| 1 | /* | 
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
| 4 |  | 
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
| 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
| 9 | subject to the following restrictions: | 
|---|
| 10 |  | 
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | /* | 
|---|
| 17 | Added by Roman Ponomarev (rponom@gmail.com) | 
|---|
| 18 | April 04, 2008 | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | #include "btSliderConstraint.h" | 
|---|
| 24 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
| 25 | #include "LinearMath/btTransformUtil.h" | 
|---|
| 26 | #include <new> | 
|---|
| 27 |  | 
|---|
| 28 | #define USE_OFFSET_FOR_CONSTANT_FRAME true | 
|---|
| 29 |  | 
|---|
| 30 | void btSliderConstraint::initParams() | 
|---|
| 31 | { | 
|---|
| 32 | m_lowerLinLimit = btScalar(1.0); | 
|---|
| 33 | m_upperLinLimit = btScalar(-1.0); | 
|---|
| 34 | m_lowerAngLimit = btScalar(0.); | 
|---|
| 35 | m_upperAngLimit = btScalar(0.); | 
|---|
| 36 | m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 37 | m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 38 | m_dampingDirLin = btScalar(0.); | 
|---|
| 39 | m_cfmDirLin = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 40 | m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 41 | m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 42 | m_dampingDirAng = btScalar(0.); | 
|---|
| 43 | m_cfmDirAng = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 44 | m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 45 | m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 46 | m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING; | 
|---|
| 47 | m_cfmOrthoLin = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 48 | m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 49 | m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 50 | m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING; | 
|---|
| 51 | m_cfmOrthoAng = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 52 | m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 53 | m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 54 | m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING; | 
|---|
| 55 | m_cfmLimLin = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 56 | m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS; | 
|---|
| 57 | m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION; | 
|---|
| 58 | m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING; | 
|---|
| 59 | m_cfmLimAng = SLIDER_CONSTRAINT_DEF_CFM; | 
|---|
| 60 |  | 
|---|
| 61 | m_poweredLinMotor = false; | 
|---|
| 62 | m_targetLinMotorVelocity = btScalar(0.); | 
|---|
| 63 | m_maxLinMotorForce = btScalar(0.); | 
|---|
| 64 | m_accumulatedLinMotorImpulse = btScalar(0.0); | 
|---|
| 65 |  | 
|---|
| 66 | m_poweredAngMotor = false; | 
|---|
| 67 | m_targetAngMotorVelocity = btScalar(0.); | 
|---|
| 68 | m_maxAngMotorForce = btScalar(0.); | 
|---|
| 69 | m_accumulatedAngMotorImpulse = btScalar(0.0); | 
|---|
| 70 |  | 
|---|
| 71 | m_flags = 0; | 
|---|
| 72 | m_flags = 0; | 
|---|
| 73 |  | 
|---|
| 74 | m_useOffsetForConstraintFrame = USE_OFFSET_FOR_CONSTANT_FRAME; | 
|---|
| 75 |  | 
|---|
| 76 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 |  | 
|---|
| 80 |  | 
|---|
| 81 |  | 
|---|
| 82 |  | 
|---|
| 83 | btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) | 
|---|
| 84 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB), | 
|---|
| 85 | m_useSolveConstraintObsolete(false), | 
|---|
| 86 | m_frameInA(frameInA), | 
|---|
| 87 | m_frameInB(frameInB), | 
|---|
| 88 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) | 
|---|
| 89 | { | 
|---|
| 90 | initParams(); | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 |  | 
|---|
| 94 |  | 
|---|
| 95 | btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA) | 
|---|
| 96 | : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB), | 
|---|
| 97 | m_useSolveConstraintObsolete(false), | 
|---|
| 98 | m_frameInB(frameInB), | 
|---|
| 99 | m_useLinearReferenceFrameA(useLinearReferenceFrameA) | 
|---|
| 100 | { | 
|---|
| 101 | ///not providing rigidbody A means implicitly using worldspace for body A | 
|---|
| 102 | m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB; | 
|---|
| 103 | //      m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin()); | 
|---|
| 104 |  | 
|---|
| 105 | initParams(); | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 |  | 
|---|
| 109 |  | 
|---|
| 110 |  | 
|---|
| 111 |  | 
|---|
| 112 |  | 
