| [1963] | 1 | /* | 
|---|
|  | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 4 |  | 
|---|
|  | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 9 | subject to the following restrictions: | 
|---|
|  | 10 |  | 
|---|
|  | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 14 | */ | 
|---|
|  | 15 | /* | 
|---|
|  | 16 | 2007-09-09 | 
|---|
|  | 17 | Refactored by Francisco Le?n | 
|---|
|  | 18 | email: projectileman@yahoo.com | 
|---|
|  | 19 | http://gimpact.sf.net | 
|---|
|  | 20 | */ | 
|---|
|  | 21 |  | 
|---|
|  | 22 | #include "btGeneric6DofConstraint.h" | 
|---|
|  | 23 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
|  | 24 | #include "LinearMath/btTransformUtil.h" | 
|---|
|  | 25 | #include <new> | 
|---|
|  | 26 |  | 
|---|
|  | 27 |  | 
|---|
| [2882] | 28 | #define D6_USE_OBSOLETE_METHOD false | 
|---|
|  | 29 | //----------------------------------------------------------------------------- | 
|---|
|  | 30 |  | 
|---|
|  | 31 | btGeneric6DofConstraint::btGeneric6DofConstraint() | 
|---|
|  | 32 | :btTypedConstraint(D6_CONSTRAINT_TYPE), | 
|---|
|  | 33 | m_useLinearReferenceFrameA(true), | 
|---|
|  | 34 | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) | 
|---|
|  | 35 | { | 
|---|
|  | 36 | } | 
|---|
|  | 37 |  | 
|---|
|  | 38 | //----------------------------------------------------------------------------- | 
|---|
|  | 39 |  | 
|---|
|  | 40 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) | 
|---|
|  | 41 | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) | 
|---|
|  | 42 | , m_frameInA(frameInA) | 
|---|
|  | 43 | , m_frameInB(frameInB), | 
|---|
|  | 44 | m_useLinearReferenceFrameA(useLinearReferenceFrameA), | 
|---|
|  | 45 | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) | 
|---|
|  | 46 | { | 
|---|
|  | 47 |  | 
|---|
|  | 48 | } | 
|---|
|  | 49 | //----------------------------------------------------------------------------- | 
|---|
|  | 50 |  | 
|---|
|  | 51 |  | 
|---|
| [1963] | 52 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 | 
|---|
|  | 53 |  | 
|---|
| [2882] | 54 | //----------------------------------------------------------------------------- | 
|---|
|  | 55 |  | 
|---|
| [1963] | 56 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); | 
|---|
|  | 57 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) | 
|---|
|  | 58 | { | 
|---|
|  | 59 | int i = index%3; | 
|---|
|  | 60 | int j = index/3; | 
|---|
|  | 61 | return mat[i][j]; | 
|---|
|  | 62 | } | 
|---|
|  | 63 |  | 
|---|
| [2882] | 64 | //----------------------------------------------------------------------------- | 
|---|
|  | 65 |  | 
|---|
| [1963] | 66 | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html | 
|---|
|  | 67 | bool    matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); | 
|---|
|  | 68 | bool    matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) | 
|---|
|  | 69 | { | 
|---|
| [2882] | 70 | //      // rot =  cy*cz          -cy*sz           sy | 
|---|
|  | 71 | //      //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | 
|---|
|  | 72 | //      //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | 
|---|
|  | 73 | // | 
|---|
| [1963] | 74 |  | 
|---|
| [2882] | 75 | btScalar fi = btGetMatrixElem(mat,2); | 
|---|
|  | 76 | if (fi < btScalar(1.0f)) | 
|---|
|  | 77 | { | 
|---|
|  | 78 | if (fi > btScalar(-1.0f)) | 
|---|
| [1963] | 79 | { | 
|---|
| [2882] | 80 | xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); | 
|---|
|  | 81 | xyz[1] = btAsin(btGetMatrixElem(mat,2)); | 
|---|
|  | 82 | xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); | 
|---|
|  | 83 | return true; | 
|---|
| [1963] | 84 | } | 
|---|
|  | 85 | else | 
|---|
|  | 86 | { | 
|---|
