x | 
|---|
|  | 102 | cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y | 
|---|
|  | 103 | cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z | 
|---|
|  | 104 | cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx | 
|---|
|  | 105 | } | 
|---|
|  | 106 | /**@brief Add two quaternions | 
|---|
|  | 107 | * @param q The quaternion to add to this one */ | 
|---|
|  | 108 | SIMD_FORCE_INLINE       btQuaternion& operator+=(const btQuaternion& q) | 
|---|
|  | 109 | { | 
|---|
|  | 110 | m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3]; | 
|---|
| [1963] | 111 | return *this; | 
|---|
|  | 112 | } | 
|---|
|  | 113 |  | 
|---|
| [2430] | 114 | /**@brief Subtract out a quaternion | 
|---|
|  | 115 | * @param q The quaternion to subtract from this one */ | 
|---|
| [1963] | 116 | btQuaternion& operator-=(const btQuaternion& q) | 
|---|
|  | 117 | { | 
|---|
| [2430] | 118 | m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3]; | 
|---|
| [1963] | 119 | return *this; | 
|---|
|  | 120 | } | 
|---|
|  | 121 |  | 
|---|
| [2430] | 122 | /**@brief Scale this quaternion | 
|---|
|  | 123 | * @param s The scalar to scale by */ | 
|---|
| [1963] | 124 | btQuaternion& operator*=(const btScalar& s) | 
|---|
|  | 125 | { | 
|---|
| [2430] | 126 | m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s; | 
|---|
| [1963] | 127 | return *this; | 
|---|
|  | 128 | } | 
|---|
|  | 129 |  | 
|---|
| [2430] | 130 | /**@brief Multiply this quaternion by q on the right | 
|---|
|  | 131 | * @param q The other quaternion | 
|---|
|  | 132 | * Equivilant to this = this * q */ | 
|---|
| [1963] | 133 | btQuaternion& operator*=(const btQuaternion& q) | 
|---|
|  | 134 | { | 
|---|
| [2430] | 135 | setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), | 
|---|
|  | 136 | m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), | 
|---|
|  | 137 | m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), | 
|---|
|  | 138 | m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); | 
|---|
| [1963] | 139 | return *this; | 
|---|
|  | 140 | } | 
|---|
| [2430] | 141 | /**@brief Return the dot product between this quaternion and another | 
|---|
|  | 142 | * @param q The other quaternion */ | 
|---|
| [1963] | 143 | btScalar dot(const btQuaternion& q) const | 
|---|
|  | 144 | { | 
|---|
| [2430] | 145 | return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3]; | 
|---|
| [1963] | 146 | } | 
|---|
|  | 147 |  | 
|---|
| [2430] | 148 | /**@brief Return the length squared of the quaternion */ | 
|---|
| [1963] | 149 | btScalar length2() const | 
|---|
|  | 150 | { | 
|---|
|  | 151 | return dot(*this); | 
|---|
|  | 152 | } | 
|---|
|  | 153 |  | 
|---|
| [2430] | 154 | /**@brief Return the length of the quaternion */ | 
|---|
| [1963] | 155 | btScalar length() const | 
|---|
|  | 156 | { | 
|---|
|  | 157 | return btSqrt(length2()); | 
|---|
|  | 158 | } | 
|---|
|  | 159 |  | 
|---|
| [2430] | 160 | /**@brief Normalize the quaternion | 
|---|
|  | 161 | * Such that x^2 + y^2 + z^2 +w^2 = 1 */ | 
|---|
| [1963] | 162 | btQuaternion& normalize() | 
|---|
|  | 163 | { | 
|---|
|  | 164 | return *this /= length(); | 
|---|
|  | 165 | } | 
|---|
|  | 166 |  | 
|---|
| [2430] | 167 | /**@brief Return a scaled version of this quaternion | 
|---|
|  | 168 | * @param s The scale factor */ | 
|---|
| [1963] | 169 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 170 | operator*(const btScalar& s) const | 
|---|
|  | 171 | { | 
|---|
| [2430] | 172 | return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); | 
|---|
| [1963] | 173 | } | 
|---|
|  | 174 |  | 
|---|
|  | 175 |  | 
|---|
| [2430] | 176 | /**@brief Return an inversely scaled versionof this quaternion | 
|---|
|  | 177 | * @param s The inverse scale factor */ | 
|---|
| [1963] | 178 | btQuaternion operator/(const btScalar& s) const | 
|---|
|  | 179 | { | 
|---|
| [2882] | 180 | btAssert(s != btScalar(0.0)); | 
|---|
| [1963] | 181 | return *this * (btScalar(1.0) / s); | 
|---|