|---|
| 113 | void btSliderConstraint::getInfo1(btConstraintInfo1* info) | 
|---|
| 114 | { | 
|---|
| 115 | if (m_useSolveConstraintObsolete) | 
|---|
| 116 | { | 
|---|
| 117 | info->m_numConstraintRows = 0; | 
|---|
| 118 | info->nub = 0; | 
|---|
| 119 | } | 
|---|
| 120 | else | 
|---|
| 121 | { | 
|---|
| 122 | info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular | 
|---|
| 123 | info->nub = 2; | 
|---|
| 124 | //prepare constraint | 
|---|
| 125 | calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
| 126 | testAngLimits(); | 
|---|
| 127 | testLinLimits(); | 
|---|
| 128 | if(getSolveLinLimit() || getPoweredLinMotor()) | 
|---|
| 129 | { | 
|---|
| 130 | info->m_numConstraintRows++; // limit 3rd linear as well | 
|---|
| 131 | info->nub--; | 
|---|
| 132 | } | 
|---|
| 133 | if(getSolveAngLimit() || getPoweredAngMotor()) | 
|---|
| 134 | { | 
|---|
| 135 | info->m_numConstraintRows++; // limit 3rd angular as well | 
|---|
| 136 | info->nub--; | 
|---|
| 137 | } | 
|---|
| 138 | } | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 | void btSliderConstraint::getInfo1NonVirtual(btConstraintInfo1* info) | 
|---|
| 142 | { | 
|---|
| 143 |  | 
|---|
| 144 | info->m_numConstraintRows = 6; // Fixed 2 linear + 2 angular + 1 limit (even if not used) | 
|---|
| 145 | info->nub = 0; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | void btSliderConstraint::getInfo2(btConstraintInfo2* info) | 
|---|
| 149 | { | 
|---|
| 150 | getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(), m_rbA.getLinearVelocity(),m_rbB.getLinearVelocity(), m_rbA.getInvMass(),m_rbB.getInvMass()); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 |  | 
|---|
| 154 |  | 
|---|
| 155 |  | 
|---|
| 156 |  | 
|---|
| 157 |  | 
|---|
| 158 |  | 
|---|
| 159 | void btSliderConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB) | 
|---|
| 160 | { | 
|---|
| 161 | if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete)) | 
|---|
| 162 | { | 
|---|
| 163 | m_calculatedTransformA = transA * m_frameInA; | 
|---|
| 164 | m_calculatedTransformB = transB * m_frameInB; | 
|---|
| 165 | } | 
|---|
| 166 | else | 
|---|
| 167 | { | 
|---|
| 168 | m_calculatedTransformA = transB * m_frameInB; | 
|---|
| 169 | m_calculatedTransformB = transA * m_frameInA; | 
|---|
| 170 | } | 
|---|
| 171 | m_realPivotAInW = m_calculatedTransformA.getOrigin(); | 
|---|
| 172 | m_realPivotBInW = m_calculatedTransformB.getOrigin(); | 
|---|
| 173 | m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X | 
|---|
| 174 | if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete) | 
|---|
| 175 | { | 
|---|
| 176 | m_delta = m_realPivotBInW - m_realPivotAInW; | 
|---|
| 177 | } | 
|---|
| 178 | else | 
|---|
| 179 | { | 
|---|
| 180 | m_delta = m_realPivotAInW - m_realPivotBInW; | 
|---|
| 181 | } | 
|---|
| 182 | m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis; | 
|---|
| 183 | btVector3 normalWorld; | 
|---|
| 184 | int i; | 
|---|
| 185 | //linear part | 
|---|
| 186 | for(i = 0; i < 3; i++) | 
|---|
| 187 | { | 
|---|
| 188 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
| 189 | m_depth[i] = m_delta.dot(normalWorld); | 
|---|
| 190 | } | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 |  | 
|---|
| 194 |  | 
|---|
| 195 | void btSliderConstraint::testLinLimits(void) | 
|---|
| 196 | { | 
|---|
| 197 | m_solveLinLim = false; | 
|---|
| 198 | m_linPos = m_depth[0]; | 
|---|
| 199 | if(m_lowerLinLimit <= m_upperLinLimit) | 
|---|
| 200 | { | 
|---|
| 201 | if(m_depth[0] > m_upperLinLimit) | 
|---|
| 202 | { | 
|---|
| 203 | m_depth[0] -= m_upperLinLimit; | 
|---|
| 204 | m_solveLinLim = true; | 
|---|
| 205 | } | 
|---|
| 206 | else if(m_depth[0] < m_lowerLinLimit) | 
|---|
| 207 | { | 
|---|
| 208 | m_depth[0] -= m_lowerLinLimit; | 
|---|
| 209 | m_solveLinLim = true; | 
|---|
| 210 | } | 
|---|
| 211 | else | 
|---|
| 212 | { | 
|---|
| 213 | m_depth[0] = btScalar(0.); | 
|---|
| 214 | } | 
|---|
| 215 | } | 
|---|
| 216 | else | 
|---|
| 217 | { | 
|---|
| 218 | m_depth[0] = btScalar(0.); | 
|---|
| 219 | } | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 |  | 
|---|
| 223 |  | 
|---|
| 224 | void btSliderConstraint::testAngLimits(void) | 
|---|
| 225 | { | 
|---|
| 226 | m_angDepth = btScalar(0.); | 
|---|
| 227 | m_solveAngLim = false; | 
|---|
| 228 | if(m_lowerAngLimit <= m_upperAngLimit) | 
|---|
| 229 | { | 
|---|
| 230 | const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1); | 
|---|
| 231 | const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2); | 