| [2882] | 87 | // WARNING.  Not unique.  XA - ZA = -atan2(r10,r11) | 
|---|
|  | 88 | xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | 
|---|
|  | 89 | xyz[1] = -SIMD_HALF_PI; | 
|---|
|  | 90 | xyz[2] = btScalar(0.0); | 
|---|
|  | 91 | return false; | 
|---|
| [1963] | 92 | } | 
|---|
| [2882] | 93 | } | 
|---|
|  | 94 | else | 
|---|
|  | 95 | { | 
|---|
|  | 96 | // WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11) | 
|---|
|  | 97 | xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | 
|---|
|  | 98 | xyz[1] = SIMD_HALF_PI; | 
|---|
|  | 99 | xyz[2] = 0.0; | 
|---|
|  | 100 | } | 
|---|
| [1963] | 101 | return false; | 
|---|
|  | 102 | } | 
|---|
|  | 103 |  | 
|---|
|  | 104 | //////////////////////////// btRotationalLimitMotor //////////////////////////////////// | 
|---|
|  | 105 |  | 
|---|
|  | 106 | int btRotationalLimitMotor::testLimitValue(btScalar test_value) | 
|---|
|  | 107 | { | 
|---|
|  | 108 | if(m_loLimit>m_hiLimit) | 
|---|
|  | 109 | { | 
|---|
|  | 110 | m_currentLimit = 0;//Free from violation | 
|---|
|  | 111 | return 0; | 
|---|
|  | 112 | } | 
|---|
|  | 113 |  | 
|---|
|  | 114 | if (test_value < m_loLimit) | 
|---|
|  | 115 | { | 
|---|
|  | 116 | m_currentLimit = 1;//low limit violation | 
|---|
|  | 117 | m_currentLimitError =  test_value - m_loLimit; | 
|---|
|  | 118 | return 1; | 
|---|
|  | 119 | } | 
|---|
|  | 120 | else if (test_value> m_hiLimit) | 
|---|
|  | 121 | { | 
|---|
|  | 122 | m_currentLimit = 2;//High limit violation | 
|---|
|  | 123 | m_currentLimitError = test_value - m_hiLimit; | 
|---|
|  | 124 | return 2; | 
|---|
|  | 125 | }; | 
|---|
|  | 126 |  | 
|---|
|  | 127 | m_currentLimit = 0;//Free from violation | 
|---|
|  | 128 | return 0; | 
|---|
| [2882] | 129 |  | 
|---|
| [1963] | 130 | } | 
|---|
|  | 131 |  | 
|---|
| [2882] | 132 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 133 |  | 
|---|
|  | 134 | btScalar btRotationalLimitMotor::solveAngularLimits( | 
|---|
| [2882] | 135 | btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, | 
|---|
|  | 136 | btRigidBody * body0, btSolverBody& bodyA, btRigidBody * body1, btSolverBody& bodyB) | 
|---|
| [1963] | 137 | { | 
|---|
| [2882] | 138 | if (needApplyTorques()==false) return 0.0f; | 
|---|
| [1963] | 139 |  | 
|---|
| [2882] | 140 | btScalar target_velocity = m_targetVelocity; | 
|---|
|  | 141 | btScalar maxMotorForce = m_maxMotorForce; | 
|---|
| [1963] | 142 |  | 
|---|
|  | 143 | //current error correction | 
|---|
| [2882] | 144 | if (m_currentLimit!=0) | 
|---|
|  | 145 | { | 
|---|
|  | 146 | target_velocity = -m_ERP*m_currentLimitError/(timeStep); | 
|---|
|  | 147 | maxMotorForce = m_maxLimitForce; | 
|---|
|  | 148 | } | 
|---|
| [1963] | 149 |  | 
|---|
| [2882] | 150 | maxMotorForce *= timeStep; | 
|---|
| [1963] | 151 |  | 
|---|
| [2882] | 152 | // current velocity difference | 
|---|
| [1963] | 153 |  | 
|---|
| [2882] | 154 | btVector3 angVelA; | 
|---|
|  | 155 | bodyA.getAngularVelocity(angVelA); | 
|---|
|  | 156 | btVector3 angVelB; | 
|---|
|  | 157 | bodyB.getAngularVelocity(angVelB); | 
|---|
| [1963] | 158 |  | 
|---|
| [2882] | 159 | btVector3 vel_diff; | 
|---|
|  | 160 | vel_diff = angVelA-angVelB; | 
|---|
| [1963] | 161 |  | 
|---|
|  | 162 |  | 
|---|
| [2882] | 163 |  | 
|---|
|  | 164 | btScalar rel_vel = axis.dot(vel_diff); | 
|---|
|  | 165 |  | 
|---|
| [1963] | 166 | // correction velocity | 
|---|
| [2882] | 167 | btScalar motor_relvel = m_limitSoftness*(target_velocity  - m_damping*rel_vel); | 
|---|
| [1963] | 168 |  | 
|---|
|  | 169 |  | 
|---|
| [2882] | 170 | if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON  ) | 
|---|
|  | 171 | { | 
|---|
|  | 172 | return 0.0f;//no need for applying force | 
