| [1963] | 1 | /* | 
|---|
|  | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 4 |  | 
|---|
|  | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 9 | subject to the following restrictions: | 
|---|
|  | 10 |  | 
|---|
|  | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 14 | */ | 
|---|
|  | 15 |  | 
|---|
|  | 16 |  | 
|---|
|  | 17 | #include "btHingeConstraint.h" | 
|---|
|  | 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
|  | 19 | #include "LinearMath/btTransformUtil.h" | 
|---|
|  | 20 | #include "LinearMath/btMinMax.h" | 
|---|
|  | 21 | #include <new> | 
|---|
| [2882] | 22 | #include "btSolverBody.h" | 
|---|
| [1963] | 23 |  | 
|---|
| [2882] | 24 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 25 |  | 
|---|
| [2882] | 26 | #define HINGE_USE_OBSOLETE_SOLVER false | 
|---|
|  | 27 |  | 
|---|
|  | 28 | //----------------------------------------------------------------------------- | 
|---|
|  | 29 |  | 
|---|
|  | 30 |  | 
|---|
| [1963] | 31 | btHingeConstraint::btHingeConstraint() | 
|---|
|  | 32 | : btTypedConstraint (HINGE_CONSTRAINT_TYPE), | 
|---|
| [2882] | 33 | m_enableAngularMotor(false), | 
|---|
|  | 34 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
|  | 35 | m_useReferenceFrameA(false) | 
|---|
| [1963] | 36 | { | 
|---|
| [2882] | 37 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 38 | } | 
|---|
|  | 39 |  | 
|---|
| [2882] | 40 | //----------------------------------------------------------------------------- | 
|---|
|  | 41 |  | 
|---|
| [1963] | 42 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, | 
|---|
| [2882] | 43 | btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA) | 
|---|
| [1963] | 44 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), | 
|---|
|  | 45 | m_angularOnly(false), | 
|---|
| [2882] | 46 | m_enableAngularMotor(false), | 
|---|
|  | 47 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
|  | 48 | m_useReferenceFrameA(useReferenceFrameA) | 
|---|
| [1963] | 49 | { | 
|---|
|  | 50 | m_rbAFrame.getOrigin() = pivotInA; | 
|---|
|  | 51 |  | 
|---|
|  | 52 | // since no frame is given, assume this to be zero angle and just pick rb transform axis | 
|---|
|  | 53 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); | 
|---|
|  | 54 |  | 
|---|
|  | 55 | btVector3 rbAxisA2; | 
|---|
|  | 56 | btScalar projection = axisInA.dot(rbAxisA1); | 
|---|
|  | 57 | if (projection >= 1.0f - SIMD_EPSILON) { | 
|---|
|  | 58 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); | 
|---|
|  | 59 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); | 
|---|
|  | 60 | } else if (projection <= -1.0f + SIMD_EPSILON) { | 
|---|
|  | 61 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); | 
|---|
|  | 62 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); | 
|---|
|  | 63 | } else { | 
|---|
|  | 64 | rbAxisA2 = axisInA.cross(rbAxisA1); | 
|---|
|  | 65 | rbAxisA1 = rbAxisA2.cross(axisInA); | 
|---|
|  | 66 | } | 
|---|
|  | 67 |  | 
|---|
|  | 68 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | 
|---|
|  | 69 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | 
|---|
|  | 70 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | 
|---|
|  | 71 |  | 
|---|
|  | 72 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | 
|---|
|  | 73 | btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | 
|---|
|  | 74 | btVector3 rbAxisB2 =  axisInB.cross(rbAxisB1); | 
|---|
|  | 75 |  | 
|---|
|  | 76 | m_rbBFrame.getOrigin() = pivotInB; | 
|---|
| [2882] | 77 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | 
|---|
|  | 78 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | 
|---|
|  | 79 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | 
|---|
| [1963] | 80 |  | 
|---|
|  | 81 | //start with free | 
|---|
|  | 82 | m_lowerLimit = btScalar(1e30); | 
|---|
|  | 83 | m_upperLimit = btScalar(-1e30); | 
|---|
|  | 84 | m_biasFactor = 0.3f; | 
|---|
|  | 85 | m_relaxationFactor = 1.0f; | 
|---|
|  | 86 | m_limitSoftness = 0.9f; | 
|---|
|  | 87 | m_solveLimit = false; | 
|---|
| [2882] | 88 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 89 | } | 
|---|
|  | 90 |  | 
|---|