|---|
| 232 | const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1); | 
|---|
| 233 | //              btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0)); | 
|---|
| 234 | btScalar rot = btAtan2(axisB0.dot(axisA1), axisB0.dot(axisA0)); | 
|---|
| 235 | rot = btAdjustAngleToLimits(rot, m_lowerAngLimit, m_upperAngLimit); | 
|---|
| 236 | m_angPos = rot; | 
|---|
| 237 | if(rot < m_lowerAngLimit) | 
|---|
| 238 | { | 
|---|
| 239 | m_angDepth = rot - m_lowerAngLimit; | 
|---|
| 240 | m_solveAngLim = true; | 
|---|
| 241 | } | 
|---|
| 242 | else if(rot > m_upperAngLimit) | 
|---|
| 243 | { | 
|---|
| 244 | m_angDepth = rot - m_upperAngLimit; | 
|---|
| 245 | m_solveAngLim = true; | 
|---|
| 246 | } | 
|---|
| 247 | } | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | btVector3 btSliderConstraint::getAncorInA(void) | 
|---|
| 251 | { | 
|---|
| 252 | btVector3 ancorInA; | 
|---|
| 253 | ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis; | 
|---|
| 254 | ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA; | 
|---|
| 255 | return ancorInA; | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 |  | 
|---|
| 259 |  | 
|---|
| 260 | btVector3 btSliderConstraint::getAncorInB(void) | 
|---|
| 261 | { | 
|---|
| 262 | btVector3 ancorInB; | 
|---|
| 263 | ancorInB = m_frameInB.getOrigin(); | 
|---|
| 264 | return ancorInB; | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 |  | 
|---|
| 268 | void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB, const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass  ) | 
|---|
| 269 | { | 
|---|
| 270 | const btTransform& trA = getCalculatedTransformA(); | 
|---|
| 271 | const btTransform& trB = getCalculatedTransformB(); | 
|---|
| 272 |  | 
|---|
| 273 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
| 274 | int i, s = info->rowskip; | 
|---|
| 275 |  | 
|---|
| 276 | btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f); | 
|---|
| 277 |  | 
|---|
| 278 | // difference between frames in WCS | 
|---|
| 279 | btVector3 ofs = trB.getOrigin() - trA.getOrigin(); | 
|---|
| 280 | // now get weight factors depending on masses | 
|---|
| 281 | btScalar miA = rbAinvMass; | 
|---|
| 282 | btScalar miB = rbBinvMass; | 
|---|
| 283 | bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); | 
|---|
| 284 | btScalar miS = miA + miB; | 
|---|
| 285 | btScalar factA, factB; | 
|---|
| 286 | if(miS > btScalar(0.f)) | 
|---|
| 287 | { | 
|---|
| 288 | factA = miB / miS; | 
|---|
| 289 | } | 
|---|
| 290 | else | 
|---|
| 291 | { | 
|---|
| 292 | factA = btScalar(0.5f); | 
|---|
| 293 | } | 
|---|
| 294 | factB = btScalar(1.0f) - factA; | 
|---|
| 295 | btVector3 ax1, p, q; | 
|---|
| 296 | btVector3 ax1A = trA.getBasis().getColumn(0); | 
|---|
| 297 | btVector3 ax1B = trB.getBasis().getColumn(0); | 
|---|
| 298 | if(m_useOffsetForConstraintFrame) | 
|---|
| 299 | { | 
|---|
| 300 | // get the desired direction of slider axis | 
|---|
| 301 | // as weighted sum of X-orthos of frameA and frameB in WCS | 
|---|
| 302 | ax1 = ax1A * factA + ax1B * factB; | 
|---|
| 303 | ax1.normalize(); | 
|---|
| 304 | // construct two orthos to slider axis | 
|---|
| 305 | btPlaneSpace1 (ax1, p, q); | 
|---|
| 306 | } | 
|---|
| 307 | else | 
|---|
| 308 | { // old way - use frameA | 
|---|
| 309 | ax1 = trA.getBasis().getColumn(0); | 
|---|
| 310 | // get 2 orthos to slider axis (Y, Z) | 
|---|
| 311 | p = trA.getBasis().getColumn(1); | 
|---|
| 312 | q = trA.getBasis().getColumn(2); | 
|---|
| 313 | } | 
|---|
| 314 | // make rotations around these orthos equal | 
|---|
| 315 | // the slider axis should be the only unconstrained | 
|---|
| 316 | // rotational axis, the angular velocity of the two bodies perpendicular to | 
|---|
| 317 | // the slider axis should be equal. thus the constraint equations are | 
|---|
| 318 | //    p*w1 - p*w2 = 0 | 
|---|
| 319 | //    q*w1 - q*w2 = 0 | 
|---|
| 320 | // where p and q are unit vectors normal to the slider axis, and w1 and w2 | 
|---|
| 321 | // are the angular velocity vectors of the two bodies. | 
|---|
| 322 | info->m_J1angularAxis[0] = p[0]; | 
|---|
| 323 | info->m_J1angularAxis[1] = p[1]; | 
|---|
| 324 | info->m_J1angularAxis[2] = p[2]; | 
|---|
| 325 | info->m_J1angularAxis[s+0] = q[0]; | 
|---|
| 326 | info->m_J1angularAxis[s+1] = q[1]; | 
|---|
| 327 | info->m_J1angularAxis[s+2] = q[2]; | 
|---|
| 328 |  | 
|---|
| 329 | info->m_J2angularAxis[0] = -p[0]; | 
|---|
| 330 | info->m_J2angularAxis[1] = -p[1]; | 
|---|
| 331 | info->m_J2angularAxis[2] = -p[2]; | 
|---|