|---|
|  | 173 | } | 
|---|
| [1963] | 174 |  | 
|---|
|  | 175 |  | 
|---|
|  | 176 | // correction impulse | 
|---|
| [2882] | 177 | btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; | 
|---|
| [1963] | 178 |  | 
|---|
|  | 179 | // clip correction impulse | 
|---|
| [2882] | 180 | btScalar clippedMotorImpulse; | 
|---|
| [1963] | 181 |  | 
|---|
| [2882] | 182 | ///@todo: should clip against accumulated impulse | 
|---|
|  | 183 | if (unclippedMotorImpulse>0.0f) | 
|---|
|  | 184 | { | 
|---|
|  | 185 | clippedMotorImpulse =  unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; | 
|---|
|  | 186 | } | 
|---|
|  | 187 | else | 
|---|
|  | 188 | { | 
|---|
|  | 189 | clippedMotorImpulse =  unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; | 
|---|
|  | 190 | } | 
|---|
| [1963] | 191 |  | 
|---|
|  | 192 |  | 
|---|
|  | 193 | // sort with accumulated impulses | 
|---|
| [2882] | 194 | btScalar        lo = btScalar(-1e30); | 
|---|
|  | 195 | btScalar        hi = btScalar(1e30); | 
|---|
| [1963] | 196 |  | 
|---|
| [2882] | 197 | btScalar oldaccumImpulse = m_accumulatedImpulse; | 
|---|
|  | 198 | btScalar sum = oldaccumImpulse + clippedMotorImpulse; | 
|---|
|  | 199 | m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | 
|---|
| [1963] | 200 |  | 
|---|
| [2882] | 201 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; | 
|---|
| [1963] | 202 |  | 
|---|
| [2882] | 203 | btVector3 motorImp = clippedMotorImpulse * axis; | 
|---|
| [1963] | 204 |  | 
|---|
| [2882] | 205 | //body0->applyTorqueImpulse(motorImp); | 
|---|
|  | 206 | //body1->applyTorqueImpulse(-motorImp); | 
|---|
| [1963] | 207 |  | 
|---|
| [2882] | 208 | bodyA.applyImpulse(btVector3(0,0,0), body0->getInvInertiaTensorWorld()*axis,clippedMotorImpulse); | 
|---|
|  | 209 | bodyB.applyImpulse(btVector3(0,0,0), body1->getInvInertiaTensorWorld()*axis,-clippedMotorImpulse); | 
|---|
| [1963] | 210 |  | 
|---|
|  | 211 |  | 
|---|
| [2882] | 212 | return clippedMotorImpulse; | 
|---|
| [1963] | 213 |  | 
|---|
|  | 214 |  | 
|---|
|  | 215 | } | 
|---|
|  | 216 |  | 
|---|
|  | 217 | //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// | 
|---|
|  | 218 |  | 
|---|
| [2882] | 219 |  | 
|---|
|  | 220 |  | 
|---|
|  | 221 |  | 
|---|
| [1963] | 222 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// | 
|---|
| [2882] | 223 |  | 
|---|
|  | 224 |  | 
|---|
|  | 225 | int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value) | 
|---|
| [1963] | 226 | { | 
|---|
| [2882] | 227 | btScalar loLimit = m_lowerLimit[limitIndex]; | 
|---|
|  | 228 | btScalar hiLimit = m_upperLimit[limitIndex]; | 
|---|
|  | 229 | if(loLimit > hiLimit) | 
|---|
|  | 230 | { | 
|---|
|  | 231 | m_currentLimit[limitIndex] = 0;//Free from violation | 
|---|
|  | 232 | m_currentLimitError[limitIndex] = btScalar(0.f); | 
|---|
|  | 233 | return 0; | 
|---|
|  | 234 | } | 
|---|
| [1963] | 235 |  | 
|---|
| [2882] | 236 | if (test_value < loLimit) | 
|---|
|  | 237 | { | 
|---|
|  | 238 | m_currentLimit[limitIndex] = 2;//low limit violation | 
|---|
|  | 239 | m_currentLimitError[limitIndex] =  test_value - loLimit; | 
|---|
|  | 240 | return 2; | 
|---|
|  | 241 | } | 
|---|
|  | 242 | else if (test_value> hiLimit) | 
|---|
|  | 243 | { | 
|---|
|  | 244 | m_currentLimit[limitIndex] = 1;//High limit violation | 
|---|
|  | 245 | m_currentLimitError[limitIndex] = test_value - hiLimit; | 
|---|
|  | 246 | return 1; | 
|---|
|  | 247 | }; | 
|---|
| [1963] | 248 |  | 
|---|
| [2882] | 249 | m_currentLimit[limitIndex] = 0;//Free from violation | 
|---|
|  | 250 | m_currentLimitError[limitIndex] = btScalar(0.f); | 
|---|
|  | 251 | return 0; | 
|---|
|  | 252 | } // btTranslationalLimitMotor::testLimitValue() | 
