| [1963] | 1 | /* | 
|---|
|  | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 4 |  | 
|---|
|  | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 9 | subject to the following restrictions: | 
|---|
|  | 10 |  | 
|---|
|  | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 14 | */ | 
|---|
|  | 15 |  | 
|---|
|  | 16 |  | 
|---|
|  | 17 | #include "btHingeConstraint.h" | 
|---|
|  | 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
|  | 19 | #include "LinearMath/btTransformUtil.h" | 
|---|
|  | 20 | #include "LinearMath/btMinMax.h" | 
|---|
|  | 21 | #include <new> | 
|---|
| [2882] | 22 | #include "btSolverBody.h" | 
|---|
| [1963] | 23 |  | 
|---|
|  | 24 |  | 
|---|
| [8351] | 25 |  | 
|---|
|  | 26 | //#define HINGE_USE_OBSOLETE_SOLVER false | 
|---|
| [2882] | 27 | #define HINGE_USE_OBSOLETE_SOLVER false | 
|---|
|  | 28 |  | 
|---|
| [8351] | 29 | #define HINGE_USE_FRAME_OFFSET true | 
|---|
| [2882] | 30 |  | 
|---|
| [8351] | 31 | #ifndef __SPU__ | 
|---|
| [2882] | 32 |  | 
|---|
| [1963] | 33 |  | 
|---|
| [2882] | 34 |  | 
|---|
| [8351] | 35 |  | 
|---|
|  | 36 |  | 
|---|
| [1963] | 37 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, | 
|---|
| [8351] | 38 | const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA) | 
|---|
| [1963] | 39 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), | 
|---|
|  | 40 | m_angularOnly(false), | 
|---|
| [2882] | 41 | m_enableAngularMotor(false), | 
|---|
|  | 42 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
| [8351] | 43 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | 
|---|
|  | 44 | m_useReferenceFrameA(useReferenceFrameA), | 
|---|
|  | 45 | m_flags(0) | 
|---|
| [8393] | 46 | #ifdef _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 47 | ,m_limit() | 
|---|
|  | 48 | #endif | 
|---|
| [1963] | 49 | { | 
|---|
|  | 50 | m_rbAFrame.getOrigin() = pivotInA; | 
|---|
|  | 51 |  | 
|---|
|  | 52 | // since no frame is given, assume this to be zero angle and just pick rb transform axis | 
|---|
|  | 53 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); | 
|---|
|  | 54 |  | 
|---|
|  | 55 | btVector3 rbAxisA2; | 
|---|
|  | 56 | btScalar projection = axisInA.dot(rbAxisA1); | 
|---|
|  | 57 | if (projection >= 1.0f - SIMD_EPSILON) { | 
|---|
|  | 58 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); | 
|---|
|  | 59 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); | 
|---|
|  | 60 | } else if (projection <= -1.0f + SIMD_EPSILON) { | 
|---|
|  | 61 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); | 
|---|
|  | 62 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); | 
|---|
|  | 63 | } else { | 
|---|
|  | 64 | rbAxisA2 = axisInA.cross(rbAxisA1); | 
|---|
|  | 65 | rbAxisA1 = rbAxisA2.cross(axisInA); | 
|---|
|  | 66 | } | 
|---|
|  | 67 |  | 
|---|
|  | 68 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | 
|---|
|  | 69 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | 
|---|
|  | 70 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | 
|---|
|  | 71 |  | 
|---|
|  | 72 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | 
|---|
|  | 73 | btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | 
|---|
|  | 74 | btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1); | 
|---|
|  | 75 |  | 
|---|
|  | 76 | m_rbBFrame.getOrigin() = pivotInB; | 
|---|
| [2882] | 77 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | 
|---|
|  | 78 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | 
|---|
|  | 79 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | 
|---|
| [1963] | 80 |  | 
|---|
| [8393] | 81 | #ifndef _BT_USE_CENTER_LIMIT_ | 
|---|
| [1963] | 82 | //start with free | 
|---|
| [8351] | 83 | m_lowerLimit = btScalar(1.0f); | 
|---|
|  | 84 | m_upperLimit = btScalar(-1.0f); | 
|---|
| [1963] | 85 | m_biasFactor = 0.3f; | 
|---|
|  | 86 | m_relaxationFactor = 1.0f; | 
|---|
|  | 87 | m_limitSoftness = 0.9f; | 
|---|
|  | 88 | m_solveLimit = false; | 
|---|
| [8393] | 89 | #endif | 
|---|
| [2882] | 90 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 91 | } | 
|---|
|  | 92 |  | 
|---|
|  | 93 |  | 
|---|
| [8351] | 94 |  | 
|---|
|  | 95 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA) | 
|---|
| [2882] | 96 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), | 
|---|
|  | 97 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
| [8351] | 98 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | 
|---|
|  | 99 | m_useReferenceFrameA(useReferenceFrameA), | 
|---|
|  | 100 | m_flags(0) | 
|---|
| [8393] | 101 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 102 | ,m_limit() | 
|---|
|  | 103 | #endif | 
|---|
| [1963] | 104 | { | 
|---|
|  | 105 |  | 
|---|
|  | 106 | // since no frame is given, assume this to be zero angle and just pick rb transform axis | 
|---|
|  | 107 | // fixed axis in worldspace | 
|---|
|  | 108 | btVector3 rbAxisA1, rbAxisA2; | 
|---|
|  | 109 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); | 
|---|
|  | 110 |  | 
|---|
|  | 111 | m_rbAFrame.getOrigin() = pivotInA; | 
|---|
|  | 112 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | 
|---|
|  | 113 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | 
|---|
|  | 114 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | 
|---|
|  | 115 |  | 
|---|
| [2882] | 116 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA; | 
|---|
| [1963] | 117 |  | 
|---|
|  | 118 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | 
|---|
|  | 119 | btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | 
|---|
|  | 120 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); | 
|---|
|  | 121 |  | 
|---|
|  | 122 |  | 
|---|
|  | 123 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); | 
|---|
|  | 124 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | 
|---|
|  | 125 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | 
|---|
|  | 126 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | 
|---|
|  | 127 |  | 
|---|
| [8393] | 128 | #ifndef _BT_USE_CENTER_LIMIT_ | 
|---|
| [1963] | 129 | //start with free | 
|---|
| [8351] | 130 | m_lowerLimit = btScalar(1.0f); | 