| 332 | info->m_J2angularAxis[s+0] = -q[0]; | 
|---|
| 333 | info->m_J2angularAxis[s+1] = -q[1]; | 
|---|
| 334 | info->m_J2angularAxis[s+2] = -q[2]; | 
|---|
| 335 | // compute the right hand side of the constraint equation. set relative | 
|---|
| 336 | // body velocities along p and q to bring the slider back into alignment. | 
|---|
| 337 | // if ax1A,ax1B are the unit length slider axes as computed from bodyA and | 
|---|
| 338 | // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2). | 
|---|
| 339 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity | 
|---|
| 340 | // along u to cover angle erp*theta in one step : | 
|---|
| 341 | //   |angular_velocity| = angle/time = erp*theta / stepsize | 
|---|
| 342 | //                      = (erp*fps) * theta | 
|---|
| 343 | //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| | 
|---|
| 344 | //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta) | 
|---|
| 345 | // ...as ax1 and ax2 are unit length. if theta is smallish, | 
|---|
| 346 | // theta ~= sin(theta), so | 
|---|
| 347 | //    angular_velocity  = (erp*fps) * (ax1 x ax2) | 
|---|
| 348 | // ax1 x ax2 is in the plane space of ax1, so we project the angular | 
|---|
| 349 | // velocity to p and q to find the right hand side. | 
|---|
| 350 | //      btScalar k = info->fps * info->erp * getSoftnessOrthoAng(); | 
|---|
| 351 | btScalar currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTANG) ? m_softnessOrthoAng : m_softnessOrthoAng * info->erp; | 
|---|
| 352 | btScalar k = info->fps * currERP; | 
|---|
| 353 |  | 
|---|
| 354 | btVector3 u = ax1A.cross(ax1B); | 
|---|
| 355 | info->m_constraintError[0] = k * u.dot(p); | 
|---|
| 356 | info->m_constraintError[s] = k * u.dot(q); | 
|---|
| 357 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG) | 
|---|
| 358 | { | 
|---|
| 359 | info->cfm[0] = m_cfmOrthoAng; | 
|---|
| 360 | info->cfm[s] = m_cfmOrthoAng; | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | int nrow = 1; // last filled row | 
|---|
| 364 | int srow; | 
|---|
| 365 | btScalar limit_err; | 
|---|
| 366 | int limit; | 
|---|
| 367 | int powered; | 
|---|
| 368 |  | 
|---|
| 369 | // next two rows. | 
|---|
| 370 | // we want: velA + wA x relA == velB + wB x relB ... but this would | 
|---|
| 371 | // result in three equations, so we project along two orthos to the slider axis | 
|---|
| 372 |  | 
|---|
| 373 | btTransform bodyA_trans = transA; | 
|---|
| 374 | btTransform bodyB_trans = transB; | 
|---|
| 375 | nrow++; | 
|---|
| 376 | int s2 = nrow * s; | 
|---|
| 377 | nrow++; | 
|---|
| 378 | int s3 = nrow * s; | 
|---|
| 379 | btVector3 tmpA(0,0,0), tmpB(0,0,0), relA(0,0,0), relB(0,0,0), c(0,0,0); | 
|---|
| 380 | if(m_useOffsetForConstraintFrame) | 
|---|
| 381 | { | 
|---|
| 382 | // get vector from bodyB to frameB in WCS | 
|---|
| 383 | relB = trB.getOrigin() - bodyB_trans.getOrigin(); | 
|---|
| 384 | // get its projection to slider axis | 
|---|
| 385 | btVector3 projB = ax1 * relB.dot(ax1); | 
|---|
| 386 | // get vector directed from bodyB to slider axis (and orthogonal to it) | 
|---|
| 387 | btVector3 orthoB = relB - projB; | 
|---|
| 388 | // same for bodyA | 
|---|
| 389 | relA = trA.getOrigin() - bodyA_trans.getOrigin(); | 
|---|
| 390 | btVector3 projA = ax1 * relA.dot(ax1); | 
|---|
| 391 | btVector3 orthoA = relA - projA; | 
|---|
| 392 | // get desired offset between frames A and B along slider axis | 
|---|
| 393 | btScalar sliderOffs = m_linPos - m_depth[0]; | 
|---|
| 394 | // desired vector from projection of center of bodyA to projection of center of bodyB to slider axis | 
|---|
| 395 | btVector3 totalDist = projA + ax1 * sliderOffs - projB; | 
|---|
| 396 | // get offset vectors relA and relB | 
|---|
| 397 | relA = orthoA + totalDist * factA; | 
|---|
| 398 | relB = orthoB - totalDist * factB; | 
|---|
| 399 | // now choose average ortho to slider axis | 
|---|
| 400 | p = orthoB * factA + orthoA * factB; | 
|---|
| 401 | btScalar len2 = p.length2(); | 
|---|
| 402 | if(len2 > SIMD_EPSILON) | 
|---|
| 403 | { | 
|---|
| 404 | p /= btSqrt(len2); | 
|---|
| 405 | } | 
|---|
| 406 | else | 
|---|
| 407 | { | 
|---|
| 408 | p = trA.getBasis().getColumn(1); | 
|---|
| 409 | } | 
|---|
| 410 | // make one more ortho | 
|---|
| 411 | q = ax1.cross(p); | 
|---|
| 412 | // fill two rows | 
|---|
| 413 | tmpA = relA.cross(p); | 
|---|
| 414 | tmpB = relB.cross(p); | 
|---|
| 415 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; | 
|---|
| 416 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; | 