|  | 182 | } | 
|---|
|  | 183 |  | 
|---|
| [2430] | 184 | /**@brief Inversely scale this quaternion | 
|---|
|  | 185 | * @param s The scale factor */ | 
|---|
| [1963] | 186 | btQuaternion& operator/=(const btScalar& s) | 
|---|
|  | 187 | { | 
|---|
| [2882] | 188 | btAssert(s != btScalar(0.0)); | 
|---|
| [1963] | 189 | return *this *= btScalar(1.0) / s; | 
|---|
|  | 190 | } | 
|---|
|  | 191 |  | 
|---|
| [2430] | 192 | /**@brief Return a normalized version of this quaternion */ | 
|---|
| [1963] | 193 | btQuaternion normalized() const | 
|---|
|  | 194 | { | 
|---|
|  | 195 | return *this / length(); | 
|---|
|  | 196 | } | 
|---|
| [2430] | 197 | /**@brief Return the angle between this quaternion and the other | 
|---|
|  | 198 | * @param q The other quaternion */ | 
|---|
| [1963] | 199 | btScalar angle(const btQuaternion& q) const | 
|---|
|  | 200 | { | 
|---|
|  | 201 | btScalar s = btSqrt(length2() * q.length2()); | 
|---|
| [2882] | 202 | btAssert(s != btScalar(0.0)); | 
|---|
| [1963] | 203 | return btAcos(dot(q) / s); | 
|---|
|  | 204 | } | 
|---|
| [2430] | 205 | /**@brief Return the angle of rotation represented by this quaternion */ | 
|---|
| [1963] | 206 | btScalar getAngle() const | 
|---|
|  | 207 | { | 
|---|
| [2430] | 208 | btScalar s = btScalar(2.) * btAcos(m_floats[3]); | 
|---|
| [1963] | 209 | return s; | 
|---|
|  | 210 | } | 
|---|
|  | 211 |  | 
|---|
| [8351] | 212 | /**@brief Return the axis of the rotation represented by this quaternion */ | 
|---|
|  | 213 | btVector3 getAxis() const | 
|---|
|  | 214 | { | 
|---|
|  | 215 | btScalar s_squared = btScalar(1.) - btPow(m_floats[3], btScalar(2.)); | 
|---|
|  | 216 | if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero | 
|---|
|  | 217 | return btVector3(1.0, 0.0, 0.0);  // Arbitrary | 
|---|
|  | 218 | btScalar s = btSqrt(s_squared); | 
|---|
|  | 219 | return btVector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s); | 
|---|
|  | 220 | } | 
|---|
| [1963] | 221 |  | 
|---|
| [8351] | 222 | /**@brief Return the inverse of this quaternion */ | 
|---|
| [1963] | 223 | btQuaternion inverse() const | 
|---|
|  | 224 | { | 
|---|
| [2430] | 225 | return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); | 
|---|
| [1963] | 226 | } | 
|---|
|  | 227 |  | 
|---|
| [2430] | 228 | /**@brief Return the sum of this quaternion and the other | 
|---|
|  | 229 | * @param q2 The other quaternion */ | 
|---|
| [1963] | 230 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 231 | operator+(const btQuaternion& q2) const | 
|---|
|  | 232 | { | 
|---|
|  | 233 | const btQuaternion& q1 = *this; | 
|---|
| [2430] | 234 | return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); | 
|---|
| [1963] | 235 | } | 
|---|
|  | 236 |  | 
|---|
| [2430] | 237 | /**@brief Return the difference between this quaternion and the other | 
|---|
|  | 238 | * @param q2 The other quaternion */ | 
|---|
| [1963] | 239 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 240 | operator-(const btQuaternion& q2) const | 
|---|
|  | 241 | { | 
|---|
|  | 242 | const btQuaternion& q1 = *this; | 
|---|
| [2430] | 243 | return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); | 
|---|
| [1963] | 244 | } | 
|---|
|  | 245 |  | 
|---|
| [2430] | 246 | /**@brief Return the negative of this quaternion | 
|---|
|  | 247 | * This simply negates each element */ | 
|---|
| [1963] | 248 | SIMD_FORCE_INLINE btQuaternion operator-() const | 
|---|
|  | 249 | { | 
|---|
|  | 250 | const btQuaternion& q2 = *this; | 
|---|
| [2430] | 251 | return btQuaternion( - q2.x(), - q2.y(),  - q2.z(),  - q2.m_floats[3]); | 
|---|
| [1963] | 252 | } | 
|---|
| [2430] | 253 | /**@todo document this and it's use */ | 
|---|
| [1963] | 254 | SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const | 
|---|
|  | 255 | { | 
|---|
|  | 256 | btQuaternion diff,sum; | 
|---|
|  | 257 | diff = *this - qd; | 
|---|
|  | 258 | sum = *this + qd; | 
|---|
|  | 259 | if( diff.dot(diff) > sum.dot(sum) ) | 
|---|