|---|
|  | 131 | m_upperLimit = btScalar(-1.0f); | 
|---|
| [1963] | 132 | m_biasFactor = 0.3f; | 
|---|
|  | 133 | m_relaxationFactor = 1.0f; | 
|---|
|  | 134 | m_limitSoftness = 0.9f; | 
|---|
|  | 135 | m_solveLimit = false; | 
|---|
| [8393] | 136 | #endif | 
|---|
| [2882] | 137 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 138 | } | 
|---|
|  | 139 |  | 
|---|
| [2882] | 140 |  | 
|---|
| [8351] | 141 |  | 
|---|
| [1963] | 142 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, | 
|---|
| [2882] | 143 | const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA) | 
|---|
| [1963] | 144 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), | 
|---|
|  | 145 | m_angularOnly(false), | 
|---|
| [2882] | 146 | m_enableAngularMotor(false), | 
|---|
|  | 147 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
| [8351] | 148 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | 
|---|
|  | 149 | m_useReferenceFrameA(useReferenceFrameA), | 
|---|
|  | 150 | m_flags(0) | 
|---|
| [8393] | 151 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 152 | ,m_limit() | 
|---|
|  | 153 | #endif | 
|---|
| [1963] | 154 | { | 
|---|
| [8393] | 155 | #ifndef _BT_USE_CENTER_LIMIT_ | 
|---|
| [1963] | 156 | //start with free | 
|---|
| [8351] | 157 | m_lowerLimit = btScalar(1.0f); | 
|---|
|  | 158 | m_upperLimit = btScalar(-1.0f); | 
|---|
| [1963] | 159 | m_biasFactor = 0.3f; | 
|---|
|  | 160 | m_relaxationFactor = 1.0f; | 
|---|
|  | 161 | m_limitSoftness = 0.9f; | 
|---|
|  | 162 | m_solveLimit = false; | 
|---|
| [8393] | 163 | #endif | 
|---|
| [2882] | 164 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 165 | } | 
|---|
|  | 166 |  | 
|---|
|  | 167 |  | 
|---|
| [8351] | 168 |  | 
|---|
| [2882] | 169 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA) | 
|---|
| [1963] | 170 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), | 
|---|
|  | 171 | m_angularOnly(false), | 
|---|
| [2882] | 172 | m_enableAngularMotor(false), | 
|---|
|  | 173 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
| [8351] | 174 | m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET), | 
|---|
|  | 175 | m_useReferenceFrameA(useReferenceFrameA), | 
|---|
|  | 176 | m_flags(0) | 
|---|
| [8393] | 177 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 178 | ,m_limit() | 
|---|
|  | 179 | #endif | 
|---|
| [1963] | 180 | { | 
|---|
|  | 181 | ///not providing rigidbody B means implicitly using worldspace for body B | 
|---|
|  | 182 |  | 
|---|
|  | 183 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); | 
|---|
| [8393] | 184 | #ifndef _BT_USE_CENTER_LIMIT_ | 
|---|
| [1963] | 185 | //start with free | 
|---|
| [8351] | 186 | m_lowerLimit = btScalar(1.0f); | 
|---|
|  | 187 | m_upperLimit = btScalar(-1.0f); | 
|---|
| [1963] | 188 | m_biasFactor = 0.3f; | 
|---|
|  | 189 | m_relaxationFactor = 1.0f; | 
|---|
|  | 190 | m_limitSoftness = 0.9f; | 
|---|
|  | 191 | m_solveLimit = false; | 
|---|
| [8393] | 192 | #endif | 
|---|
| [2882] | 193 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 194 | } | 
|---|
|  | 195 |  | 
|---|
| [2882] | 196 |  | 
|---|
| [8351] | 197 |  | 
|---|
| [1963] | 198 | void    btHingeConstraint::buildJacobian() | 
|---|
|  | 199 | { | 
|---|
| [2882] | 200 | if (m_useSolveConstraintObsolete) | 
|---|
| [1963] | 201 | { | 
|---|
| [2882] | 202 | m_appliedImpulse = btScalar(0.); | 
|---|
| [8351] | 203 | m_accMotorImpulse = btScalar(0.); | 
|---|
| [1963] | 204 |  | 
|---|
| [2882] | 205 | if (!m_angularOnly) | 
|---|
| [1963] | 206 | { | 
|---|
| [2882] | 207 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | 
|---|
|  | 208 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | 
|---|
|  | 209 | btVector3 relPos = pivotBInW - pivotAInW; | 
|---|
| [1963] | 210 |  | 
|---|
| [2882] | 211 | btVector3 normal[3]; | 
|---|
|  | 212 | if (relPos.length2() > SIMD_EPSILON) | 
|---|
|  | 213 | { | 
|---|
|  | 214 | normal[0] = relPos.normalized(); | 
|---|
|  | 215 | } | 
|---|
|  | 216 | else | 
|---|
|  | 217 | { | 
|---|
|  | 218 | normal[0].setValue(btScalar(1.0),0,0); | 
|---|
|  | 219 | } | 
|---|
| [1963] | 220 |  | 
|---|
| [2882] | 221 | btPlaneSpace1(normal[0], normal[1], normal[2]); | 
|---|
|  | 222 |  | 
|---|
|  | 223 | for (int i=0;i<3;i++) | 
|---|
|  | 224 | { | 
|---|
|  | 225 | new (&m_jac[i]) btJacobianEntry( | 
|---|
| [1963] | 226 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 227 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 228 | pivotAInW - m_rbA.getCenterOfMassPosition(), | 
|---|
|  | 229 | pivotBInW - m_rbB.getCenterOfMassPosition(), | 
|---|
|  | 230 | normal[i], | 
|---|
|  | 231 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 232 | m_rbA.getInvMass(), | 
|---|
|  | 233 | m_rbB.getInvInertiaDiagLocal(), | 
|---|
|  | 234 | m_rbB.getInvMass()); | 
|---|
| [2882] | 235 | } | 
|---|
| [1963] | 236 | } | 
|---|
|  | 237 |  | 
|---|
| [2882] | 238 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis | 
|---|
|  | 239 | //these two jointAxis require equal angular velocities for both bodies | 
|---|
| [1963] | 240 |  | 
|---|
| [2882] | 241 | //this is unused for now, it's a todo | 
|---|
|  | 242 | btVector3 jointAxis0local; | 
|---|
|  | 243 | btVector3 jointAxis1local; | 
|---|
| [1963] | 244 |  | 
|---|
| [2882] | 245 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); | 
|---|
| [1963] | 246 |  | 
|---|
| [2882] | 247 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; | 
|---|
|  | 248 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; | 
|---|
|  | 249 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 250 |  | 
|---|
|  | 251 | new (&m_jacAng[0])      btJacobianEntry(jointAxis0, | 
|---|
|  | 252 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 253 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 254 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 255 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 256 |  | 
|---|
| [2882] | 257 | new (&m_jacAng[1])      btJacobianEntry(jointAxis1, | 
|---|