| [2882] | 91 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 92 |  | 
|---|
| [2882] | 93 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA) | 
|---|
|  | 94 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), | 
|---|
|  | 95 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
|  | 96 | m_useReferenceFrameA(useReferenceFrameA) | 
|---|
| [1963] | 97 | { | 
|---|
|  | 98 |  | 
|---|
|  | 99 | // since no frame is given, assume this to be zero angle and just pick rb transform axis | 
|---|
|  | 100 | // fixed axis in worldspace | 
|---|
|  | 101 | btVector3 rbAxisA1, rbAxisA2; | 
|---|
|  | 102 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); | 
|---|
|  | 103 |  | 
|---|
|  | 104 | m_rbAFrame.getOrigin() = pivotInA; | 
|---|
|  | 105 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), | 
|---|
|  | 106 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), | 
|---|
|  | 107 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); | 
|---|
|  | 108 |  | 
|---|
| [2882] | 109 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA; | 
|---|
| [1963] | 110 |  | 
|---|
|  | 111 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); | 
|---|
|  | 112 | btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1); | 
|---|
|  | 113 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); | 
|---|
|  | 114 |  | 
|---|
|  | 115 |  | 
|---|
|  | 116 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); | 
|---|
|  | 117 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), | 
|---|
|  | 118 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), | 
|---|
|  | 119 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); | 
|---|
|  | 120 |  | 
|---|
|  | 121 | //start with free | 
|---|
|  | 122 | m_lowerLimit = btScalar(1e30); | 
|---|
|  | 123 | m_upperLimit = btScalar(-1e30); | 
|---|
|  | 124 | m_biasFactor = 0.3f; | 
|---|
|  | 125 | m_relaxationFactor = 1.0f; | 
|---|
|  | 126 | m_limitSoftness = 0.9f; | 
|---|
|  | 127 | m_solveLimit = false; | 
|---|
| [2882] | 128 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 129 | } | 
|---|
|  | 130 |  | 
|---|
| [2882] | 131 | //----------------------------------------------------------------------------- | 
|---|
|  | 132 |  | 
|---|
| [1963] | 133 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, | 
|---|
| [2882] | 134 | const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA) | 
|---|
| [1963] | 135 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), | 
|---|
|  | 136 | m_angularOnly(false), | 
|---|
| [2882] | 137 | m_enableAngularMotor(false), | 
|---|
|  | 138 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
|  | 139 | m_useReferenceFrameA(useReferenceFrameA) | 
|---|
| [1963] | 140 | { | 
|---|
|  | 141 | //start with free | 
|---|
|  | 142 | m_lowerLimit = btScalar(1e30); | 
|---|
|  | 143 | m_upperLimit = btScalar(-1e30); | 
|---|
|  | 144 | m_biasFactor = 0.3f; | 
|---|
|  | 145 | m_relaxationFactor = 1.0f; | 
|---|
|  | 146 | m_limitSoftness = 0.9f; | 
|---|
|  | 147 | m_solveLimit = false; | 
|---|
| [2882] | 148 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 149 | } | 
|---|
|  | 150 |  | 
|---|
| [2882] | 151 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 152 |  | 
|---|
| [2882] | 153 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA) | 
|---|
| [1963] | 154 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), | 
|---|
|  | 155 | m_angularOnly(false), | 
|---|
| [2882] | 156 | m_enableAngularMotor(false), | 
|---|
|  | 157 | m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER), | 
|---|
|  | 158 | m_useReferenceFrameA(useReferenceFrameA) | 
|---|
| [1963] | 159 | { | 
|---|
|  | 160 | ///not providing rigidbody B means implicitly using worldspace for body B | 
|---|
|  | 161 |  | 
|---|
|  | 162 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); | 
|---|
|  | 163 |  | 
|---|
|  | 164 | //start with free | 
|---|
|  | 165 | m_lowerLimit = btScalar(1e30); | 
|---|
|  | 166 | m_upperLimit = btScalar(-1e30); | 
|---|
|  | 167 | m_biasFactor = 0.3f; | 
|---|
|  | 168 | m_relaxationFactor = 1.0f; | 
|---|
|  | 169 | m_limitSoftness = 0.9f; | 
|---|
|  | 170 | m_solveLimit = false; | 
|---|