|---|
| 417 | tmpA = relA.cross(q); | 
|---|
| 418 | tmpB = relB.cross(q); | 
|---|
| 419 | if(hasStaticBody && getSolveAngLimit()) | 
|---|
| 420 | { // to make constraint between static and dynamic objects more rigid | 
|---|
| 421 | // remove wA (or wB) from equation if angular limit is hit | 
|---|
| 422 | tmpB *= factB; | 
|---|
| 423 | tmpA *= factA; | 
|---|
| 424 | } | 
|---|
| 425 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmpA[i]; | 
|---|
| 426 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i]; | 
|---|
| 427 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; | 
|---|
| 428 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; | 
|---|
| 429 | } | 
|---|
| 430 | else | 
|---|
| 431 | {       // old way - maybe incorrect if bodies are not on the slider axis | 
|---|
| 432 | // see discussion "Bug in slider constraint" http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4024&start=0 | 
|---|
| 433 | c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin(); | 
|---|
| 434 | btVector3 tmp = c.cross(p); | 
|---|
| 435 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i]; | 
|---|
| 436 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i]; | 
|---|
| 437 | tmp = c.cross(q); | 
|---|
| 438 | for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i]; | 
|---|
| 439 | for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i]; | 
|---|
| 440 |  | 
|---|
| 441 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i]; | 
|---|
| 442 | for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i]; | 
|---|
| 443 | } | 
|---|
| 444 | // compute two elements of right hand side | 
|---|
| 445 |  | 
|---|
| 446 | //      k = info->fps * info->erp * getSoftnessOrthoLin(); | 
|---|
| 447 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN) ? m_softnessOrthoLin : m_softnessOrthoLin * info->erp; | 
|---|
| 448 | k = info->fps * currERP; | 
|---|
| 449 |  | 
|---|
| 450 | btScalar rhs = k * p.dot(ofs); | 
|---|
| 451 | info->m_constraintError[s2] = rhs; | 
|---|
| 452 | rhs = k * q.dot(ofs); | 
|---|
| 453 | info->m_constraintError[s3] = rhs; | 
|---|
| 454 | if(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN) | 
|---|
| 455 | { | 
|---|
| 456 | info->cfm[s2] = m_cfmOrthoLin; | 
|---|
| 457 | info->cfm[s3] = m_cfmOrthoLin; | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 |  | 
|---|
| 461 | // check linear limits | 
|---|
| 462 | limit_err = btScalar(0.0); | 
|---|
| 463 | limit = 0; | 
|---|
| 464 | if(getSolveLinLimit()) | 
|---|
| 465 | { | 
|---|
| 466 | limit_err = getLinDepth() *  signFact; | 
|---|
| 467 | limit = (limit_err > btScalar(0.0)) ? 2 : 1; | 
|---|
| 468 | } | 
|---|
| 469 | powered = 0; | 
|---|
| 470 | if(getPoweredLinMotor()) | 
|---|
| 471 | { | 
|---|
| 472 | powered = 1; | 
|---|
| 473 | } | 
|---|
| 474 | // if the slider has joint limits or motor, add in the extra row | 
|---|
| 475 | if (limit || powered) | 
|---|
| 476 | { | 
|---|
| 477 | nrow++; | 
|---|
| 478 | srow = nrow * info->rowskip; | 
|---|
| 479 | info->m_J1linearAxis[srow+0] = ax1[0]; | 
|---|
| 480 | info->m_J1linearAxis[srow+1] = ax1[1]; | 
|---|
| 481 | info->m_J1linearAxis[srow+2] = ax1[2]; | 
|---|
| 482 | // linear torque decoupling step: | 
|---|
| 483 | // | 
|---|
| 484 | // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies | 
|---|
| 485 | // do not create a torque couple. in other words, the points that the | 
|---|
| 486 | // constraint force is applied at must lie along the same ax1 axis. | 
|---|
| 487 | // a torque couple will result in limited slider-jointed free | 
|---|
| 488 | // bodies from gaining angular momentum. | 
|---|
| 489 | if(m_useOffsetForConstraintFrame) | 
|---|
| 490 | { | 
|---|
| 491 | // this is needed only when bodyA and bodyB are both dynamic. | 
|---|
| 492 | if(!hasStaticBody) | 
|---|
| 493 | { | 
|---|
| 494 | tmpA = relA.cross(ax1); | 
|---|
| 495 | tmpB = relB.cross(ax1); | 
|---|
| 496 | info->m_J1angularAxis[srow+0] = tmpA[0]; | 
|---|
| 497 | info->m_J1angularAxis[srow+1] = tmpA[1]; | 
|---|
| 498 | info->m_J1angularAxis[srow+2] = tmpA[2]; | 
|---|
| 499 | info->m_J2angularAxis[srow+0] = -tmpB[0]; | 
|---|
| 500 | info->m_J2angularAxis[srow+1] = -tmpB[1]; | 
|---|
| 501 | info->m_J2angularAxis[srow+2] = -tmpB[2]; | 
|---|
| 502 | } | 
|---|
| 503 | } | 
|---|
| 504 | else | 
|---|
| 505 | { // The old way. May be incorrect if bodies are not on the slider axis | 
|---|
| 506 | btVector3 ltd;  // Linear Torque Decoupling vector (a torque) | 
|---|
| 507 | ltd = c.cross(ax1); | 
|---|