|  | 258 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 259 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 260 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 261 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 262 |  | 
|---|
| [2882] | 263 | new (&m_jacAng[2])      btJacobianEntry(hingeAxisWorld, | 
|---|
|  | 264 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 265 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 266 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 267 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 268 |  | 
|---|
| [2882] | 269 | // clear accumulator | 
|---|
|  | 270 | m_accLimitImpulse = btScalar(0.); | 
|---|
| [1963] | 271 |  | 
|---|
| [2882] | 272 | // test angular limit | 
|---|
| [8351] | 273 | testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
| [1963] | 274 |  | 
|---|
| [2882] | 275 | //Compute K = J*W*J' for hinge axis | 
|---|
|  | 276 | btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 277 | m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + | 
|---|
|  | 278 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); | 
|---|
|  | 279 |  | 
|---|
|  | 280 | } | 
|---|
|  | 281 | } | 
|---|
|  | 282 |  | 
|---|
|  | 283 |  | 
|---|
| [8351] | 284 | #endif //__SPU__ | 
|---|
|  | 285 |  | 
|---|
|  | 286 |  | 
|---|
| [2882] | 287 | void btHingeConstraint::getInfo1(btConstraintInfo1* info) | 
|---|
|  | 288 | { | 
|---|
|  | 289 | if (m_useSolveConstraintObsolete) | 
|---|
| [1963] | 290 | { | 
|---|
| [2882] | 291 | info->m_numConstraintRows = 0; | 
|---|
|  | 292 | info->nub = 0; | 
|---|
|  | 293 | } | 
|---|
|  | 294 | else | 
|---|
|  | 295 | { | 
|---|
|  | 296 | info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular | 
|---|
|  | 297 | info->nub = 1; | 
|---|
| [8351] | 298 | //always add the row, to avoid computation (data is not available yet) | 
|---|
| [2882] | 299 | //prepare constraint | 
|---|
| [8351] | 300 | testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
| [2882] | 301 | if(getSolveLimit() || getEnableAngularMotor()) | 
|---|
| [1963] | 302 | { | 
|---|
| [2882] | 303 | info->m_numConstraintRows++; // limit 3rd anguar as well | 
|---|
|  | 304 | info->nub--; | 
|---|
| [1963] | 305 | } | 
|---|
| [8351] | 306 |  | 
|---|
| [1963] | 307 | } | 
|---|
| [8351] | 308 | } | 
|---|
| [1963] | 309 |  | 
|---|
| [8351] | 310 | void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info) | 
|---|
|  | 311 | { | 
|---|
|  | 312 | if (m_useSolveConstraintObsolete) | 
|---|
|  | 313 | { | 
|---|
|  | 314 | info->m_numConstraintRows = 0; | 
|---|
|  | 315 | info->nub = 0; | 
|---|
|  | 316 | } | 
|---|
|  | 317 | else | 
|---|
|  | 318 | { | 
|---|
|  | 319 | //always add the 'limit' row, to avoid computation (data is not available yet) | 
|---|
|  | 320 | info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular | 
|---|
|  | 321 | info->nub = 0; | 
|---|
|  | 322 | } | 
|---|
|  | 323 | } | 
|---|
| [1963] | 324 |  | 
|---|
| [2882] | 325 | void btHingeConstraint::getInfo2 (btConstraintInfo2* info) | 
|---|
|  | 326 | { | 
|---|
| [8351] | 327 | if(m_useOffsetForConstraintFrame) | 
|---|
|  | 328 | { | 
|---|
|  | 329 | getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); | 
|---|
|  | 330 | } | 
|---|
|  | 331 | else | 
|---|
|  | 332 | { | 
|---|
|  | 333 | getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity()); | 
|---|
|  | 334 | } | 
|---|
|  | 335 | } | 
|---|
|  | 336 |  | 
|---|
|  | 337 |  | 
|---|
|  | 338 | void    btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | 
|---|
|  | 339 | { | 
|---|
|  | 340 | ///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now | 
|---|
|  | 341 | testLimit(transA,transB); | 
|---|
|  | 342 |  | 
|---|
|  | 343 | getInfo2Internal(info,transA,transB,angVelA,angVelB); | 
|---|
|  | 344 | } | 
|---|
|  | 345 |  | 
|---|
|  | 346 |  | 
|---|
|  | 347 | void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | 
|---|
|  | 348 | { | 
|---|
|  | 349 |  | 
|---|
| [2882] | 350 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
| [8351] | 351 | int i, skip = info->rowskip; | 
|---|
| [2882] | 352 | // transforms in world space | 
|---|
| [8351] | 353 | btTransform trA = transA*m_rbAFrame; | 
|---|
|  | 354 | btTransform trB = transB*m_rbBFrame; | 
|---|
| [2882] | 355 | // pivot point | 
|---|
|  | 356 | btVector3 pivotAInW = trA.getOrigin(); | 
|---|
|  | 357 | btVector3 pivotBInW = trB.getOrigin(); | 
|---|
| [8351] | 358 | #if 0 | 
|---|
|  | 359 | if (0) | 
|---|
|  | 360 | { | 
|---|
|  | 361 | for (i=0;i<6;i++) | 
|---|
|  | 362 | { | 
|---|
|  | 363 | info->m_J1linearAxis[i*skip]=0; | 
|---|
|  | 364 | info->m_J1linearAxis[i*skip+1]=0; | 
|---|
|  | 365 | info->m_J1linearAxis[i*skip+2]=0; | 
|---|
|  | 366 |  | 
|---|
|  | 367 | info->m_J1angularAxis[i*skip]=0; | 
|---|
|  | 368 | info->m_J1angularAxis[i*skip+1]=0; | 
|---|
|  | 369 | info->m_J1angularAxis[i*skip+2]=0; | 
|---|
|  | 370 |  | 
|---|
|  | 371 | info->m_J2angularAxis[i*skip]=0; | 
|---|
|  | 372 | info->m_J2angularAxis[i*skip+1]=0; | 
|---|
|  | 373 | info->m_J2angularAxis[i*skip+2]=0; | 
|---|
|  | 374 |  | 
|---|
|  | 375 | info->m_constraintError[i*skip]=0.f; | 
|---|
|  | 376 | } | 
|---|
|  | 377 | } | 
|---|
|  | 378 | #endif //#if 0 | 
|---|
| [2882] | 379 | // linear (all fixed) | 
|---|
| [8351] | 380 |  | 
|---|
|  | 381 | if (!m_angularOnly) | 
|---|
| [2882] | 382 | { | 
|---|
| [8351] | 383 | info->m_J1linearAxis[0] = 1; | 
|---|
|  | 384 | info->m_J1linearAxis[skip + 1] = 1; | 
|---|
|  | 385 | info->m_J1linearAxis[2 * skip + 2] = 1; | 
|---|
|  | 386 | } | 
|---|
|  | 387 |  | 
|---|
|  | 388 |  | 
|---|
|  | 389 |  | 
|---|
|  | 390 |  | 
|---|
|  | 391 | btVector3 a1 = pivotAInW - transA.getOrigin(); | 
|---|
|  | 392 | { | 
|---|
| [2882] | 393 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); | 
|---|
| [8351] | 394 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip); | 
|---|
|  | 395 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip); | 
|---|
| [2882] | 396 | btVector3 a1neg = -a1; | 
|---|
|  | 397 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