| [2882] | 171 | m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f); | 
|---|
| [1963] | 172 | } | 
|---|
|  | 173 |  | 
|---|
| [2882] | 174 | //----------------------------------------------------------------------------- | 
|---|
|  | 175 |  | 
|---|
| [1963] | 176 | void    btHingeConstraint::buildJacobian() | 
|---|
|  | 177 | { | 
|---|
| [2882] | 178 | if (m_useSolveConstraintObsolete) | 
|---|
| [1963] | 179 | { | 
|---|
| [2882] | 180 | m_appliedImpulse = btScalar(0.); | 
|---|
| [1963] | 181 |  | 
|---|
| [2882] | 182 | if (!m_angularOnly) | 
|---|
| [1963] | 183 | { | 
|---|
| [2882] | 184 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | 
|---|
|  | 185 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | 
|---|
|  | 186 | btVector3 relPos = pivotBInW - pivotAInW; | 
|---|
| [1963] | 187 |  | 
|---|
| [2882] | 188 | btVector3 normal[3]; | 
|---|
|  | 189 | if (relPos.length2() > SIMD_EPSILON) | 
|---|
|  | 190 | { | 
|---|
|  | 191 | normal[0] = relPos.normalized(); | 
|---|
|  | 192 | } | 
|---|
|  | 193 | else | 
|---|
|  | 194 | { | 
|---|
|  | 195 | normal[0].setValue(btScalar(1.0),0,0); | 
|---|
|  | 196 | } | 
|---|
| [1963] | 197 |  | 
|---|
| [2882] | 198 | btPlaneSpace1(normal[0], normal[1], normal[2]); | 
|---|
|  | 199 |  | 
|---|
|  | 200 | for (int i=0;i<3;i++) | 
|---|
|  | 201 | { | 
|---|
|  | 202 | new (&m_jac[i]) btJacobianEntry( | 
|---|
| [1963] | 203 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 204 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 205 | pivotAInW - m_rbA.getCenterOfMassPosition(), | 
|---|
|  | 206 | pivotBInW - m_rbB.getCenterOfMassPosition(), | 
|---|
|  | 207 | normal[i], | 
|---|
|  | 208 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 209 | m_rbA.getInvMass(), | 
|---|
|  | 210 | m_rbB.getInvInertiaDiagLocal(), | 
|---|
|  | 211 | m_rbB.getInvMass()); | 
|---|
| [2882] | 212 | } | 
|---|
| [1963] | 213 | } | 
|---|
|  | 214 |  | 
|---|
| [2882] | 215 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis | 
|---|
|  | 216 | //these two jointAxis require equal angular velocities for both bodies | 
|---|
| [1963] | 217 |  | 
|---|
| [2882] | 218 | //this is unused for now, it's a todo | 
|---|
|  | 219 | btVector3 jointAxis0local; | 
|---|
|  | 220 | btVector3 jointAxis1local; | 
|---|
| [1963] | 221 |  | 
|---|
| [2882] | 222 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); | 
|---|
| [1963] | 223 |  | 
|---|
| [2882] | 224 | getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 225 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; | 
|---|
|  | 226 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; | 
|---|
|  | 227 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 228 |  | 
|---|
|  | 229 | new (&m_jacAng[0])      btJacobianEntry(jointAxis0, | 
|---|
|  | 230 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 231 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 232 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 233 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 234 |  | 
|---|
| [2882] | 235 | new (&m_jacAng[1])      btJacobianEntry(jointAxis1, | 
|---|
|  | 236 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 237 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 238 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 239 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 240 |  | 
|---|
| [2882] | 241 | new (&m_jacAng[2])      btJacobianEntry(hingeAxisWorld, | 
|---|
|  | 242 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 243 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 244 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 245 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| [1963] | 246 |  | 
|---|
| [2882] | 247 | // clear accumulator | 
|---|
|  | 248 | m_accLimitImpulse = btScalar(0.); | 
|---|
| [1963] | 249 |  | 
|---|
| [2882] | 250 | // test angular limit | 
|---|
|  | 251 | testLimit(); | 
|---|
| [1963] | 252 |  | 
|---|
| [2882] | 253 | //Compute K = J*W*J' for hinge axis | 
|---|
|  | 254 | btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 255 | m_kHinge =   1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + | 
|---|
|  | 256 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); | 