| 508 | info->m_J1angularAxis[srow+0] = factA*ltd[0]; | 
|---|
| 509 | info->m_J1angularAxis[srow+1] = factA*ltd[1]; | 
|---|
| 510 | info->m_J1angularAxis[srow+2] = factA*ltd[2]; | 
|---|
| 511 | info->m_J2angularAxis[srow+0] = factB*ltd[0]; | 
|---|
| 512 | info->m_J2angularAxis[srow+1] = factB*ltd[1]; | 
|---|
| 513 | info->m_J2angularAxis[srow+2] = factB*ltd[2]; | 
|---|
| 514 | } | 
|---|
| 515 | // right-hand part | 
|---|
| 516 | btScalar lostop = getLowerLinLimit(); | 
|---|
| 517 | btScalar histop = getUpperLinLimit(); | 
|---|
| 518 | if(limit && (lostop == histop)) | 
|---|
| 519 | {  // the joint motor is ineffective | 
|---|
| 520 | powered = 0; | 
|---|
| 521 | } | 
|---|
| 522 | info->m_constraintError[srow] = 0.; | 
|---|
| 523 | info->m_lowerLimit[srow] = 0.; | 
|---|
| 524 | info->m_upperLimit[srow] = 0.; | 
|---|
| 525 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN) ? m_softnessLimLin : info->erp; | 
|---|
| 526 | if(powered) | 
|---|
| 527 | { | 
|---|
| 528 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN) | 
|---|
| 529 | { | 
|---|
| 530 | info->cfm[srow] = m_cfmDirLin; | 
|---|
| 531 | } | 
|---|
| 532 | btScalar tag_vel = getTargetLinMotorVelocity(); | 
|---|
| 533 | btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * currERP); | 
|---|
| 534 | info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity(); | 
|---|
| 535 | info->m_lowerLimit[srow] += -getMaxLinMotorForce() * info->fps; | 
|---|
| 536 | info->m_upperLimit[srow] += getMaxLinMotorForce() * info->fps; | 
|---|
| 537 | } | 
|---|
| 538 | if(limit) | 
|---|
| 539 | { | 
|---|
| 540 | k = info->fps * currERP; | 
|---|
| 541 | info->m_constraintError[srow] += k * limit_err; | 
|---|
| 542 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN) | 
|---|
| 543 | { | 
|---|
| 544 | info->cfm[srow] = m_cfmLimLin; | 
|---|
| 545 | } | 
|---|
| 546 | if(lostop == histop) | 
|---|
| 547 | {       // limited low and high simultaneously | 
|---|
| 548 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 549 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 550 | } | 
|---|
| 551 | else if(limit == 1) | 
|---|
| 552 | { // low limit | 
|---|
| 553 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 554 | info->m_upperLimit[srow] = 0; | 
|---|
| 555 | } | 
|---|
| 556 | else | 
|---|
| 557 | { // high limit | 
|---|
| 558 | info->m_lowerLimit[srow] = 0; | 
|---|
| 559 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 560 | } | 
|---|
| 561 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that) | 
|---|
| 562 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin()); | 
|---|
| 563 | if(bounce > btScalar(0.0)) | 
|---|
| 564 | { | 
|---|
| 565 | btScalar vel = linVelA.dot(ax1); | 
|---|
| 566 | vel -= linVelB.dot(ax1); | 
|---|
| 567 | vel *= signFact; | 
|---|
| 568 | // only apply bounce if the velocity is incoming, and if the | 
|---|
| 569 | // resulting c[] exceeds what we already have. | 
|---|
| 570 | if(limit == 1) | 
|---|
| 571 | {       // low limit | 
|---|
| 572 | if(vel < 0) | 
|---|
| 573 | { | 
|---|
| 574 | btScalar newc = -bounce * vel; | 
|---|
| 575 | if (newc > info->m_constraintError[srow]) | 
|---|
| 576 | { | 
|---|
| 577 | info->m_constraintError[srow] = newc; | 
|---|
| 578 | } | 
|---|
| 579 | } | 
|---|
| 580 | } | 
|---|
| 581 | else | 
|---|
| 582 | { // high limit - all those computations are reversed | 
|---|
| 583 | if(vel > 0) | 
|---|
| 584 | { | 
|---|
| 585 | btScalar newc = -bounce * vel; | 
|---|
| 586 | if(newc < info->m_constraintError[srow]) | 
|---|
| 587 | { | 
|---|
| 588 | info->m_constraintError[srow] = newc; | 
|---|
| 589 | } | 
|---|
| 590 | } | 
|---|
| 591 | } | 
|---|
| 592 | } | 
|---|
| 593 | info->m_constraintError[srow] *= getSoftnessLimLin(); | 
|---|
| 594 | } // if(limit) | 
|---|
| 595 | } // if linear limit | 
|---|
| 596 | // check angular limits | 
|---|
| 597 | limit_err = btScalar(0.0); | 
|---|
| 598 | limit = 0; | 
|---|
| 599 | if(getSolveAngLimit()) | 
|---|
| 600 | { | 
|---|
| 601 | limit_err = getAngDepth(); | 
|---|
| 602 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; | 
|---|
| 603 | } | 
|---|
| 604 | // if the slider has joint limits, add in the extra row | 
|---|
| 605 | powered = 0; | 
|---|
| 606 | if(getPoweredAngMotor()) | 
|---|
| 607 | { | 
|---|
| 608 | powered = 1; | 
|---|
| 609 | } | 
|---|
| 610 | if(limit || powered) | 
|---|
| 611 | { | 
|---|
| 612 | nrow++; | 
|---|
| 613 | srow = nrow * info->rowskip; | 
|---|
| 614 | info->m_J1angularAxis[srow+0] = ax1[0]; | 
|---|