|  | 398 | } | 
|---|
| [8351] | 399 | btVector3 a2 = pivotBInW - transB.getOrigin(); | 
|---|
| [2882] | 400 | { | 
|---|
|  | 401 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); | 
|---|
| [8351] | 402 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip); | 
|---|
|  | 403 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip); | 
|---|
| [2882] | 404 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
|  | 405 | } | 
|---|
|  | 406 | // linear RHS | 
|---|
|  | 407 | btScalar k = info->fps * info->erp; | 
|---|
| [8351] | 408 | if (!m_angularOnly) | 
|---|
|  | 409 | { | 
|---|
|  | 410 | for(i = 0; i < 3; i++) | 
|---|
|  | 411 | { | 
|---|
|  | 412 | info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]); | 
|---|
|  | 413 | } | 
|---|
|  | 414 | } | 
|---|
| [2882] | 415 | // make rotations around X and Y equal | 
|---|
|  | 416 | // the hinge axis should be the only unconstrained | 
|---|
|  | 417 | // rotational axis, the angular velocity of the two bodies perpendicular to | 
|---|
|  | 418 | // the hinge axis should be equal. thus the constraint equations are | 
|---|
|  | 419 | //    p*w1 - p*w2 = 0 | 
|---|
|  | 420 | //    q*w1 - q*w2 = 0 | 
|---|
|  | 421 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 | 
|---|
|  | 422 | // are the angular velocity vectors of the two bodies. | 
|---|
|  | 423 | // get hinge axis (Z) | 
|---|
|  | 424 | btVector3 ax1 = trA.getBasis().getColumn(2); | 
|---|
|  | 425 | // get 2 orthos to hinge axis (X, Y) | 
|---|
|  | 426 | btVector3 p = trA.getBasis().getColumn(0); | 
|---|
|  | 427 | btVector3 q = trA.getBasis().getColumn(1); | 
|---|
|  | 428 | // set the two hinge angular rows | 
|---|
|  | 429 | int s3 = 3 * info->rowskip; | 
|---|
|  | 430 | int s4 = 4 * info->rowskip; | 
|---|
|  | 431 |  | 
|---|
|  | 432 | info->m_J1angularAxis[s3 + 0] = p[0]; | 
|---|
|  | 433 | info->m_J1angularAxis[s3 + 1] = p[1]; | 
|---|
|  | 434 | info->m_J1angularAxis[s3 + 2] = p[2]; | 
|---|
|  | 435 | info->m_J1angularAxis[s4 + 0] = q[0]; | 
|---|
|  | 436 | info->m_J1angularAxis[s4 + 1] = q[1]; | 
|---|
|  | 437 | info->m_J1angularAxis[s4 + 2] = q[2]; | 
|---|
|  | 438 |  | 
|---|
|  | 439 | info->m_J2angularAxis[s3 + 0] = -p[0]; | 
|---|
|  | 440 | info->m_J2angularAxis[s3 + 1] = -p[1]; | 
|---|
|  | 441 | info->m_J2angularAxis[s3 + 2] = -p[2]; | 
|---|
|  | 442 | info->m_J2angularAxis[s4 + 0] = -q[0]; | 
|---|
|  | 443 | info->m_J2angularAxis[s4 + 1] = -q[1]; | 
|---|
|  | 444 | info->m_J2angularAxis[s4 + 2] = -q[2]; | 
|---|
|  | 445 | // compute the right hand side of the constraint equation. set relative | 
|---|
|  | 446 | // body velocities along p and q to bring the hinge back into alignment. | 
|---|
|  | 447 | // if ax1,ax2 are the unit length hinge axes as computed from body1 and | 
|---|
|  | 448 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). | 
|---|
|  | 449 | // if `theta' is the angle between ax1 and ax2, we need an angular velocity | 
|---|
|  | 450 | // along u to cover angle erp*theta in one step : | 
|---|
|  | 451 | //   |angular_velocity| = angle/time = erp*theta / stepsize | 
|---|
|  | 452 | //                      = (erp*fps) * theta | 
|---|
|  | 453 | //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| | 
|---|
|  | 454 | //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta) | 
|---|
|  | 455 | // ...as ax1 and ax2 are unit length. if theta is smallish, | 
|---|
|  | 456 | // theta ~= sin(theta), so | 
|---|
|  | 457 | //    angular_velocity  = (erp*fps) * (ax1 x ax2) | 
|---|
|  | 458 | // ax1 x ax2 is in the plane space of ax1, so we project the angular | 
|---|
|  | 459 | // velocity to p and q to find the right hand side. | 
|---|
|  | 460 | btVector3 ax2 = trB.getBasis().getColumn(2); | 
|---|
|  | 461 | btVector3 u = ax1.cross(ax2); | 
|---|
|  | 462 | info->m_constraintError[s3] = k * u.dot(p); | 
|---|
|  | 463 | info->m_constraintError[s4] = k * u.dot(q); | 
|---|
|  | 464 | // check angular limits | 
|---|
|  | 465 | int nrow = 4; // last filled row | 
|---|
|  | 466 | int srow; | 
|---|
|  | 467 | btScalar limit_err = btScalar(0.0); | 
|---|
|  | 468 | int limit = 0; | 
|---|
|  | 469 | if(getSolveLimit()) | 
|---|
|  | 470 | { | 
|---|
| [8393] | 471 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 472 | limit_err = m_limit.getCorrection() * m_referenceSign; | 
|---|
|  | 473 | #else | 
|---|
|  | 474 | limit_err = m_correction * m_referenceSign; | 
|---|
|  | 475 | #endif | 
|---|
|  | 476 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; | 
|---|
|  | 477 |  | 
|---|
| [2882] | 478 | } | 
|---|
|  | 479 | // if the hinge has joint limits or motor, add in the extra row | 
|---|
|  | 480 | int powered = 0; | 
|---|
|  | 481 | if(getEnableAngularMotor()) | 
|---|
|  | 482 | { | 
|---|
|  | 483 | powered = 1; | 
|---|
|  | 484 | } | 
|---|
|  | 485 | if(limit || powered) | 
|---|
|  | 486 | { | 
|---|
|  | 487 | nrow++; | 
|---|
|  | 488 | srow = nrow * info->rowskip; | 
|---|
|  | 489 | info->m_J1angularAxis[srow+0] = ax1[0]; | 
|---|
|  | 490 | info->m_J1angularAxis[srow+1] = ax1[1]; | 
|---|
|  | 491 | info->m_J1angularAxis[srow+2] = ax1[2]; | 
|---|
|  | 492 |  | 
|---|
|  | 493 | info->m_J2angularAxis[srow+0] = -ax1[0]; | 
|---|
|  | 494 | info->m_J2angularAxis[srow+1] = -ax1[1]; | 
|---|
|  | 495 | info->m_J2angularAxis[srow+2] = -ax1[2]; | 
|---|
|  | 496 |  | 
|---|
|  | 497 | btScalar lostop = getLowerLimit(); | 
|---|
|  | 498 | btScalar histop = getUpperLimit(); | 
|---|
|  | 499 | if(limit && (lostop == histop)) | 
|---|
|  | 500 | {  // the joint motor is ineffective | 
|---|
|  | 501 | powered = 0; | 
|---|
|  | 502 | } | 
|---|
|  | 503 | info->m_constraintError[srow] = btScalar(0.0f); | 
|---|
| [8351] | 504 | btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp; | 
|---|
| [2882] | 505 | if(powered) | 
|---|
|  | 506 | { | 
|---|
| [8351] | 507 | if(m_flags & BT_HINGE_FLAGS_CFM_NORM) | 
|---|
|  | 508 | { | 
|---|
|  | 509 | info->cfm[srow] = m_normalCFM; | 
|---|
|  | 510 | } | 
|---|
|  | 511 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); | 