|---|
|  | 257 |  | 
|---|
|  | 258 | } | 
|---|
|  | 259 | } | 
|---|
|  | 260 |  | 
|---|
|  | 261 | //----------------------------------------------------------------------------- | 
|---|
|  | 262 |  | 
|---|
|  | 263 | void btHingeConstraint::getInfo1(btConstraintInfo1* info) | 
|---|
|  | 264 | { | 
|---|
|  | 265 | if (m_useSolveConstraintObsolete) | 
|---|
| [1963] | 266 | { | 
|---|
| [2882] | 267 | info->m_numConstraintRows = 0; | 
|---|
|  | 268 | info->nub = 0; | 
|---|
|  | 269 | } | 
|---|
|  | 270 | else | 
|---|
|  | 271 | { | 
|---|
|  | 272 | info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular | 
|---|
|  | 273 | info->nub = 1; | 
|---|
|  | 274 | //prepare constraint | 
|---|
|  | 275 | testLimit(); | 
|---|
|  | 276 | if(getSolveLimit() || getEnableAngularMotor()) | 
|---|
| [1963] | 277 | { | 
|---|
| [2882] | 278 | info->m_numConstraintRows++; // limit 3rd anguar as well | 
|---|
|  | 279 | info->nub--; | 
|---|
| [1963] | 280 | } | 
|---|
|  | 281 | } | 
|---|
| [2882] | 282 | } // btHingeConstraint::getInfo1 () | 
|---|
| [1963] | 283 |  | 
|---|
| [2882] | 284 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 285 |  | 
|---|
| [2882] | 286 | void btHingeConstraint::getInfo2 (btConstraintInfo2* info) | 
|---|
|  | 287 | { | 
|---|
|  | 288 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
|  | 289 | int i, s = info->rowskip; | 
|---|
|  | 290 | // transforms in world space | 
|---|
|  | 291 | btTransform trA = m_rbA.getCenterOfMassTransform()*m_rbAFrame; | 
|---|
|  | 292 | btTransform trB = m_rbB.getCenterOfMassTransform()*m_rbBFrame; | 
|---|
|  | 293 | // pivot point | 
|---|
|  | 294 | btVector3 pivotAInW = trA.getOrigin(); | 
|---|
|  | 295 | btVector3 pivotBInW = trB.getOrigin(); | 
|---|
|  | 296 | // linear (all fixed) | 
|---|
|  | 297 | info->m_J1linearAxis[0] = 1; | 
|---|
|  | 298 | info->m_J1linearAxis[s + 1] = 1; | 
|---|
|  | 299 | info->m_J1linearAxis[2 * s + 2] = 1; | 
|---|
|  | 300 | btVector3 a1 = pivotAInW - m_rbA.getCenterOfMassTransform().getOrigin(); | 
|---|
|  | 301 | { | 
|---|
|  | 302 | btVector3* angular0 = (btVector3*)(info->m_J1angularAxis); | 
|---|
|  | 303 | btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + s); | 
|---|
|  | 304 | btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * s); | 
|---|
|  | 305 | btVector3 a1neg = -a1; | 
|---|
|  | 306 | a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
|  | 307 | } | 
|---|
|  | 308 | btVector3 a2 = pivotBInW - m_rbB.getCenterOfMassTransform().getOrigin(); | 
|---|
|  | 309 | { | 
|---|
|  | 310 | btVector3* angular0 = (btVector3*)(info->m_J2angularAxis); | 
|---|
|  | 311 | btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + s); | 
|---|
|  | 312 | btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * s); | 
|---|
|  | 313 | a2.getSkewSymmetricMatrix(angular0,angular1,angular2); | 
|---|
|  | 314 | } | 
|---|
|  | 315 | // linear RHS | 
|---|
|  | 316 | btScalar k = info->fps * info->erp; | 
|---|
|  | 317 | for(i = 0; i < 3; i++) | 
|---|
|  | 318 | { | 
|---|
|  | 319 | info->m_constraintError[i * s] = k * (pivotBInW[i] - pivotAInW[i]); | 
|---|
|  | 320 | } | 
|---|
|  | 321 | // make rotations around X and Y equal | 
|---|
|  | 322 | // the hinge axis should be the only unconstrained | 
|---|
|  | 323 | // rotational axis, the angular velocity of the two bodies perpendicular to | 
|---|
|  | 324 | // the hinge axis should be equal. thus the constraint equations are | 
|---|
|  | 325 | //    p*w1 - p*w2 = 0 | 
|---|
|  | 326 | //    q*w1 - q*w2 = 0 | 
|---|
|  | 327 | // where p and q are unit vectors normal to the hinge axis, and w1 and w2 | 
|---|
|  | 328 | // are the angular velocity vectors of the two bodies. | 
|---|
|  | 329 | // get hinge axis (Z) | 
|---|
|  | 330 | btVector3 ax1 = trA.getBasis().getColumn(2); | 
|---|
|  | 331 | // get 2 orthos to hinge axis (X, Y) | 
|---|
|  | 332 | btVector3 p = trA.getBasis().getColumn(0); | 
|---|
|  | 333 | btVector3 q = trA.getBasis().getColumn(1); | 
|---|
|  | 334 | // set the two hinge angular rows | 
|---|
|  | 335 | int s3 = 3 * info->rowskip; | 
|---|
|  | 336 | int s4 = 4 * info->rowskip; | 
