| [1963] | 1 | /* | 
|---|
 | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
 | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
 | 4 |  | 
|---|
 | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
 | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
 | 7 | Permission is granted to anyone to use this software for any purpose,  | 
|---|
 | 8 | including commercial applications, and to alter it and redistribute it freely,  | 
|---|
 | 9 | subject to the following restrictions: | 
|---|
 | 10 |  | 
|---|
 | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
 | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
 | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
 | 14 | */ | 
|---|
 | 15 |  | 
|---|
| [8393] | 16 | #ifndef BT_JACOBIAN_ENTRY_H | 
|---|
 | 17 | #define BT_JACOBIAN_ENTRY_H | 
|---|
| [1963] | 18 |  | 
|---|
 | 19 | #include "LinearMath/btVector3.h" | 
|---|
 | 20 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
 | 21 |  | 
|---|
 | 22 |  | 
|---|
 | 23 | //notes: | 
|---|
 | 24 | // Another memory optimization would be to store m_1MinvJt in the remaining 3 w components | 
|---|
 | 25 | // which makes the btJacobianEntry memory layout 16 bytes | 
|---|
 | 26 | // if you only are interested in angular part, just feed massInvA and massInvB zero | 
|---|
 | 27 |  | 
|---|
 | 28 | /// Jacobian entry is an abstraction that allows to describe constraints | 
|---|
 | 29 | /// it can be used in combination with a constraint solver | 
|---|
 | 30 | /// Can be used to relate the effect of an impulse to the constraint error | 
|---|
| [8351] | 31 | ATTRIBUTE_ALIGNED16(class) btJacobianEntry | 
|---|
| [1963] | 32 | { | 
|---|
 | 33 | public: | 
|---|
 | 34 |         btJacobianEntry() {}; | 
|---|
 | 35 |         //constraint between two different rigidbodies | 
|---|
 | 36 |         btJacobianEntry( | 
|---|
 | 37 |                 const btMatrix3x3& world2A, | 
|---|
 | 38 |                 const btMatrix3x3& world2B, | 
|---|
 | 39 |                 const btVector3& rel_pos1,const btVector3& rel_pos2, | 
|---|
 | 40 |                 const btVector3& jointAxis, | 
|---|
 | 41 |                 const btVector3& inertiaInvA,  | 
|---|
 | 42 |                 const btScalar massInvA, | 
|---|
 | 43 |                 const btVector3& inertiaInvB, | 
|---|
 | 44 |                 const btScalar massInvB) | 
|---|
 | 45 |                 :m_linearJointAxis(jointAxis) | 
|---|
 | 46 |         { | 
|---|
 | 47 |                 m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis)); | 
|---|
 | 48 |                 m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis)); | 
|---|
 | 49 |                 m_0MinvJt       = inertiaInvA * m_aJ; | 
|---|
 | 50 |                 m_1MinvJt = inertiaInvB * m_bJ; | 
|---|
 | 51 |                 m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ); | 
|---|
 | 52 |  | 
|---|
 | 53 |                 btAssert(m_Adiag > btScalar(0.0)); | 
|---|
 | 54 |         } | 
|---|
 | 55 |  | 
|---|
 | 56 |         //angular constraint between two different rigidbodies | 
|---|
 | 57 |         btJacobianEntry(const btVector3& jointAxis, | 
|---|
 | 58 |                 const btMatrix3x3& world2A, | 
|---|
 | 59 |                 const btMatrix3x3& world2B, | 
|---|
 | 60 |                 const btVector3& inertiaInvA, | 
|---|
 | 61 |                 const btVector3& inertiaInvB) | 
|---|
 | 62 |                 :m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.))) | 
|---|
 | 63 |         { | 
|---|
 | 64 |                 m_aJ= world2A*jointAxis; | 
|---|
 | 65 |                 m_bJ = world2B*-jointAxis; | 
|---|
 | 66 |                 m_0MinvJt       = inertiaInvA * m_aJ; | 
|---|
 | 67 |                 m_1MinvJt = inertiaInvB * m_bJ; | 
|---|
 | 68 |                 m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ); | 
|---|
 | 69 |  | 
|---|
 | 70 |                 btAssert(m_Adiag > btScalar(0.0)); | 
|---|
 | 71 |         } | 
|---|
 | 72 |  | 
|---|
 | 73 |         //angular constraint between two different rigidbodies | 
|---|
 | 74 |         btJacobianEntry(const btVector3& axisInA, | 
|---|
 | 75 |                 const btVector3& axisInB, | 
|---|
 | 76 |                 const btVector3& inertiaInvA, | 
|---|
 | 77 |                 const btVector3& inertiaInvB) | 
|---|
 | 78 |                 : m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.))) | 