|---|
| [1963] | 253 |  | 
|---|
| [2882] | 254 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 255 |  | 
|---|
| [2882] | 256 | btScalar btTranslationalLimitMotor::solveLinearAxis( | 
|---|
|  | 257 | btScalar timeStep, | 
|---|
|  | 258 | btScalar jacDiagABInv, | 
|---|
|  | 259 | btRigidBody& body1,btSolverBody& bodyA,const btVector3 &pointInA, | 
|---|
|  | 260 | btRigidBody& body2,btSolverBody& bodyB,const btVector3 &pointInB, | 
|---|
|  | 261 | int limit_index, | 
|---|
|  | 262 | const btVector3 & axis_normal_on_a, | 
|---|
|  | 263 | const btVector3 & anchorPos) | 
|---|
|  | 264 | { | 
|---|
| [1963] | 265 |  | 
|---|
| [2882] | 266 | ///find relative velocity | 
|---|
|  | 267 | //    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); | 
|---|
|  | 268 | //    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); | 
|---|
|  | 269 | btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); | 
|---|
|  | 270 | btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); | 
|---|
| [1963] | 271 |  | 
|---|
| [2882] | 272 | btVector3 vel1; | 
|---|
|  | 273 | bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); | 
|---|
|  | 274 | btVector3 vel2; | 
|---|
|  | 275 | bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); | 
|---|
|  | 276 | btVector3 vel = vel1 - vel2; | 
|---|
| [1963] | 277 |  | 
|---|
| [2882] | 278 | btScalar rel_vel = axis_normal_on_a.dot(vel); | 
|---|
| [1963] | 279 |  | 
|---|
|  | 280 |  | 
|---|
|  | 281 |  | 
|---|
| [2882] | 282 | /// apply displacement correction | 
|---|
| [1963] | 283 |  | 
|---|
| [2882] | 284 | //positional error (zeroth order error) | 
|---|
|  | 285 | btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); | 
|---|
|  | 286 | btScalar        lo = btScalar(-1e30); | 
|---|
|  | 287 | btScalar        hi = btScalar(1e30); | 
|---|
| [1963] | 288 |  | 
|---|
| [2882] | 289 | btScalar minLimit = m_lowerLimit[limit_index]; | 
|---|
|  | 290 | btScalar maxLimit = m_upperLimit[limit_index]; | 
|---|
| [1963] | 291 |  | 
|---|
| [2882] | 292 | //handle the limits | 
|---|
|  | 293 | if (minLimit < maxLimit) | 
|---|
|  | 294 | { | 
|---|
|  | 295 | { | 
|---|
|  | 296 | if (depth > maxLimit) | 
|---|
|  | 297 | { | 
|---|
|  | 298 | depth -= maxLimit; | 
|---|
|  | 299 | lo = btScalar(0.); | 
|---|
| [1963] | 300 |  | 
|---|
| [2882] | 301 | } | 
|---|
|  | 302 | else | 
|---|
|  | 303 | { | 
|---|
|  | 304 | if (depth < minLimit) | 
|---|
|  | 305 | { | 
|---|
|  | 306 | depth -= minLimit; | 
|---|
|  | 307 | hi = btScalar(0.); | 
|---|
|  | 308 | } | 
|---|
|  | 309 | else | 
|---|
|  | 310 | { | 
|---|
|  | 311 | return 0.0f; | 
|---|
|  | 312 | } | 
|---|
|  | 313 | } | 
|---|
|  | 314 | } | 
|---|
|  | 315 | } | 
|---|
| [1963] | 316 |  | 
|---|
| [2882] | 317 | btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; | 
|---|
| [1963] | 318 |  | 
|---|
|  | 319 |  | 
|---|
|  | 320 |  | 
|---|
|  | 321 |  | 
|---|
| [2882] | 322 | btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; | 
|---|
|  | 323 | btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
|  | 324 | m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | 
|---|
|  | 325 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; | 
|---|
| [1963] | 326 |  | 
|---|
| [2882] | 327 | btVector3 impulse_vector = axis_normal_on_a * normalImpulse; | 
|---|
|  | 328 | //body1.applyImpulse( impulse_vector, rel_pos1); | 
|---|
|  | 329 | //body2.applyImpulse(-impulse_vector, rel_pos2); | 
|---|
| [1963] | 330 |  | 
|---|
| [2882] | 331 | btVector3 ftorqueAxis1 = rel_pos1.cross(axis_normal_on_a); | 
|---|
|  | 332 | btVector3 ftorqueAxis2 = rel_pos2.cross(axis_normal_on_a); | 
|---|