|---|
|  | 337 |  | 
|---|
|  | 338 | info->m_J1angularAxis[s3 + 0] = p[0]; | 
|---|
|  | 339 | info->m_J1angularAxis[s3 + 1] = p[1]; | 
|---|
|  | 340 | info->m_J1angularAxis[s3 + 2] = p[2]; | 
|---|
|  | 341 | info->m_J1angularAxis[s4 + 0] = q[0]; | 
|---|
|  | 342 | info->m_J1angularAxis[s4 + 1] = q[1]; | 
|---|
|  | 343 | info->m_J1angularAxis[s4 + 2] = q[2]; | 
|---|
|  | 344 |  | 
|---|
|  | 345 | info->m_J2angularAxis[s3 + 0] = -p[0]; | 
|---|
|  | 346 | info->m_J2angularAxis[s3 + 1] = -p[1]; | 
|---|
|  | 347 | info->m_J2angularAxis[s3 + 2] = -p[2]; | 
|---|
|  | 348 | info->m_J2angularAxis[s4 + 0] = -q[0]; | 
|---|
|  | 349 | info->m_J2angularAxis[s4 + 1] = -q[1]; | 
|---|
|  | 350 | info->m_J2angularAxis[s4 + 2] = -q[2]; | 
|---|
|  | 351 | // compute the right hand side of the constraint equation. set relative | 
|---|
|  | 352 | // body velocities along p and q to bring the hinge back into alignment. | 
|---|
|  | 353 | // if ax1,ax2 are the unit length hinge axes as computed from body1 and | 
|---|
|  | 354 | // body2, we need to rotate both bodies along the axis u = (ax1 x ax2). | 
|---|
|  | 355 | // if `theta' is the angle between ax1 and ax2, we need an angular velocity | 
|---|
|  | 356 | // along u to cover angle erp*theta in one step : | 
|---|
|  | 357 | //   |angular_velocity| = angle/time = erp*theta / stepsize | 
|---|
|  | 358 | //                      = (erp*fps) * theta | 
|---|
|  | 359 | //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2| | 
|---|
|  | 360 | //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta) | 
|---|
|  | 361 | // ...as ax1 and ax2 are unit length. if theta is smallish, | 
|---|
|  | 362 | // theta ~= sin(theta), so | 
|---|
|  | 363 | //    angular_velocity  = (erp*fps) * (ax1 x ax2) | 
|---|
|  | 364 | // ax1 x ax2 is in the plane space of ax1, so we project the angular | 
|---|
|  | 365 | // velocity to p and q to find the right hand side. | 
|---|
|  | 366 | btVector3 ax2 = trB.getBasis().getColumn(2); | 
|---|
|  | 367 | btVector3 u = ax1.cross(ax2); | 
|---|
|  | 368 | info->m_constraintError[s3] = k * u.dot(p); | 
|---|
|  | 369 | info->m_constraintError[s4] = k * u.dot(q); | 
|---|
|  | 370 | // check angular limits | 
|---|
|  | 371 | int nrow = 4; // last filled row | 
|---|
|  | 372 | int srow; | 
|---|
|  | 373 | btScalar limit_err = btScalar(0.0); | 
|---|
|  | 374 | int limit = 0; | 
|---|
|  | 375 | if(getSolveLimit()) | 
|---|
|  | 376 | { | 
|---|
|  | 377 | limit_err = m_correction * m_referenceSign; | 
|---|
|  | 378 | limit = (limit_err > btScalar(0.0)) ? 1 : 2; | 
|---|
|  | 379 | } | 
|---|
|  | 380 | // if the hinge has joint limits or motor, add in the extra row | 
|---|
|  | 381 | int powered = 0; | 
|---|
|  | 382 | if(getEnableAngularMotor()) | 
|---|
|  | 383 | { | 
|---|
|  | 384 | powered = 1; | 
|---|
|  | 385 | } | 
|---|
|  | 386 | if(limit || powered) | 
|---|
|  | 387 | { | 
|---|
|  | 388 | nrow++; | 
|---|
|  | 389 | srow = nrow * info->rowskip; | 
|---|
|  | 390 | info->m_J1angularAxis[srow+0] = ax1[0]; | 
|---|
|  | 391 | info->m_J1angularAxis[srow+1] = ax1[1]; | 
|---|
|  | 392 | info->m_J1angularAxis[srow+2] = ax1[2]; | 
|---|
|  | 393 |  | 
|---|
|  | 394 | info->m_J2angularAxis[srow+0] = -ax1[0]; | 
|---|
|  | 395 | info->m_J2angularAxis[srow+1] = -ax1[1]; | 
|---|
|  | 396 | info->m_J2angularAxis[srow+2] = -ax1[2]; | 
|---|
|  | 397 |  | 
|---|
|  | 398 | btScalar lostop = getLowerLimit(); | 
|---|
|  | 399 | btScalar histop = getUpperLimit(); | 
|---|
|  | 400 | if(limit && (lostop == histop)) | 
|---|
|  | 401 | {  // the joint motor is ineffective | 
|---|
|  | 402 | powered = 0; | 
|---|
|  | 403 | } | 
|---|
|  | 404 | info->m_constraintError[srow] = btScalar(0.0f); | 
|---|
|  | 405 | if(powered) | 
|---|
|  | 406 | { | 
|---|
|  | 407 | info->cfm[srow] = btScalar(0.0); | 
|---|
|  | 408 | btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * info->erp); | 
|---|
|  | 409 | info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign; | 
|---|
|  | 410 | info->m_lowerLimit[srow] = - m_maxMotorImpulse; | 
|---|
|  | 411 | info->m_upperLimit[srow] =   m_maxMotorImpulse; | 
|---|
|  | 412 | } | 