|  | 260 | return qd; | 
|---|
|  | 261 | return (-qd); | 
|---|
|  | 262 | } | 
|---|
|  | 263 |  | 
|---|
| [8351] | 264 | /**@todo document this and it's use */ | 
|---|
|  | 265 | SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const | 
|---|
|  | 266 | { | 
|---|
|  | 267 | btQuaternion diff,sum; | 
|---|
|  | 268 | diff = *this - qd; | 
|---|
|  | 269 | sum = *this + qd; | 
|---|
|  | 270 | if( diff.dot(diff) < sum.dot(sum) ) | 
|---|
|  | 271 | return qd; | 
|---|
|  | 272 | return (-qd); | 
|---|
|  | 273 | } | 
|---|
|  | 274 |  | 
|---|
|  | 275 |  | 
|---|
| [2430] | 276 | /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion | 
|---|
|  | 277 | * @param q The other quaternion to interpolate with | 
|---|
|  | 278 | * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q. | 
|---|
|  | 279 | * Slerp interpolates assuming constant velocity.  */ | 
|---|
| [1963] | 280 | btQuaternion slerp(const btQuaternion& q, const btScalar& t) const | 
|---|
|  | 281 | { | 
|---|
|  | 282 | btScalar theta = angle(q); | 
|---|
|  | 283 | if (theta != btScalar(0.0)) | 
|---|
|  | 284 | { | 
|---|
|  | 285 | btScalar d = btScalar(1.0) / btSin(theta); | 
|---|
|  | 286 | btScalar s0 = btSin((btScalar(1.0) - t) * theta); | 
|---|
|  | 287 | btScalar s1 = btSin(t * theta); | 
|---|
| [8351] | 288 | if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp | 
|---|
|  | 289 | return btQuaternion((m_floats[0] * s0 + -q.x() * s1) * d, | 
|---|
|  | 290 | (m_floats[1] * s0 + -q.y() * s1) * d, | 
|---|
|  | 291 | (m_floats[2] * s0 + -q.z() * s1) * d, | 
|---|
|  | 292 | (m_floats[3] * s0 + -q.m_floats[3] * s1) * d); | 
|---|
|  | 293 | else | 
|---|
|  | 294 | return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d, | 
|---|
|  | 295 | (m_floats[1] * s0 + q.y() * s1) * d, | 
|---|
|  | 296 | (m_floats[2] * s0 + q.z() * s1) * d, | 
|---|
|  | 297 | (m_floats[3] * s0 + q.m_floats[3] * s1) * d); | 
|---|
|  | 298 |  | 
|---|
| [1963] | 299 | } | 
|---|
|  | 300 | else | 
|---|
|  | 301 | { | 
|---|
|  | 302 | return *this; | 
|---|
|  | 303 | } | 
|---|
|  | 304 | } | 
|---|
|  | 305 |  | 
|---|
| [2882] | 306 | static const btQuaternion&      getIdentity() | 
|---|
|  | 307 | { | 
|---|
|  | 308 | static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.)); | 
|---|
|  | 309 | return identityQuat; | 
|---|
|  | 310 | } | 
|---|
|  | 311 |  | 
|---|
| [2430] | 312 | SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } | 
|---|
| [1963] | 313 |  | 
|---|
|  | 314 |  | 
|---|
|  | 315 | }; | 
|---|
|  | 316 |  | 
|---|
|  | 317 |  | 
|---|
| [2430] | 318 | /**@brief Return the negative of a quaternion */ | 
|---|
| [1963] | 319 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 320 | operator-(const btQuaternion& q) | 
|---|
|  | 321 | { | 
|---|
|  | 322 | return btQuaternion(-q.x(), -q.y(), -q.z(), -q.w()); | 
|---|
|  | 323 | } | 
|---|
|  | 324 |  | 
|---|
|  | 325 |  | 
|---|
|  | 326 |  | 
|---|
| [2430] | 327 | /**@brief Return the product of two quaternions */ | 
|---|
| [1963] | 328 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 329 | operator*(const btQuaternion& q1, const btQuaternion& q2) { | 
|---|
|  | 330 | return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), | 
|---|
|  | 331 | q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), | 
|---|
|  | 332 | q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), | 
|---|
|  | 333 | q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); | 
|---|
|  | 334 | } | 
|---|
|  | 335 |  | 
|---|
|  | 336 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 337 | operator*(const btQuaternion& q, const btVector3& w) | 
|---|
|  | 338 | { | 
|---|
|  | 339 | return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), | 
|---|
|  | 340 | q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), | 
|---|
|  | 341 | q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), | 
|---|
|  | 342 | -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); | 
|---|
|  | 343 | } | 