|  | 333 | bodyA.applyImpulse(axis_normal_on_a*body1.getInvMass(), body1.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); | 
|---|
|  | 334 | bodyB.applyImpulse(axis_normal_on_a*body2.getInvMass(), body2.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); | 
|---|
| [1963] | 335 |  | 
|---|
|  | 336 |  | 
|---|
|  | 337 |  | 
|---|
|  | 338 |  | 
|---|
| [2882] | 339 | return normalImpulse; | 
|---|
|  | 340 | } | 
|---|
| [1963] | 341 |  | 
|---|
| [2882] | 342 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// | 
|---|
|  | 343 |  | 
|---|
| [1963] | 344 | void btGeneric6DofConstraint::calculateAngleInfo() | 
|---|
|  | 345 | { | 
|---|
|  | 346 | btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); | 
|---|
|  | 347 | matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); | 
|---|
|  | 348 | // in euler angle mode we do not actually constrain the angular velocity | 
|---|
| [2882] | 349 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : | 
|---|
|  | 350 | // | 
|---|
|  | 351 | //    to get                    constrain w2-w1 along           ...not | 
|---|
|  | 352 | //    ------                    ---------------------           ------ | 
|---|
|  | 353 | //    d(angle[0])/dt = 0        ax[1] x ax[2]                   ax[0] | 
|---|
|  | 354 | //    d(angle[1])/dt = 0        ax[1] | 
|---|
|  | 355 | //    d(angle[2])/dt = 0        ax[0] x ax[1]                   ax[2] | 
|---|
|  | 356 | // | 
|---|
|  | 357 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. | 
|---|
|  | 358 | // to prove the result for angle[0], write the expression for angle[0] from | 
|---|
|  | 359 | // GetInfo1 then take the derivative. to prove this for angle[2] it is | 
|---|
|  | 360 | // easier to take the euler rate expression for d(angle[2])/dt with respect | 
|---|
|  | 361 | // to the components of w and set that to 0. | 
|---|
| [1963] | 362 | btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); | 
|---|
|  | 363 | btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); | 
|---|
|  | 364 |  | 
|---|
|  | 365 | m_calculatedAxis[1] = axis2.cross(axis0); | 
|---|
|  | 366 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); | 
|---|
|  | 367 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); | 
|---|
|  | 368 |  | 
|---|
| [2882] | 369 | m_calculatedAxis[0].normalize(); | 
|---|
|  | 370 | m_calculatedAxis[1].normalize(); | 
|---|
|  | 371 | m_calculatedAxis[2].normalize(); | 
|---|
| [1963] | 372 |  | 
|---|
|  | 373 | } | 
|---|
|  | 374 |  | 
|---|
| [2882] | 375 | //----------------------------------------------------------------------------- | 
|---|
|  | 376 |  | 
|---|
| [1963] | 377 | void btGeneric6DofConstraint::calculateTransforms() | 
|---|
|  | 378 | { | 
|---|
| [2882] | 379 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; | 
|---|
|  | 380 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; | 
|---|
|  | 381 | calculateLinearInfo(); | 
|---|
|  | 382 | calculateAngleInfo(); | 
|---|
| [1963] | 383 | } | 
|---|
|  | 384 |  | 
|---|
| [2882] | 385 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 386 |  | 
|---|
|  | 387 | void btGeneric6DofConstraint::buildLinearJacobian( | 
|---|
| [2882] | 388 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, | 
|---|
|  | 389 | const btVector3 & pivotAInW,const btVector3 & pivotBInW) | 
|---|
| [1963] | 390 | { | 
|---|
| [2882] | 391 | new (&jacLinear) btJacobianEntry( | 
|---|
| [1963] | 392 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 393 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 394 | pivotAInW - m_rbA.getCenterOfMassPosition(), | 
|---|
|  | 395 | pivotBInW - m_rbB.getCenterOfMassPosition(), | 
|---|
|  | 396 | normalWorld, | 
|---|
|  | 397 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 398 | m_rbA.getInvMass(), | 