|---|
| [2882] | 512 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; | 
|---|
|  | 513 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; | 
|---|
|  | 514 | info->m_upperLimit[srow] =   m_maxMotorImpulse; | 
|---|
|  | 515 | } | 
|---|
|  | 516 | if(limit) | 
|---|
|  | 517 | { | 
|---|
| [8351] | 518 | k = info->fps * currERP; | 
|---|
| [2882] | 519 | info->m_constraintError[srow] += k * limit_err; | 
|---|
| [8351] | 520 | if(m_flags & BT_HINGE_FLAGS_CFM_STOP) | 
|---|
|  | 521 | { | 
|---|
|  | 522 | info->cfm[srow] = m_stopCFM; | 
|---|
|  | 523 | } | 
|---|
| [2882] | 524 | if(lostop == histop) | 
|---|
|  | 525 | { | 
|---|
|  | 526 | // limited low and high simultaneously | 
|---|
|  | 527 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 528 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 529 | } | 
|---|
|  | 530 | else if(limit == 1) | 
|---|
|  | 531 | { // low limit | 
|---|
|  | 532 | info->m_lowerLimit[srow] = 0; | 
|---|
|  | 533 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 534 | } | 
|---|
|  | 535 | else | 
|---|
|  | 536 | { // high limit | 
|---|
|  | 537 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 538 | info->m_upperLimit[srow] = 0; | 
|---|
|  | 539 | } | 
|---|
|  | 540 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) | 
|---|
| [8393] | 541 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 542 | btScalar bounce = m_limit.getRelaxationFactor(); | 
|---|
|  | 543 | #else | 
|---|
| [2882] | 544 | btScalar bounce = m_relaxationFactor; | 
|---|
| [8393] | 545 | #endif | 
|---|
| [2882] | 546 | if(bounce > btScalar(0.0)) | 
|---|
|  | 547 | { | 
|---|
| [8351] | 548 | btScalar vel = angVelA.dot(ax1); | 
|---|
|  | 549 | vel -= angVelB.dot(ax1); | 
|---|
| [2882] | 550 | // only apply bounce if the velocity is incoming, and if the | 
|---|
|  | 551 | // resulting c[] exceeds what we already have. | 
|---|
|  | 552 | if(limit == 1) | 
|---|
|  | 553 | {       // low limit | 
|---|
|  | 554 | if(vel < 0) | 
|---|
|  | 555 | { | 
|---|
|  | 556 | btScalar newc = -bounce * vel; | 
|---|
|  | 557 | if(newc > info->m_constraintError[srow]) | 
|---|
|  | 558 | { | 
|---|
|  | 559 | info->m_constraintError[srow] = newc; | 
|---|
|  | 560 | } | 
|---|
|  | 561 | } | 
|---|
|  | 562 | } | 
|---|
|  | 563 | else | 
|---|
|  | 564 | {       // high limit - all those computations are reversed | 
|---|
|  | 565 | if(vel > 0) | 
|---|
|  | 566 | { | 
|---|
|  | 567 | btScalar newc = -bounce * vel; | 
|---|
|  | 568 | if(newc < info->m_constraintError[srow]) | 
|---|
|  | 569 | { | 
|---|
|  | 570 | info->m_constraintError[srow] = newc; | 
|---|
|  | 571 | } | 
|---|
|  | 572 | } | 
|---|
|  | 573 | } | 
|---|
|  | 574 | } | 
|---|
| [8393] | 575 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 576 | info->m_constraintError[srow] *= m_limit.getBiasFactor(); | 
|---|
|  | 577 | #else | 
|---|
| [2882] | 578 | info->m_constraintError[srow] *= m_biasFactor; | 
|---|
| [8393] | 579 | #endif | 
|---|
| [2882] | 580 | } // if(limit) | 
|---|
|  | 581 | } // if angular limit or powered | 
|---|
| [1963] | 582 | } | 
|---|
|  | 583 |  | 
|---|
| [2882] | 584 |  | 
|---|
| [8393] | 585 | void btHingeConstraint::setFrames(const btTransform & frameA, const btTransform & frameB) | 
|---|
|  | 586 | { | 
|---|
|  | 587 | m_rbAFrame = frameA; | 
|---|
|  | 588 | m_rbBFrame = frameB; | 
|---|
|  | 589 | buildJacobian(); | 
|---|
|  | 590 | } | 
|---|
| [1963] | 591 |  | 
|---|
|  | 592 |  | 
|---|
|  | 593 | void    btHingeConstraint::updateRHS(btScalar   timeStep) | 
|---|
|  | 594 | { | 
|---|
|  | 595 | (void)timeStep; | 
|---|
|  | 596 |  | 
|---|
|  | 597 | } | 
|---|
|  | 598 |  | 
|---|
| [2882] | 599 |  | 
|---|
| [1963] | 600 | btScalar btHingeConstraint::getHingeAngle() | 
|---|
|  | 601 | { | 
|---|
| [8351] | 602 | return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
|  | 603 | } | 
|---|
|  | 604 |  | 
|---|
|  | 605 | btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB) | 
|---|
|  | 606 | { | 
|---|
|  | 607 | const btVector3 refAxis0  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0); | 
|---|
|  | 608 | const btVector3 refAxis1  = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1); | 
|---|
|  | 609 | const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1); | 
|---|
|  | 610 | //      btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); | 
|---|
|  | 611 | btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); | 
|---|
| [2882] | 612 | return m_referenceSign * angle; | 
|---|
| [1963] | 613 | } | 
|---|
|  | 614 |  | 
|---|
| [2882] | 615 |  | 
|---|
|  | 616 |  | 
|---|
| [8351] | 617 | void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB) | 
|---|
|  | 618 | { | 
|---|
|  | 619 | // Compute limit information | 
|---|
|  | 620 | m_hingeAngle = getHingeAngle(transA,transB); | 
|---|
| [8393] | 621 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 622 | m_limit.test(m_hingeAngle); | 
|---|
|  | 623 | #else | 
|---|
| [8351] | 624 | m_correction = btScalar(0.); | 
|---|
|  | 625 | m_limitSign = btScalar(0.); | 
|---|
|  | 626 | m_solveLimit = false; | 
|---|
|  | 627 | if (m_lowerLimit <= m_upperLimit) | 
|---|
|  | 628 | { | 
|---|
|  | 629 | m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit); | 
|---|
|  | 630 | if (m_hingeAngle <= m_lowerLimit) | 
|---|
|  | 631 | { | 
|---|
|  | 632 | m_correction = (m_lowerLimit - m_hingeAngle); | 
|---|
|  | 633 | m_limitSign = 1.0f; | 
|---|
|  | 634 | m_solveLimit = true; | 
|---|
|  | 635 | } | 
|---|
|  | 636 | else if (m_hingeAngle >= m_upperLimit) | 
|---|
|  | 637 | { | 
|---|
|  | 638 | m_correction = m_upperLimit - m_hingeAngle; | 
|---|
|  | 639 | m_limitSign = -1.0f; | 
|---|
|  | 640 | m_solveLimit = true; | 
|---|
|  | 641 | } | 
|---|
|  | 642 | } | 
|---|
| [8393] | 643 | #endif | 
|---|
| [8351] | 644 | return; | 
|---|
|  | 645 | } | 
|---|
|  | 646 |  | 
|---|
| [8393] | 647 |  | 
|---|
| [8351] | 648 | static btVector3 vHinge(0, 0, btScalar(1)); | 
|---|
|  | 649 |  | 
|---|