|---|
|  | 344 |  | 
|---|
|  | 345 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 346 | operator*(const btVector3& w, const btQuaternion& q) | 
|---|
|  | 347 | { | 
|---|
|  | 348 | return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), | 
|---|
|  | 349 | w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), | 
|---|
|  | 350 | w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), | 
|---|
|  | 351 | -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); | 
|---|
|  | 352 | } | 
|---|
|  | 353 |  | 
|---|
| [2430] | 354 | /**@brief Calculate the dot product between two quaternions */ | 
|---|
| [1963] | 355 | SIMD_FORCE_INLINE btScalar | 
|---|
|  | 356 | dot(const btQuaternion& q1, const btQuaternion& q2) | 
|---|
|  | 357 | { | 
|---|
|  | 358 | return q1.dot(q2); | 
|---|
|  | 359 | } | 
|---|
|  | 360 |  | 
|---|
|  | 361 |  | 
|---|
| [2430] | 362 | /**@brief Return the length of a quaternion */ | 
|---|
| [1963] | 363 | SIMD_FORCE_INLINE btScalar | 
|---|
|  | 364 | length(const btQuaternion& q) | 
|---|
|  | 365 | { | 
|---|
|  | 366 | return q.length(); | 
|---|
|  | 367 | } | 
|---|
|  | 368 |  | 
|---|
| [2430] | 369 | /**@brief Return the angle between two quaternions*/ | 
|---|
| [1963] | 370 | SIMD_FORCE_INLINE btScalar | 
|---|
|  | 371 | angle(const btQuaternion& q1, const btQuaternion& q2) | 
|---|
|  | 372 | { | 
|---|
|  | 373 | return q1.angle(q2); | 
|---|
|  | 374 | } | 
|---|
|  | 375 |  | 
|---|
| [2430] | 376 | /**@brief Return the inverse of a quaternion*/ | 
|---|
| [1963] | 377 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 378 | inverse(const btQuaternion& q) | 
|---|
|  | 379 | { | 
|---|
|  | 380 | return q.inverse(); | 
|---|
|  | 381 | } | 
|---|
|  | 382 |  | 
|---|
| [2430] | 383 | /**@brief Return the result of spherical linear interpolation betwen two quaternions | 
|---|
|  | 384 | * @param q1 The first quaternion | 
|---|
|  | 385 | * @param q2 The second quaternion | 
|---|
|  | 386 | * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 | 
|---|
|  | 387 | * Slerp assumes constant velocity between positions. */ | 
|---|
| [1963] | 388 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 389 | slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) | 
|---|
|  | 390 | { | 
|---|
|  | 391 | return q1.slerp(q2, t); | 
|---|
|  | 392 | } | 
|---|
|  | 393 |  | 
|---|
|  | 394 | SIMD_FORCE_INLINE btVector3 | 
|---|
|  | 395 | quatRotate(const btQuaternion& rotation, const btVector3& v) | 
|---|
|  | 396 | { | 
|---|
|  | 397 | btQuaternion q = rotation * v; | 
|---|
|  | 398 | q *= rotation.inverse(); | 
|---|
|  | 399 | return btVector3(q.getX(),q.getY(),q.getZ()); | 
|---|
|  | 400 | } | 
|---|
|  | 401 |  | 
|---|
|  | 402 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 403 | shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized | 
|---|
|  | 404 | { | 
|---|
|  | 405 | btVector3 c = v0.cross(v1); | 
|---|
|  | 406 | btScalar  d = v0.dot(v1); | 
|---|
|  | 407 |  | 
|---|
|  | 408 | if (d < -1.0 + SIMD_EPSILON) | 
|---|
| [8351] | 409 | { | 
|---|
|  | 410 | btVector3 n,unused; | 
|---|
|  | 411 | btPlaneSpace1(v0,n,unused); | 
|---|
|  | 412 | return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0 | 
|---|
|  | 413 | } | 
|---|
| [1963] | 414 |  | 
|---|
|  | 415 | btScalar  s = btSqrt((1.0f + d) * 2.0f); | 
|---|
|  | 416 | btScalar rs = 1.0f / s; | 
|---|
|  | 417 |  | 
|---|
|  | 418 | return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); | 
|---|
|  | 419 | } | 
|---|
|  | 420 |  | 
|---|
|  | 421 | SIMD_FORCE_INLINE btQuaternion | 
|---|
|  | 422 | shortestArcQuatNormalize2(btVector3& v0,btVector3& v1) | 
|---|
|  | 423 | { | 
|---|
|  | 424 | v0.normalize(); | 
|---|
|  | 425 | v1.normalize(); | 
|---|
|  | 426 | return shortestArcQuat(v0,v1); | 
|---|
|  | 427 | } | 
|---|
|  | 428 |  | 
|---|
| [8393] | 429 | #endif //BT_SIMD__QUATERNION_H_ | 
|---|
| [1963] | 430 |  | 
|---|
|  | 431 |  | 
|---|
|  | 432 |  | 
|---|
|  | 433 |  | 
|---|