|---|
|  | 399 | m_rbB.getInvInertiaDiagLocal(), | 
|---|
|  | 400 | m_rbB.getInvMass()); | 
|---|
|  | 401 | } | 
|---|
|  | 402 |  | 
|---|
| [2882] | 403 | //----------------------------------------------------------------------------- | 
|---|
|  | 404 |  | 
|---|
| [1963] | 405 | void btGeneric6DofConstraint::buildAngularJacobian( | 
|---|
| [2882] | 406 | btJacobianEntry & jacAngular,const btVector3 & jointAxisW) | 
|---|
| [1963] | 407 | { | 
|---|
| [2882] | 408 | new (&jacAngular)      btJacobianEntry(jointAxisW, | 
|---|
| [1963] | 409 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 410 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
|  | 411 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
|  | 412 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
|  | 413 |  | 
|---|
|  | 414 | } | 
|---|
|  | 415 |  | 
|---|
| [2882] | 416 | //----------------------------------------------------------------------------- | 
|---|
|  | 417 |  | 
|---|
| [1963] | 418 | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) | 
|---|
|  | 419 | { | 
|---|
| [2882] | 420 | btScalar angle = m_calculatedAxisAngleDiff[axis_index]; | 
|---|
|  | 421 | //test limits | 
|---|
|  | 422 | m_angularLimits[axis_index].testLimitValue(angle); | 
|---|
|  | 423 | return m_angularLimits[axis_index].needApplyTorques(); | 
|---|
| [1963] | 424 | } | 
|---|
|  | 425 |  | 
|---|
| [2882] | 426 | //----------------------------------------------------------------------------- | 
|---|
|  | 427 |  | 
|---|
| [1963] | 428 | void btGeneric6DofConstraint::buildJacobian() | 
|---|
|  | 429 | { | 
|---|
| [2882] | 430 | if (m_useSolveConstraintObsolete) | 
|---|
|  | 431 | { | 
|---|
| [1963] | 432 |  | 
|---|
| [2882] | 433 | // Clear accumulated impulses for the next simulation step | 
|---|
|  | 434 | m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); | 
|---|
|  | 435 | int i; | 
|---|
|  | 436 | for(i = 0; i < 3; i++) | 
|---|
|  | 437 | { | 
|---|
|  | 438 | m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); | 
|---|
|  | 439 | } | 
|---|
|  | 440 | //calculates transform | 
|---|
|  | 441 | calculateTransforms(); | 
|---|
| [1963] | 442 |  | 
|---|
| [2882] | 443 | //  const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); | 
|---|
|  | 444 | //  const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); | 
|---|
|  | 445 | calcAnchorPos(); | 
|---|
|  | 446 | btVector3 pivotAInW = m_AnchorPos; | 
|---|
|  | 447 | btVector3 pivotBInW = m_AnchorPos; | 
|---|
| [1963] | 448 |  | 
|---|
| [2882] | 449 | // not used here | 
|---|
|  | 450 | //    btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); | 
|---|
|  | 451 | //    btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); | 
|---|
| [1963] | 452 |  | 
|---|
| [2882] | 453 | btVector3 normalWorld; | 
|---|
|  | 454 | //linear part | 
|---|
|  | 455 | for (i=0;i<3;i++) | 
|---|
|  | 456 | { | 
|---|
|  | 457 | if (m_linearLimits.isLimited(i)) | 
|---|
|  | 458 | { | 
|---|
|  | 459 | if (m_useLinearReferenceFrameA) | 
|---|
|  | 460 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
|  | 461 | else | 
|---|
|  | 462 | normalWorld = m_calculatedTransformB.getBasis().getColumn(i); | 
|---|
| [1963] | 463 |  | 
|---|
| [2882] | 464 | buildLinearJacobian( | 
|---|
|  | 465 | m_jacLinear[i],normalWorld , | 
|---|
|  | 466 | pivotAInW,pivotBInW); | 
|---|
| [1963] | 467 |  | 
|---|
| [2882] | 468 | } | 
|---|
|  | 469 | } | 
|---|
| [1963] | 470 |  | 
|---|
| [2882] | 471 | // angular part | 
|---|
|  | 472 | for (i=0;i<3;i++) | 
|---|
|  | 473 | { | 
|---|
|  | 474 | //calculates error angle | 
|---|
|  | 475 | if (testAngularLimitMotor(i)) | 
|---|
|  | 476 | { | 
|---|
|  | 477 | normalWorld = this->getAxis(i); | 