|  | 650 | void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt) | 
|---|
|  | 651 | { | 
|---|
|  | 652 | // convert target from body to constraint space | 
|---|
|  | 653 | btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation(); | 
|---|
|  | 654 | qConstraint.normalize(); | 
|---|
|  | 655 |  | 
|---|
|  | 656 | // extract "pure" hinge component | 
|---|
|  | 657 | btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize(); | 
|---|
|  | 658 | btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge); | 
|---|
|  | 659 | btQuaternion qHinge = qNoHinge.inverse() * qConstraint; | 
|---|
|  | 660 | qHinge.normalize(); | 
|---|
|  | 661 |  | 
|---|
|  | 662 | // compute angular target, clamped to limits | 
|---|
|  | 663 | btScalar targetAngle = qHinge.getAngle(); | 
|---|
|  | 664 | if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate. | 
|---|
|  | 665 | { | 
|---|
|  | 666 | qHinge = operator-(qHinge); | 
|---|
|  | 667 | targetAngle = qHinge.getAngle(); | 
|---|
|  | 668 | } | 
|---|
|  | 669 | if (qHinge.getZ() < 0) | 
|---|
|  | 670 | targetAngle = -targetAngle; | 
|---|
|  | 671 |  | 
|---|
|  | 672 | setMotorTarget(targetAngle, dt); | 
|---|
|  | 673 | } | 
|---|
|  | 674 |  | 
|---|
|  | 675 | void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt) | 
|---|
|  | 676 | { | 
|---|
| [8393] | 677 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 678 | m_limit.fit(targetAngle); | 
|---|
|  | 679 | #else | 
|---|
| [8351] | 680 | if (m_lowerLimit < m_upperLimit) | 
|---|
|  | 681 | { | 
|---|
|  | 682 | if (targetAngle < m_lowerLimit) | 
|---|
|  | 683 | targetAngle = m_lowerLimit; | 
|---|
|  | 684 | else if (targetAngle > m_upperLimit) | 
|---|
|  | 685 | targetAngle = m_upperLimit; | 
|---|
|  | 686 | } | 
|---|
| [8393] | 687 | #endif | 
|---|
| [8351] | 688 | // compute angular velocity | 
|---|
|  | 689 | btScalar curAngle  = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform()); | 
|---|
|  | 690 | btScalar dAngle = targetAngle - curAngle; | 
|---|
|  | 691 | m_motorTargetVelocity = dAngle / dt; | 
|---|
|  | 692 | } | 
|---|
|  | 693 |  | 
|---|
|  | 694 |  | 
|---|
|  | 695 |  | 
|---|
|  | 696 | void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB) | 
|---|
|  | 697 | { | 
|---|
|  | 698 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
|  | 699 | int i, s = info->rowskip; | 
|---|
|  | 700 | // transforms in world space | 
|---|
|  | 701 | btTransform trA = transA*m_rbAFrame; | 
|---|
|  | 702 | btTransform trB = transB*m_rbBFrame; | 
|---|
|  | 703 | // pivot point | 
|---|
|  | 704 | btVector3 pivotAInW = trA.getOrigin(); | 
|---|
|  | 705 | btVector3 pivotBInW = trB.getOrigin(); | 
|---|
|  | 706 | #if 1 | 
|---|
|  | 707 | // difference between frames in WCS | 
|---|
|  | 708 | btVector3 ofs = trB.getOrigin() - trA.getOrigin(); | 
|---|
|  | 709 | // now get weight factors depending on masses | 
|---|
|  | 710 | btScalar miA = getRigidBodyA().getInvMass(); | 
|---|
|  | 711 | btScalar miB = getRigidBodyB().getInvMass(); | 
|---|
|  | 712 | bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON); | 
|---|
|  | 713 | btScalar miS = miA + miB; | 
|---|
|  | 714 | btScalar factA, factB; | 
|---|
|  | 715 | if(miS > btScalar(0.f)) | 
|---|
|  | 716 | { | 
|---|
|  | 717 | factA = miB / miS; | 
|---|
|  | 718 | } | 
|---|
|  | 719 | else | 
|---|
|  | 720 | { | 
|---|
|  | 721 | factA = btScalar(0.5f); | 
|---|
|  | 722 | } | 
|---|
|  | 723 | factB = btScalar(1.0f) - factA; | 
|---|
|  | 724 | // get the desired direction of hinge axis | 
|---|
|  | 725 | // as weighted sum of Z-orthos of frameA and frameB in WCS | 
|---|
|  | 726 | btVector3 ax1A = trA.getBasis().getColumn(2); | 
|---|
|  | 727 | btVector3 ax1B = trB.getBasis().getColumn(2); | 
|---|
|  | 728 | btVector3 ax1 = ax1A * factA + ax1B * factB; | 
|---|
|  | 729 | ax1.normalize(); | 
|---|
|  | 730 | // fill first 3 rows | 
|---|
|  | 731 | // we want: velA + wA x relA == velB + wB x relB | 
|---|
|  | 732 | btTransform bodyA_trans = transA; | 
|---|
|  | 733 | btTransform bodyB_trans = transB; | 
|---|
|  | 734 | int s0 = 0; | 
|---|
|  | 735 | int s1 = s; | 
|---|
|  | 736 | int s2 = s * 2; | 
|---|
|  | 737 | int nrow = 2; // last filled row | 
|---|
|  | 738 | btVector3 tmpA, tmpB, relA, relB, p, q; | 
|---|
|  | 739 | // get vector from bodyB to frameB in WCS | 
|---|
|  | 740 | relB = trB.getOrigin() - bodyB_trans.getOrigin(); | 
|---|
|  | 741 | // get its projection to hinge axis | 
|---|
|  | 742 | btVector3 projB = ax1 * relB.dot(ax1); | 
|---|
|  | 743 | // get vector directed from bodyB to hinge axis (and orthogonal to it) | 
|---|
|  | 744 | btVector3 orthoB = relB - projB; | 
|---|
|  | 745 | // same for bodyA | 
|---|
|  | 746 | relA = trA.getOrigin() - bodyA_trans.getOrigin(); | 
|---|
|  | 747 | btVector3 projA = ax1 * relA.dot(ax1); | 
|---|
|  | 748 | btVector3 orthoA = relA - projA; | 
|---|
|  | 749 | btVector3 totalDist = projA - projB; | 
|---|
|  | 750 | // get offset vectors relA and relB | 
|---|
|  | 751 | relA = orthoA + totalDist * factA; | 
|---|
|  | 752 | relB = orthoB - totalDist * factB; | 
|---|
|  | 753 | // now choose average ortho to hinge axis | 
|---|
|  | 754 | p = orthoB * factA + orthoA * factB; | 
|---|
|  | 755 | btScalar len2 = p.length2(); | 
|---|
|  | 756 | if(len2 > SIMD_EPSILON) | 
|---|
|  | 757 | { | 
|---|
|  | 758 | p /= btSqrt(len2); | 
|---|
|  | 759 | } | 
|---|
|  | 760 | else | 
|---|
|  | 761 | { | 
|---|
|  | 762 | p = trA.getBasis().getColumn(1); | 
|---|
|  | 763 | } | 
|---|
|  | 764 | // make one more ortho | 
|---|
|  | 765 | q = ax1.cross(p); | 
|---|
|  | 766 | // fill three rows | 
|---|
|  | 767 | tmpA = relA.cross(p); | 
|---|
|  | 768 | tmpB = relB.cross(p); | 
|---|
|  | 769 | for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i]; | 
|---|
|  | 770 | for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i]; | 
|---|
|  | 771 | tmpA = relA.cross(q); | 
|---|
|  | 772 | tmpB = relB.cross(q); | 
|---|
|  | 773 | if(hasStaticBody && getSolveLimit()) | 
|---|
|  | 774 | { // to make constraint between static and dynamic objects more rigid | 