|---|
 | 79 |                 , m_aJ(axisInA) | 
|---|
 | 80 |                 , m_bJ(-axisInB) | 
|---|
 | 81 |         { | 
|---|
 | 82 |                 m_0MinvJt       = inertiaInvA * m_aJ; | 
|---|
 | 83 |                 m_1MinvJt = inertiaInvB * m_bJ; | 
|---|
 | 84 |                 m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ); | 
|---|
 | 85 |  | 
|---|
 | 86 |                 btAssert(m_Adiag > btScalar(0.0)); | 
|---|
 | 87 |         } | 
|---|
 | 88 |  | 
|---|
 | 89 |         //constraint on one rigidbody | 
|---|
 | 90 |         btJacobianEntry( | 
|---|
 | 91 |                 const btMatrix3x3& world2A, | 
|---|
 | 92 |                 const btVector3& rel_pos1,const btVector3& rel_pos2, | 
|---|
 | 93 |                 const btVector3& jointAxis, | 
|---|
 | 94 |                 const btVector3& inertiaInvA,  | 
|---|
 | 95 |                 const btScalar massInvA) | 
|---|
 | 96 |                 :m_linearJointAxis(jointAxis) | 
|---|
 | 97 |         { | 
|---|
 | 98 |                 m_aJ= world2A*(rel_pos1.cross(jointAxis)); | 
|---|
 | 99 |                 m_bJ = world2A*(rel_pos2.cross(-jointAxis)); | 
|---|
 | 100 |                 m_0MinvJt       = inertiaInvA * m_aJ; | 
|---|
 | 101 |                 m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
 | 102 |                 m_Adiag = massInvA + m_0MinvJt.dot(m_aJ); | 
|---|
 | 103 |  | 
|---|
 | 104 |                 btAssert(m_Adiag > btScalar(0.0)); | 
|---|
 | 105 |         } | 
|---|
 | 106 |  | 
|---|
 | 107 |         btScalar        getDiagonal() const { return m_Adiag; } | 
|---|
 | 108 |  | 
|---|
 | 109 |         // for two constraints on the same rigidbody (for example vehicle friction) | 
|---|
 | 110 |         btScalar        getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const | 
|---|
 | 111 |         { | 
|---|
 | 112 |                 const btJacobianEntry& jacA = *this; | 
|---|
 | 113 |                 btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis); | 
|---|
 | 114 |                 btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ); | 
|---|
 | 115 |                 return lin + ang; | 
|---|
 | 116 |         } | 
|---|
 | 117 |  | 
|---|
 | 118 |          | 
|---|
 | 119 |  | 
|---|
 | 120 |         // for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies) | 
|---|
 | 121 |         btScalar        getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const | 
|---|
 | 122 |         { | 
|---|
 | 123 |                 const btJacobianEntry& jacA = *this; | 
|---|
 | 124 |                 btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis; | 
|---|
 | 125 |                 btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ; | 
|---|
 | 126 |                 btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ; | 
|---|
 | 127 |                 btVector3 lin0 = massInvA * lin ; | 
|---|
 | 128 |                 btVector3 lin1 = massInvB * lin; | 
|---|
 | 129 |                 btVector3 sum = ang0+ang1+lin0+lin1; | 
|---|
 | 130 |                 return sum[0]+sum[1]+sum[2]; | 
|---|
 | 131 |         } | 
|---|
 | 132 |  | 
|---|
 | 133 |         btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB) | 
|---|
 | 134 |         { | 
|---|
 | 135 |                 btVector3 linrel = linvelA - linvelB; | 
|---|
 | 136 |                 btVector3 angvela  = angvelA * m_aJ; | 
|---|
 | 137 |                 btVector3 angvelb  = angvelB * m_bJ; | 
|---|
 | 138 |                 linrel *= m_linearJointAxis; | 
|---|
 | 139 |                 angvela += angvelb; | 
|---|
 | 140 |                 angvela += linrel; | 
|---|
 | 141 |                 btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2]; | 
|---|
 | 142 |                 return rel_vel2 + SIMD_EPSILON; | 
|---|
 | 143 |         } | 
|---|
 | 144 | //private: | 
|---|
 | 145 |  | 
|---|
 | 146 |         btVector3       m_linearJointAxis; | 
|---|
 | 147 |         btVector3       m_aJ; | 
|---|
 | 148 |         btVector3       m_bJ; | 
|---|
 | 149 |         btVector3       m_0MinvJt; | 
|---|
 | 150 |         btVector3       m_1MinvJt; | 
|---|
 | 151 |         //Optimization: can be stored in the w/last component of one of the vectors | 
|---|
 | 152 |         btScalar        m_Adiag; | 
|---|
 | 153 |  | 
|---|
 | 154 | }; | 
|---|
 | 155 |  | 
|---|
| [8393] | 156 | #endif //BT_JACOBIAN_ENTRY_H | 
|---|