| 615 | info->m_J1angularAxis[srow+1] = ax1[1]; | 
|---|
| 616 | info->m_J1angularAxis[srow+2] = ax1[2]; | 
|---|
| 617 |  | 
|---|
| 618 | info->m_J2angularAxis[srow+0] = -ax1[0]; | 
|---|
| 619 | info->m_J2angularAxis[srow+1] = -ax1[1]; | 
|---|
| 620 | info->m_J2angularAxis[srow+2] = -ax1[2]; | 
|---|
| 621 |  | 
|---|
| 622 | btScalar lostop = getLowerAngLimit(); | 
|---|
| 623 | btScalar histop = getUpperAngLimit(); | 
|---|
| 624 | if(limit && (lostop == histop)) | 
|---|
| 625 | {  // the joint motor is ineffective | 
|---|
| 626 | powered = 0; | 
|---|
| 627 | } | 
|---|
| 628 | currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMANG) ? m_softnessLimAng : info->erp; | 
|---|
| 629 | if(powered) | 
|---|
| 630 | { | 
|---|
| 631 | if(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG) | 
|---|
| 632 | { | 
|---|
| 633 | info->cfm[srow] = m_cfmDirAng; | 
|---|
| 634 | } | 
|---|
| 635 | btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * currERP); | 
|---|
| 636 | info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity(); | 
|---|
| 637 | info->m_lowerLimit[srow] = -getMaxAngMotorForce() * info->fps; | 
|---|
| 638 | info->m_upperLimit[srow] = getMaxAngMotorForce() * info->fps; | 
|---|
| 639 | } | 
|---|
| 640 | if(limit) | 
|---|
| 641 | { | 
|---|
| 642 | k = info->fps * currERP; | 
|---|
| 643 | info->m_constraintError[srow] += k * limit_err; | 
|---|
| 644 | if(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG) | 
|---|
| 645 | { | 
|---|
| 646 | info->cfm[srow] = m_cfmLimAng; | 
|---|
| 647 | } | 
|---|
| 648 | if(lostop == histop) | 
|---|
| 649 | { | 
|---|
| 650 | // limited low and high simultaneously | 
|---|
| 651 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 652 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 653 | } | 
|---|
| 654 | else if(limit == 1) | 
|---|
| 655 | { // low limit | 
|---|
| 656 | info->m_lowerLimit[srow] = 0; | 
|---|
| 657 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 658 | } | 
|---|
| 659 | else | 
|---|
| 660 | { // high limit | 
|---|
| 661 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 662 | info->m_upperLimit[srow] = 0; | 
|---|
| 663 | } | 
|---|
| 664 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) | 
|---|
| 665 | btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng()); | 
|---|
| 666 | if(bounce > btScalar(0.0)) | 
|---|
| 667 | { | 
|---|
| 668 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); | 
|---|
| 669 | vel -= m_rbB.getAngularVelocity().dot(ax1); | 
|---|
| 670 | // only apply bounce if the velocity is incoming, and if the | 
|---|
| 671 | // resulting c[] exceeds what we already have. | 
|---|
| 672 | if(limit == 1) | 
|---|
| 673 | {       // low limit | 
|---|
| 674 | if(vel < 0) | 
|---|
| 675 | { | 
|---|
| 676 | btScalar newc = -bounce * vel; | 
|---|
| 677 | if(newc > info->m_constraintError[srow]) | 
|---|
| 678 | { | 
|---|
| 679 | info->m_constraintError[srow] = newc; | 
|---|
| 680 | } | 
|---|
| 681 | } | 
|---|
| 682 | } | 
|---|
| 683 | else | 
|---|
| 684 | {       // high limit - all those computations are reversed | 
|---|
| 685 | if(vel > 0) | 
|---|
| 686 | { | 
|---|
| 687 | btScalar newc = -bounce * vel; | 
|---|
| 688 | if(newc < info->m_constraintError[srow]) | 
|---|
| 689 | { | 
|---|
| 690 | info->m_constraintError[srow] = newc; | 
|---|
| 691 | } | 
|---|
| 692 | } | 
|---|
| 693 | } | 
|---|
| 694 | } | 
|---|
| 695 | info->m_constraintError[srow] *= getSoftnessLimAng(); | 
|---|
| 696 | } // if(limit) | 
|---|
| 697 | } // if angular limit or powered | 
|---|
| 698 | } | 
|---|
| 699 |  | 
|---|
| 700 |  | 
|---|
| 701 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). | 
|---|
| 702 | ///If no axis is provided, it uses the default axis for this constraint. | 
|---|
| 703 | void btSliderConstraint::setParam(int num, btScalar value, int axis) | 
|---|
| 704 | { | 
|---|
| 705 | switch(num) | 
|---|
| 706 | { | 
|---|
| 707 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
| 708 | if(axis < 1) | 
|---|
| 709 | { | 
|---|
| 710 | m_softnessLimLin = value; | 
|---|
| 711 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMLIN; | 
|---|
| 712 | } | 
|---|
| 713 | else if(axis < 3) | 
|---|
| 714 | { | 
|---|
| 715 | m_softnessOrthoLin = value; | 
|---|
| 716 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTLIN; | 
|---|
| 717 | } | 
|---|
| 718 | else if(axis == 3) | 
|---|
| 719 | { | 
|---|
| 720 | m_softnessLimAng = value; | 
|---|
| 721 | m_flags |= BT_SLIDER_FLAGS_ERP_LIMANG; | 
|---|
| 722 | } | 