|---|
|  | 478 | // Create angular atom | 
|---|
|  | 479 | buildAngularJacobian(m_jacAng[i],normalWorld); | 
|---|
|  | 480 | } | 
|---|
|  | 481 | } | 
|---|
| [1963] | 482 |  | 
|---|
| [2882] | 483 | } | 
|---|
|  | 484 | } | 
|---|
| [1963] | 485 |  | 
|---|
| [2882] | 486 | //----------------------------------------------------------------------------- | 
|---|
|  | 487 |  | 
|---|
|  | 488 | void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info) | 
|---|
|  | 489 | { | 
|---|
|  | 490 | if (m_useSolveConstraintObsolete) | 
|---|
|  | 491 | { | 
|---|
|  | 492 | info->m_numConstraintRows = 0; | 
|---|
|  | 493 | info->nub = 0; | 
|---|
|  | 494 | } else | 
|---|
|  | 495 | { | 
|---|
|  | 496 | //prepare constraint | 
|---|
|  | 497 | calculateTransforms(); | 
|---|
|  | 498 | info->m_numConstraintRows = 0; | 
|---|
|  | 499 | info->nub = 6; | 
|---|
|  | 500 | int i; | 
|---|
|  | 501 | //test linear limits | 
|---|
|  | 502 | for(i = 0; i < 3; i++) | 
|---|
|  | 503 | { | 
|---|
|  | 504 | if(m_linearLimits.needApplyForce(i)) | 
|---|
|  | 505 | { | 
|---|
|  | 506 | info->m_numConstraintRows++; | 
|---|
|  | 507 | info->nub--; | 
|---|
|  | 508 | } | 
|---|
|  | 509 | } | 
|---|
|  | 510 | //test angular limits | 
|---|
|  | 511 | for (i=0;i<3 ;i++ ) | 
|---|
|  | 512 | { | 
|---|
|  | 513 | if(testAngularLimitMotor(i)) | 
|---|
|  | 514 | { | 
|---|
|  | 515 | info->m_numConstraintRows++; | 
|---|
|  | 516 | info->nub--; | 
|---|
|  | 517 | } | 
|---|
|  | 518 | } | 
|---|
|  | 519 | } | 
|---|
| [1963] | 520 | } | 
|---|
|  | 521 |  | 
|---|
| [2882] | 522 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 523 |  | 
|---|
| [2882] | 524 | void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info) | 
|---|
| [1963] | 525 | { | 
|---|
| [2882] | 526 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
|  | 527 | int row = setLinearLimits(info); | 
|---|
|  | 528 | setAngularLimits(info, row); | 
|---|
|  | 529 | } | 
|---|
| [1963] | 530 |  | 
|---|
| [2882] | 531 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 532 |  | 
|---|
| [2882] | 533 | int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info) | 
|---|
|  | 534 | { | 
|---|
|  | 535 | btGeneric6DofConstraint * d6constraint = this; | 
|---|
|  | 536 | int row = 0; | 
|---|
|  | 537 | //solve linear limits | 
|---|
|  | 538 | btRotationalLimitMotor limot; | 
|---|
|  | 539 | for (int i=0;i<3 ;i++ ) | 
|---|
|  | 540 | { | 
|---|
|  | 541 | if(m_linearLimits.needApplyForce(i)) | 
|---|
|  | 542 | { // re-use rotational motor code | 
|---|
|  | 543 | limot.m_bounce = btScalar(0.f); | 
|---|
|  | 544 | limot.m_currentLimit = m_linearLimits.m_currentLimit[i]; | 
|---|
|  | 545 | limot.m_currentLimitError  = m_linearLimits.m_currentLimitError[i]; | 
|---|
|  | 546 | limot.m_damping  = m_linearLimits.m_damping; | 
|---|
|  | 547 | limot.m_enableMotor  = m_linearLimits.m_enableMotor[i]; | 
|---|
|  | 548 | limot.m_ERP  = m_linearLimits.m_restitution; | 
|---|
|  | 549 | limot.m_hiLimit  = m_linearLimits.m_upperLimit[i]; | 
|---|
|  | 550 | limot.m_limitSoftness  = m_linearLimits.m_limitSoftness; | 
|---|
|  | 551 | limot.m_loLimit  = m_linearLimits.m_lowerLimit[i]; | 
|---|
|  | 552 | limot.m_maxLimitForce  = btScalar(0.f); | 
|---|
|  | 553 | limot.m_maxMotorForce  = m_linearLimits.m_maxMotorForce[i]; | 
|---|
|  | 554 | limot.m_targetVelocity  = m_linearLimits.m_targetVelocity[i]; | 
|---|
|  | 555 | btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
|  | 556 | row += get_limit_motor_info2(&limot, &m_rbA, &m_rbB, info, row, axis, 0); | 
|---|
|  | 557 | } | 
|---|
|  | 558 | } | 
|---|
|  | 559 | return row; | 
|---|
|  | 560 | } | 
|---|
| [1963] | 561 |  | 
|---|