|---|
|  | 775 | // remove wA (or wB) from equation if angular limit is hit | 
|---|
|  | 776 | tmpB *= factB; | 
|---|
|  | 777 | tmpA *= factA; | 
|---|
|  | 778 | } | 
|---|
|  | 779 | for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i]; | 
|---|
|  | 780 | for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i]; | 
|---|
|  | 781 | tmpA = relA.cross(ax1); | 
|---|
|  | 782 | tmpB = relB.cross(ax1); | 
|---|
|  | 783 | if(hasStaticBody) | 
|---|
|  | 784 | { // to make constraint between static and dynamic objects more rigid | 
|---|
|  | 785 | // remove wA (or wB) from equation | 
|---|
|  | 786 | tmpB *= factB; | 
|---|
|  | 787 | tmpA *= factA; | 
|---|
|  | 788 | } | 
|---|
|  | 789 | for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i]; | 
|---|
|  | 790 | for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i]; | 
|---|
|  | 791 |  | 
|---|
|  | 792 | btScalar k = info->fps * info->erp; | 
|---|
|  | 793 |  | 
|---|
|  | 794 | if (!m_angularOnly) | 
|---|
|  | 795 | { | 
|---|
|  | 796 | for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i]; | 
|---|
|  | 797 | for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i]; | 
|---|
|  | 798 | for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i]; | 
|---|
|  | 799 |  | 
|---|
|  | 800 | // compute three elements of right hand side | 
|---|
|  | 801 |  | 
|---|
|  | 802 | btScalar rhs = k * p.dot(ofs); | 
|---|
|  | 803 | info->m_constraintError[s0] = rhs; | 
|---|
|  | 804 | rhs = k * q.dot(ofs); | 
|---|
|  | 805 | info->m_constraintError[s1] = rhs; | 
|---|
|  | 806 | rhs = k * ax1.dot(ofs); | 
|---|
|  | 807 | info->m_constraintError[s2] = rhs; | 
|---|
|  | 808 | } | 
|---|
|  | 809 | // the hinge axis should be the only unconstrained | 
|---|
|  | 810 | // rotational axis, the angular velocity of the two bodies perpendicular to | 
|---|
|  | 811 | // the hinge axis should be equal. thus the constraint equations are | 
|---|
|  | 812 | //    p*w1 - p*w2 = 0 | 
|---|
|  | 813 | //    q*w1 - q*w2 = 0 | 
|---|
|  | 814 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 | 
|---|
|  | 815 | // are the angular velocity vectors of the two bodies. | 
|---|
|  | 816 | int s3 = 3 * s; | 
|---|
|  | 817 | int s4 = 4 * s; | 
|---|
|  | 818 | info->m_J1angularAxis[s3 + 0] = p[0]; | 
|---|
|  | 819 | info->m_J1angularAxis[s3 + 1] = p[1]; | 
|---|
|  | 820 | info->m_J1angularAxis[s3 + 2] = p[2]; | 
|---|
|  | 821 | info->m_J1angularAxis[s4 + 0] = q[0]; | 
|---|
|  | 822 | info->m_J1angularAxis[s4 + 1] = q[1]; | 
|---|
|  | 823 | info->m_J1angularAxis[s4 + 2] = q[2]; | 
|---|
|  | 824 |  | 
|---|
|  | 825 | info->m_J2angularAxis[s3 + 0] = -p[0]; | 
|---|
|  | 826 | info->m_J2angularAxis[s3 + 1] = -p[1]; | 
|---|
|  | 827 | info->m_J2angularAxis[s3 + 2] = -p[2]; | 
|---|
|  | 828 | info->m_J2angularAxis[s4 + 0] = -q[0]; | 
|---|
|  | 829 | info->m_J2angularAxis[s4 + 1] = -q[1]; | 
|---|
|  | 830 | info->m_J2angularAxis[s4 + 2] = -q[2]; | 
|---|
|  | 831 | // compute the right hand side of the constraint equation. set relative | 
|---|
|  | 832 | // body velocities along p and q to bring the hinge back into alignment. | 
|---|
|  | 833 | // if ax1A,ax1B are the unit length hinge axes as computed from bodyA and | 
|---|
|  | 834 | // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2). | 
|---|
|  | 835 | // if "theta" is the angle between ax1 and ax2, we need an angular velocity | 
|---|
|  | 836 | // along u to cover angle erp*theta in one step : | 
|---|
|  | 837 | //   |angular_velocity| = angle/time = erp*theta / stepsize | 
|---|
|  | 838 | //                      = (erp*fps) * theta | 
|---|
|  | 839 | //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| | 
|---|
|  | 840 | //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta) | 
|---|
|  | 841 | // ...as ax1 and ax2 are unit length. if theta is smallish, | 
|---|
|  | 842 | // theta ~= sin(theta), so | 
|---|
|  | 843 | //    angular_velocity  = (erp*fps) * (ax1 x ax2) | 
|---|
|  | 844 | // ax1 x ax2 is in the plane space of ax1, so we project the angular | 
|---|
|  | 845 | // velocity to p and q to find the right hand side. | 
|---|
|  | 846 | k = info->fps * info->erp; | 
|---|
|  | 847 | btVector3 u = ax1A.cross(ax1B); | 
|---|
|  | 848 | info->m_constraintError[s3] = k * u.dot(p); | 
|---|
|  | 849 | info->m_constraintError[s4] = k * u.dot(q); | 
|---|
|  | 850 | #endif | 
|---|
|  | 851 | // check angular limits | 
|---|
|  | 852 | nrow = 4; // last filled row | 
|---|
|  | 853 | int srow; | 
|---|
|  | 854 | btScalar limit_err = btScalar(0.0); | 
|---|
|  | 855 | int limit = 0; | 
|---|
|  | 856 | if(getSolveLimit()) | 
|---|
|  | 857 | { | 
|---|
| [8393] | 858 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 859 | limit_err = m_limit.getCorrection() * m_referenceSign; | 
|---|
|  | 860 | #else | 
|---|
|  | 861 | limit_err = m_correction * m_referenceSign; | 
|---|
|  | 862 | #endif | 
|---|
|  | 863 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; | 
|---|
|  | 864 |  | 
|---|
| [8351] | 865 | } | 
|---|
|  | 866 | // if the hinge has joint limits or motor, add in the extra row | 
|---|
|  | 867 | int powered = 0; | 
|---|
|  | 868 | if(getEnableAngularMotor()) | 
|---|
|  | 869 | { | 
|---|
|  | 870 | powered = 1; | 
|---|
|  | 871 | } | 
|---|
|  | 872 | if(limit || powered) | 
|---|
|  | 873 | { | 
|---|
|  | 874 | nrow++; | 
|---|
|  | 875 | srow = nrow * info->rowskip; | 
|---|
|  | 876 | info->m_J1angularAxis[srow+0] = ax1[0]; | 
|---|
|  | 877 | info->m_J1angularAxis[srow+1] = ax1[1]; | 
|---|
|  | 878 | info->m_J1angularAxis[srow+2] = ax1[2]; | 
|---|
|  | 879 |  | 
|---|
|  | 880 | info->m_J2angularAxis[srow+0] = -ax1[0]; | 
|---|
|  | 881 | info->m_J2angularAxis[srow+1] = -ax1[1]; | 
|---|
|  | 882 | info->m_J2angularAxis[srow+2] = -ax1[2]; | 
|---|
|  | 883 |  | 
|---|
|  | 884 | btScalar lostop = getLowerLimit(); | 
|---|
|  | 885 | btScalar histop = getUpperLimit(); | 
|---|
|  | 886 | if(limit && (lostop == histop)) | 
|---|
|  | 887 | {  // the joint motor is ineffective | 