|---|
| 723 | else if(axis < 6) | 
|---|
| 724 | { | 
|---|
| 725 | m_softnessOrthoAng = value; | 
|---|
| 726 | m_flags |= BT_SLIDER_FLAGS_ERP_ORTANG; | 
|---|
| 727 | } | 
|---|
| 728 | else | 
|---|
| 729 | { | 
|---|
| 730 | btAssertConstrParams(0); | 
|---|
| 731 | } | 
|---|
| 732 | break; | 
|---|
| 733 | case BT_CONSTRAINT_CFM : | 
|---|
| 734 | if(axis < 1) | 
|---|
| 735 | { | 
|---|
| 736 | m_cfmDirLin = value; | 
|---|
| 737 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRLIN; | 
|---|
| 738 | } | 
|---|
| 739 | else if(axis == 3) | 
|---|
| 740 | { | 
|---|
| 741 | m_cfmDirAng = value; | 
|---|
| 742 | m_flags |= BT_SLIDER_FLAGS_CFM_DIRANG; | 
|---|
| 743 | } | 
|---|
| 744 | else | 
|---|
| 745 | { | 
|---|
| 746 | btAssertConstrParams(0); | 
|---|
| 747 | } | 
|---|
| 748 | break; | 
|---|
| 749 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
| 750 | if(axis < 1) | 
|---|
| 751 | { | 
|---|
| 752 | m_cfmLimLin = value; | 
|---|
| 753 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMLIN; | 
|---|
| 754 | } | 
|---|
| 755 | else if(axis < 3) | 
|---|
| 756 | { | 
|---|
| 757 | m_cfmOrthoLin = value; | 
|---|
| 758 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTLIN; | 
|---|
| 759 | } | 
|---|
| 760 | else if(axis == 3) | 
|---|
| 761 | { | 
|---|
| 762 | m_cfmLimAng = value; | 
|---|
| 763 | m_flags |= BT_SLIDER_FLAGS_CFM_LIMANG; | 
|---|
| 764 | } | 
|---|
| 765 | else if(axis < 6) | 
|---|
| 766 | { | 
|---|
| 767 | m_cfmOrthoAng = value; | 
|---|
| 768 | m_flags |= BT_SLIDER_FLAGS_CFM_ORTANG; | 
|---|
| 769 | } | 
|---|
| 770 | else | 
|---|
| 771 | { | 
|---|
| 772 | btAssertConstrParams(0); | 
|---|
| 773 | } | 
|---|
| 774 | break; | 
|---|
| 775 | } | 
|---|
| 776 | } | 
|---|
| 777 |  | 
|---|
| 778 | ///return the local value of parameter | 
|---|
| 779 | btScalar btSliderConstraint::getParam(int num, int axis) const | 
|---|
| 780 | { | 
|---|
| 781 | btScalar retVal(SIMD_INFINITY); | 
|---|
| 782 | switch(num) | 
|---|
| 783 | { | 
|---|
| 784 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
| 785 | if(axis < 1) | 
|---|
| 786 | { | 
|---|
| 787 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN); | 
|---|
| 788 | retVal = m_softnessLimLin; | 
|---|
| 789 | } | 
|---|
| 790 | else if(axis < 3) | 
|---|
| 791 | { | 
|---|
| 792 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN); | 
|---|
| 793 | retVal = m_softnessOrthoLin; | 
|---|
| 794 | } | 
|---|
| 795 | else if(axis == 3) | 
|---|
| 796 | { | 
|---|
| 797 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMANG); | 
|---|
| 798 | retVal = m_softnessLimAng; | 
|---|
| 799 | } | 
|---|
| 800 | else if(axis < 6) | 
|---|
| 801 | { | 
|---|
| 802 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTANG); | 
|---|
| 803 | retVal = m_softnessOrthoAng; | 
|---|
| 804 | } | 
|---|
| 805 | else | 
|---|
| 806 | { | 
|---|
| 807 | btAssertConstrParams(0); | 
|---|
| 808 | } | 
|---|
| 809 | break; | 
|---|
| 810 | case BT_CONSTRAINT_CFM : | 
|---|
| 811 | if(axis < 1) | 
|---|
| 812 | { | 
|---|
| 813 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN); | 
|---|
| 814 | retVal = m_cfmDirLin; | 
|---|
| 815 | } | 
|---|
| 816 | else if(axis == 3) | 
|---|
| 817 | { | 
|---|
| 818 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG); | 
|---|
| 819 | retVal = m_cfmDirAng; | 
|---|
| 820 | } | 
|---|
| 821 | else | 
|---|
| 822 | { | 
|---|
| 823 | btAssertConstrParams(0); | 
|---|
| 824 | } | 
|---|
| 825 | break; | 
|---|
| 826 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
| 827 | if(axis < 1) | 
|---|
| 828 | { | 
|---|
| 829 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN); | 
|---|
| 830 | retVal = m_cfmLimLin; | 
|---|
| 831 | } | 
|---|
| 832 | else if(axis < 3) | 
|---|
| 833 | { | 
|---|
| 834 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN); | 
|---|
| 835 | retVal = m_cfmOrthoLin; | 
|---|
| 836 | } | 
|---|
| 837 | else if(axis == 3) | 
|---|
| 838 | { | 
|---|
| 839 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG); | 
|---|
| 840 | retVal = m_cfmLimAng; | 
|---|
| 841 | } | 
|---|
| 842 | else if(axis < 6) | 
|---|
| 843 | { | 
|---|
| 844 | btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG); | 
|---|
| 845 | retVal = m_cfmOrthoAng; | 
|---|
| 846 | } | 
|---|
| 847 | else | 
|---|
| 848 | { | 
|---|
| 849 | btAssertConstrParams(0); | 
|---|
| 850 | } | 
|---|
| 851 | break; | 
|---|
| 852 | } | 
|---|
| 853 | return retVal; | 
|---|
| 854 | } | 
|---|
| 855 |  | 
|---|
| 856 |  | 
|---|
| 857 |  | 
|---|