|---|
|  | 413 | if(limit) | 
|---|
|  | 414 | { | 
|---|
|  | 415 | k = info->fps * info->erp; | 
|---|
|  | 416 | info->m_constraintError[srow] += k * limit_err; | 
|---|
|  | 417 | info->cfm[srow] = btScalar(0.0); | 
|---|
|  | 418 | if(lostop == histop) | 
|---|
|  | 419 | { | 
|---|
|  | 420 | // limited low and high simultaneously | 
|---|
|  | 421 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 422 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 423 | } | 
|---|
|  | 424 | else if(limit == 1) | 
|---|
|  | 425 | { // low limit | 
|---|
|  | 426 | info->m_lowerLimit[srow] = 0; | 
|---|
|  | 427 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 428 | } | 
|---|
|  | 429 | else | 
|---|
|  | 430 | { // high limit | 
|---|
|  | 431 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 432 | info->m_upperLimit[srow] = 0; | 
|---|
|  | 433 | } | 
|---|
|  | 434 | // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that) | 
|---|
|  | 435 | btScalar bounce = m_relaxationFactor; | 
|---|
|  | 436 | if(bounce > btScalar(0.0)) | 
|---|
|  | 437 | { | 
|---|
|  | 438 | btScalar vel = m_rbA.getAngularVelocity().dot(ax1); | 
|---|
|  | 439 | vel -= m_rbB.getAngularVelocity().dot(ax1); | 
|---|
|  | 440 | // only apply bounce if the velocity is incoming, and if the | 
|---|
|  | 441 | // resulting c[] exceeds what we already have. | 
|---|
|  | 442 | if(limit == 1) | 
|---|
|  | 443 | {       // low limit | 
|---|
|  | 444 | if(vel < 0) | 
|---|
|  | 445 | { | 
|---|
|  | 446 | btScalar newc = -bounce * vel; | 
|---|
|  | 447 | if(newc > info->m_constraintError[srow]) | 
|---|
|  | 448 | { | 
|---|
|  | 449 | info->m_constraintError[srow] = newc; | 
|---|
|  | 450 | } | 
|---|
|  | 451 | } | 
|---|
|  | 452 | } | 
|---|
|  | 453 | else | 
|---|
|  | 454 | {       // high limit - all those computations are reversed | 
|---|
|  | 455 | if(vel > 0) | 
|---|
|  | 456 | { | 
|---|
|  | 457 | btScalar newc = -bounce * vel; | 
|---|
|  | 458 | if(newc < info->m_constraintError[srow]) | 
|---|
|  | 459 | { | 
|---|
|  | 460 | info->m_constraintError[srow] = newc; | 
|---|
|  | 461 | } | 
|---|
|  | 462 | } | 
|---|
|  | 463 | } | 
|---|
|  | 464 | } | 
|---|
|  | 465 | info->m_constraintError[srow] *= m_biasFactor; | 
|---|
|  | 466 | } // if(limit) | 
|---|
|  | 467 | } // if angular limit or powered | 
|---|
| [1963] | 468 | } | 
|---|
|  | 469 |  | 
|---|
| [2882] | 470 | //----------------------------------------------------------------------------- | 
|---|
|  | 471 |  | 
|---|
|  | 472 | void    btHingeConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar     timeStep) | 
|---|
| [1963] | 473 | { | 
|---|
|  | 474 |  | 
|---|
| [2882] | 475 | ///for backwards compatibility during the transition to 'getInfo/getInfo2' | 
|---|
|  | 476 | if (m_useSolveConstraintObsolete) | 
|---|
|  | 477 | { | 
|---|
| [1963] | 478 |  | 
|---|
| [2882] | 479 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); | 
|---|
|  | 480 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); | 
|---|
| [1963] | 481 |  | 
|---|
| [2882] | 482 | btScalar tau = btScalar(0.3); | 
|---|
| [1963] | 483 |  | 
|---|
| [2882] | 484 | //linear part | 
|---|
|  | 485 | if (!m_angularOnly) | 
|---|
|  | 486 | { | 
|---|
|  | 487 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); | 
|---|
|  | 488 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); | 
|---|
| [1963] | 489 |  | 
|---|
| [2882] | 490 | btVector3 vel1,vel2; | 
|---|
|  | 491 | bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); | 
|---|
|  | 492 | bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); | 
|---|
|  | 493 | btVector3 vel = vel1 - vel2; | 
|---|
| [1963] | 494 |  | 
|---|
| [2882] | 495 | for (int i=0;i<3;i++) | 
|---|
|  | 496 | { | 
|---|
|  | 497 | const btVector3& normal = m_jac[i].m_linearJointAxis; | 
|---|
|  | 498 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); | 
|---|
|  | 499 |  | 
|---|
|  | 500 | btScalar rel_vel; | 
|---|
|  | 501 | rel_vel = normal.dot(vel); | 
|---|
|  | 502 | //positional error (zeroth order error) | 
|---|
|  | 503 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal | 
|---|