|---|
|  | 888 | powered = 0; | 
|---|
|  | 889 | } | 
|---|
|  | 890 | info->m_constraintError[srow] = btScalar(0.0f); | 
|---|
|  | 891 | btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp; | 
|---|
|  | 892 | if(powered) | 
|---|
|  | 893 | { | 
|---|
|  | 894 | if(m_flags & BT_HINGE_FLAGS_CFM_NORM) | 
|---|
|  | 895 | { | 
|---|
|  | 896 | info->cfm[srow] = m_normalCFM; | 
|---|
|  | 897 | } | 
|---|
|  | 898 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP); | 
|---|
|  | 899 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; | 
|---|
|  | 900 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; | 
|---|
|  | 901 | info->m_upperLimit[srow] =   m_maxMotorImpulse; | 
|---|
|  | 902 | } | 
|---|
|  | 903 | if(limit) | 
|---|
|  | 904 | { | 
|---|
|  | 905 | k = info->fps * currERP; | 
|---|
|  | 906 | info->m_constraintError[srow] += k * limit_err; | 
|---|
|  | 907 | if(m_flags & BT_HINGE_FLAGS_CFM_STOP) | 
|---|
|  | 908 | { | 
|---|
|  | 909 | info->cfm[srow] = m_stopCFM; | 
|---|
|  | 910 | } | 
|---|
|  | 911 | if(lostop == histop) | 
|---|
|  | 912 | { | 
|---|
|  | 913 | // limited low and high simultaneously | 
|---|
|  | 914 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 915 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 916 | } | 
|---|
|  | 917 | else if(limit == 1) | 
|---|
|  | 918 | { // low limit | 
|---|
|  | 919 | info->m_lowerLimit[srow] = 0; | 
|---|
|  | 920 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 921 | } | 
|---|
|  | 922 | else | 
|---|
|  | 923 | { // high limit | 
|---|
|  | 924 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 925 | info->m_upperLimit[srow] = 0; | 
|---|
|  | 926 | } | 
|---|
|  | 927 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) | 
|---|
| [8393] | 928 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 929 | btScalar bounce = m_limit.getRelaxationFactor(); | 
|---|
|  | 930 | #else | 
|---|
| [8351] | 931 | btScalar bounce = m_relaxationFactor; | 
|---|
| [8393] | 932 | #endif | 
|---|
| [8351] | 933 | if(bounce > btScalar(0.0)) | 
|---|
|  | 934 | { | 
|---|
|  | 935 | btScalar vel = angVelA.dot(ax1); | 
|---|
|  | 936 | vel -= angVelB.dot(ax1); | 
|---|
|  | 937 | // only apply bounce if the velocity is incoming, and if the | 
|---|
|  | 938 | // resulting c[] exceeds what we already have. | 
|---|
|  | 939 | if(limit == 1) | 
|---|
|  | 940 | {       // low limit | 
|---|
|  | 941 | if(vel < 0) | 
|---|
|  | 942 | { | 
|---|
|  | 943 | btScalar newc = -bounce * vel; | 
|---|
|  | 944 | if(newc > info->m_constraintError[srow]) | 
|---|
|  | 945 | { | 
|---|
|  | 946 | info->m_constraintError[srow] = newc; | 
|---|
|  | 947 | } | 
|---|
|  | 948 | } | 
|---|
|  | 949 | } | 
|---|
|  | 950 | else | 
|---|
|  | 951 | {       // high limit - all those computations are reversed | 
|---|
|  | 952 | if(vel > 0) | 
|---|
|  | 953 | { | 
|---|
|  | 954 | btScalar newc = -bounce * vel; | 
|---|
|  | 955 | if(newc < info->m_constraintError[srow]) | 
|---|
|  | 956 | { | 
|---|
|  | 957 | info->m_constraintError[srow] = newc; | 
|---|
|  | 958 | } | 
|---|
|  | 959 | } | 
|---|
|  | 960 | } | 
|---|
|  | 961 | } | 
|---|
| [8393] | 962 | #ifdef  _BT_USE_CENTER_LIMIT_ | 
|---|
|  | 963 | info->m_constraintError[srow] *= m_limit.getBiasFactor(); | 
|---|
|  | 964 | #else | 
|---|
| [8351] | 965 | info->m_constraintError[srow] *= m_biasFactor; | 
|---|
| [8393] | 966 | #endif | 
|---|
| [8351] | 967 | } // if(limit) | 
|---|
|  | 968 | } // if angular limit or powered | 
|---|
|  | 969 | } | 
|---|
|  | 970 |  | 
|---|
|  | 971 |  | 
|---|
|  | 972 | ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). | 
|---|
|  | 973 | ///If no axis is provided, it uses the default axis for this constraint. | 
|---|
|  | 974 | void btHingeConstraint::setParam(int num, btScalar value, int axis) | 
|---|
|  | 975 | { | 
|---|
|  | 976 | if((axis == -1) || (axis == 5)) | 
|---|
|  | 977 | { | 
|---|
|  | 978 | switch(num) | 
|---|
|  | 979 | { | 
|---|
|  | 980 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
|  | 981 | m_stopERP = value; | 
|---|
|  | 982 | m_flags |= BT_HINGE_FLAGS_ERP_STOP; | 
|---|
|  | 983 | break; | 
|---|
|  | 984 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
|  | 985 | m_stopCFM = value; | 
|---|
|  | 986 | m_flags |= BT_HINGE_FLAGS_CFM_STOP; | 
|---|
|  | 987 | break; | 
|---|
|  | 988 | case BT_CONSTRAINT_CFM : | 
|---|
|  | 989 | m_normalCFM = value; | 
|---|
|  | 990 | m_flags |= BT_HINGE_FLAGS_CFM_NORM; | 
|---|
|  | 991 | break; | 
|---|
|  | 992 | default : | 
|---|
|  | 993 | btAssertConstrParams(0); | 
|---|
|  | 994 | } | 
|---|
|  | 995 | } | 
|---|
|  | 996 | else | 
|---|
|  | 997 | { | 
|---|
|  | 998 | btAssertConstrParams(0); | 
|---|
|  | 999 | } | 
|---|
|  | 1000 | } | 
|---|
|  | 1001 |  | 
|---|
|  | 1002 | ///return the local value of parameter | 
|---|
|  | 1003 | btScalar btHingeConstraint::getParam(int num, int axis) const | 
|---|
|  | 1004 | { | 
|---|
|  | 1005 | btScalar retVal = 0; | 
|---|
|  | 1006 | if((axis == -1) || (axis == 5)) | 
|---|
|  | 1007 | { | 
|---|
|  | 1008 | switch(num) | 
|---|
|  | 1009 | { | 
|---|
|  | 1010 | case BT_CONSTRAINT_STOP_ERP : | 
|---|
|  | 1011 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP); | 
|---|
|  | 1012 | retVal = m_stopERP; | 
|---|
|  | 1013 | break; | 
|---|
|  | 1014 | case BT_CONSTRAINT_STOP_CFM : | 
|---|
|  | 1015 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP); | 
|---|
|  | 1016 | retVal = m_stopCFM; | 
|---|
|  | 1017 | break; | 
|---|
|  | 1018 | case BT_CONSTRAINT_CFM : | 
|---|
|  | 1019 | btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM); | 
|---|
|  | 1020 | retVal = m_normalCFM; | 
|---|
|  | 1021 | break; | 
|---|
|  | 1022 | default : | 
|---|
|  | 1023 | btAssertConstrParams(0); | 
|---|
|  | 1024 | } | 
|---|
|  | 1025 | } | 
|---|
|  | 1026 | else | 
|---|
|  | 1027 | { | 
|---|
|  | 1028 | btAssertConstrParams(0); | 
|---|
|  | 1029 | } | 
|---|
|  | 1030 | return retVal; | 
|---|
|  | 1031 | } | 
|---|
|  | 1032 |  | 
|---|
|  | 1033 |  | 
|---|