|  | 504 | btScalar impulse = depth*tau/timeStep  * jacDiagABInv -  rel_vel * jacDiagABInv; | 
|---|
|  | 505 | m_appliedImpulse += impulse; | 
|---|
|  | 506 | btVector3 impulse_vector = normal * impulse; | 
|---|
|  | 507 | btVector3 ftorqueAxis1 = rel_pos1.cross(normal); | 
|---|
|  | 508 | btVector3 ftorqueAxis2 = rel_pos2.cross(normal); | 
|---|
|  | 509 | bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse); | 
|---|
|  | 510 | bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse); | 
|---|
|  | 511 | } | 
|---|
| [1963] | 512 | } | 
|---|
|  | 513 |  | 
|---|
| [2882] | 514 |  | 
|---|
|  | 515 | { | 
|---|
|  | 516 | ///solve angular part | 
|---|
| [1963] | 517 |  | 
|---|
| [2882] | 518 | // get axes in world space | 
|---|
|  | 519 | btVector3 axisA =  getRigidBodyA().getCenterOfMassTransform().getBasis() *  m_rbAFrame.getBasis().getColumn(2); | 
|---|
|  | 520 | btVector3 axisB =  getRigidBodyB().getCenterOfMassTransform().getBasis() *  m_rbBFrame.getBasis().getColumn(2); | 
|---|
| [1963] | 521 |  | 
|---|
| [2882] | 522 | btVector3 angVelA; | 
|---|
|  | 523 | bodyA.getAngularVelocity(angVelA); | 
|---|
|  | 524 | btVector3 angVelB; | 
|---|
|  | 525 | bodyB.getAngularVelocity(angVelB); | 
|---|
| [1963] | 526 |  | 
|---|
| [2882] | 527 | btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); | 
|---|
|  | 528 | btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); | 
|---|
| [1963] | 529 |  | 
|---|
| [2882] | 530 | btVector3 angAorthog = angVelA - angVelAroundHingeAxisA; | 
|---|
|  | 531 | btVector3 angBorthog = angVelB - angVelAroundHingeAxisB; | 
|---|
|  | 532 | btVector3 velrelOrthog = angAorthog-angBorthog; | 
|---|
| [1963] | 533 | { | 
|---|
| [2882] | 534 |  | 
|---|
| [1963] | 535 |  | 
|---|
| [2882] | 536 | //solve orthogonal angular velocity correction | 
|---|
|  | 537 | btScalar relaxation = btScalar(1.); | 
|---|
|  | 538 | btScalar len = velrelOrthog.length(); | 
|---|
|  | 539 | if (len > btScalar(0.00001)) | 
|---|
|  | 540 | { | 
|---|
|  | 541 | btVector3 normal = velrelOrthog.normalized(); | 
|---|
|  | 542 | btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) + | 
|---|
|  | 543 | getRigidBodyB().computeAngularImpulseDenominator(normal); | 
|---|
|  | 544 | // scale for mass and relaxation | 
|---|
|  | 545 | //velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor; | 
|---|
| [1963] | 546 |  | 
|---|
| [2882] | 547 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*velrelOrthog,-(btScalar(1.)/denom)); | 
|---|
|  | 548 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*velrelOrthog,(btScalar(1.)/denom)); | 
|---|
| [1963] | 549 |  | 
|---|
| [2882] | 550 | } | 
|---|
| [1963] | 551 |  | 
|---|
| [2882] | 552 | //solve angular positional correction | 
|---|
|  | 553 | btVector3 angularError =  axisA.cross(axisB) *(btScalar(1.)/timeStep); | 
|---|
|  | 554 | btScalar len2 = angularError.length(); | 
|---|
|  | 555 | if (len2>btScalar(0.00001)) | 
|---|
|  | 556 | { | 
|---|
|  | 557 | btVector3 normal2 = angularError.normalized(); | 
|---|
|  | 558 | btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) + | 
|---|
|  | 559 | getRigidBodyB().computeAngularImpulseDenominator(normal2); | 
|---|
|  | 560 | //angularError *= (btScalar(1.)/denom2) * relaxation; | 
|---|
|  | 561 |  | 
|---|
|  | 562 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*angularError,(btScalar(1.)/denom2)); | 
|---|
|  | 563 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*angularError,-(btScalar(1.)/denom2)); | 
|---|
| [1963] | 564 |  | 
|---|
| [2882] | 565 | } | 
|---|
|  | 566 |  | 
|---|
|  | 567 |  | 
|---|
| [1963] | 568 |  | 
|---|
|  | 569 |  | 
|---|
| [2882] | 570 |  | 
|---|
|  | 571 | // solve limit | 
|---|
|  | 572 | if (m_solveLimit) | 
|---|
|  | 573 | { | 
|---|
|  | 574 | btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor  ) * m_limitSign; | 
|---|
|  | 575 |  | 
|---|
|  | 576 | btScalar impulseMag = amplitude * m_kHinge; | 
|---|
|  | 577 |  | 
|---|
|  | 578 | // Clamp the accumulated impulse | 
|---|
|  | 579 | btScalar temp = m_accLimitImpulse; | 
|---|
|  | 580 | m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) ); | 
|---|
|  | 581 | impulseMag = m_accLimitImpulse - temp; | 
|---|
|  | 582 |  | 
|---|
|  | 583 |  | 
|---|
|  | 584 |  | 
|---|
|  | 585 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,impulseMag * m_limitSign); | 
|---|
|  | 586 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-(impulseMag * m_limitSign)); | 
|---|
|  | 587 |  | 
|---|
|  | 588 | } | 
|---|
| [1963] | 589 | } | 
|---|
|  | 590 |  | 
|---|
| [2882] | 591 | //apply motor | 
|---|
|  | 592 | if (m_enableAngularMotor) | 
|---|
|  | 593 | { | 
|---|
|  | 594 | //todo: add limits too | 
|---|
|  | 595 | btVector3 angularLimit(0,0,0); | 
|---|
| [1963] | 596 |  | 
|---|
| [2882] | 597 | btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; | 
|---|
|  | 598 | btScalar projRelVel = velrel.dot(axisA); | 
|---|
| [1963] | 599 |  | 
|---|
| [2882] | 600 | btScalar desiredMotorVel = m_motorTargetVelocity; | 
|---|
|  | 601 | btScalar motor_relvel = desiredMotorVel - projRelVel; | 
|---|
| [1963] | 602 |  | 
|---|
| [2882] | 603 | btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;; | 
|---|
|  | 604 | //todo: should clip against accumulated impulse | 
|---|
|  | 605 | btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; | 
|---|
|  | 606 | clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; | 
|---|
|  | 607 | btVector3 motorImp = clippedMotorImpulse * axisA; | 
|---|
| [1963] | 608 |  | 
|---|
| [2882] | 609 | bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,clippedMotorImpulse); | 
|---|
|  | 610 | bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-clippedMotorImpulse); | 
|---|
|  | 611 |  | 
|---|
|  | 612 | } | 
|---|
| [1963] | 613 | } | 
|---|
|  | 614 | } | 
|---|
|  | 615 |  | 
|---|
|  | 616 | } | 
|---|
|  | 617 |  | 
|---|
| [2882] | 618 | //----------------------------------------------------------------------------- | 
|---|
|  | 619 |  | 
|---|
| [1963] | 620 | void    btHingeConstraint::updateRHS(btScalar   timeStep) | 
|---|
|  | 621 | { | 
|---|
|  | 622 | (void)timeStep; | 
|---|
|  | 623 |  | 
|---|
|  | 624 | } | 
|---|
|  | 625 |  | 
|---|
| [2882] | 626 | //----------------------------------------------------------------------------- | 
|---|
|  | 627 |  | 
|---|
| [1963] | 628 | btScalar btHingeConstraint::getHingeAngle() | 
|---|
|  | 629 | { | 
|---|
|  | 630 | const btVector3 refAxis0  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); | 
|---|
|  | 631 | const btVector3 refAxis1  = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); | 
|---|
|  | 632 | const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1); | 
|---|
| [2882] | 633 | btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)); | 
|---|
|  | 634 | return m_referenceSign * angle; | 
|---|
| [1963] | 635 | } | 
|---|
|  | 636 |  | 
|---|
| [2882] | 637 | //----------------------------------------------------------------------------- | 
|---|
|  | 638 |  | 
|---|
|  | 639 | void btHingeConstraint::testLimit() | 
|---|
|  | 640 | { | 
|---|
|  | 641 | // Compute limit information | 
|---|
|  | 642 | m_hingeAngle = getHingeAngle(); | 
|---|
|  | 643 | m_correction = btScalar(0.); | 
|---|
|  | 644 | m_limitSign = btScalar(0.); | 
|---|
|  | 645 | m_solveLimit = false; | 
|---|
|  | 646 | if (m_lowerLimit <= m_upperLimit) | 
|---|
|  | 647 | { | 
|---|
|  | 648 | if (m_hingeAngle <= m_lowerLimit) | 
|---|
|  | 649 | { | 
|---|
|  | 650 | m_correction = (m_lowerLimit - m_hingeAngle); | 
|---|
|  | 651 | m_limitSign = 1.0f; | 
|---|
|  | 652 | m_solveLimit = true; | 
|---|
|  | 653 | } | 
|---|
|  | 654 | else if (m_hingeAngle >= m_upperLimit) | 
|---|
|  | 655 | { | 
|---|
|  | 656 | m_correction = m_upperLimit - m_hingeAngle; | 
|---|
|  | 657 | m_limitSign = -1.0f; | 
|---|
|  | 658 | m_solveLimit = true; | 
|---|
|  | 659 | } | 
|---|
|  | 660 | } | 
|---|
|  | 661 | return; | 
|---|
|  | 662 | } // btHingeConstraint::testLimit() | 
|---|
|  | 663 |  | 
|---|
|  | 664 | //----------------------------------------------------------------------------- | 
|---|
|  | 665 | //----------------------------------------------------------------------------- | 
|---|
|  | 666 | //----------------------------------------------------------------------------- | 
|---|