| [2882] | 562 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 563 |  | 
|---|
| [2882] | 564 | int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset) | 
|---|
|  | 565 | { | 
|---|
|  | 566 | btGeneric6DofConstraint * d6constraint = this; | 
|---|
|  | 567 | int row = row_offset; | 
|---|
|  | 568 | //solve angular limits | 
|---|
|  | 569 | for (int i=0;i<3 ;i++ ) | 
|---|
|  | 570 | { | 
|---|
|  | 571 | if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques()) | 
|---|
|  | 572 | { | 
|---|
|  | 573 | btVector3 axis = d6constraint->getAxis(i); | 
|---|
|  | 574 | row += get_limit_motor_info2( | 
|---|
|  | 575 | d6constraint->getRotationalLimitMotor(i), | 
|---|
|  | 576 | &m_rbA, | 
|---|
|  | 577 | &m_rbB, | 
|---|
|  | 578 | info,row,axis,1); | 
|---|
|  | 579 | } | 
|---|
|  | 580 | } | 
|---|
| [1963] | 581 |  | 
|---|
| [2882] | 582 | return row; | 
|---|
|  | 583 | } | 
|---|
| [1963] | 584 |  | 
|---|
| [2882] | 585 | //----------------------------------------------------------------------------- | 
|---|
| [1963] | 586 |  | 
|---|
| [2882] | 587 | void btGeneric6DofConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar  timeStep) | 
|---|
|  | 588 | { | 
|---|
|  | 589 | if (m_useSolveConstraintObsolete) | 
|---|
|  | 590 | { | 
|---|
| [1963] | 591 |  | 
|---|
|  | 592 |  | 
|---|
| [2882] | 593 | m_timeStep = timeStep; | 
|---|
| [1963] | 594 |  | 
|---|
| [2882] | 595 | //calculateTransforms(); | 
|---|
| [1963] | 596 |  | 
|---|
| [2882] | 597 | int i; | 
|---|
| [1963] | 598 |  | 
|---|
| [2882] | 599 | // linear | 
|---|
|  | 600 |  | 
|---|
|  | 601 | btVector3 pointInA = m_calculatedTransformA.getOrigin(); | 
|---|
|  | 602 | btVector3 pointInB = m_calculatedTransformB.getOrigin(); | 
|---|
|  | 603 |  | 
|---|
|  | 604 | btScalar jacDiagABInv; | 
|---|
|  | 605 | btVector3 linear_axis; | 
|---|
|  | 606 | for (i=0;i<3;i++) | 
|---|
|  | 607 | { | 
|---|
|  | 608 | if (m_linearLimits.isLimited(i)) | 
|---|
|  | 609 | { | 
|---|
|  | 610 | jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); | 
|---|
|  | 611 |  | 
|---|
|  | 612 | if (m_useLinearReferenceFrameA) | 
|---|
|  | 613 | linear_axis = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
|  | 614 | else | 
|---|
|  | 615 | linear_axis = m_calculatedTransformB.getBasis().getColumn(i); | 
|---|
|  | 616 |  | 
|---|
|  | 617 | m_linearLimits.solveLinearAxis( | 
|---|
|  | 618 | m_timeStep, | 
|---|
|  | 619 | jacDiagABInv, | 
|---|
|  | 620 | m_rbA,bodyA,pointInA, | 
|---|
|  | 621 | m_rbB,bodyB,pointInB, | 
|---|
|  | 622 | i,linear_axis, m_AnchorPos); | 
|---|
|  | 623 |  | 
|---|
|  | 624 | } | 
|---|
|  | 625 | } | 
|---|
|  | 626 |  | 
|---|
|  | 627 | // angular | 
|---|
|  | 628 | btVector3 angular_axis; | 
|---|
|  | 629 | btScalar angularJacDiagABInv; | 
|---|
|  | 630 | for (i=0;i<3;i++) | 
|---|
|  | 631 | { | 
|---|
|  | 632 | if (m_angularLimits[i].needApplyTorques()) | 
|---|
|  | 633 | { | 
|---|
|  | 634 |  | 
|---|
|  | 635 | // get axis | 
|---|
|  | 636 | angular_axis = getAxis(i); | 
|---|
|  | 637 |  | 
|---|
|  | 638 | angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); | 
|---|
|  | 639 |  | 
|---|
|  | 640 | m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,bodyA,&m_rbB,bodyB); | 
|---|
|  | 641 | } | 
|---|
|  | 642 | } | 
|---|
|  | 643 | } | 
|---|
| [1963] | 644 | } | 
|---|
|  | 645 |  | 
|---|
| [2882] | 646 | //----------------------------------------------------------------------------- | 
|---|
|  | 647 |  | 
|---|
| [1963] | 648 | void    btGeneric6DofConstraint::updateRHS(btScalar     timeStep) | 
|---|
|  | 649 | { | 
|---|
| [2882] | 650 | (void)timeStep; | 
|---|
| [1963] | 651 |  | 
|---|
|  | 652 | } | 
|---|
|  | 653 |  | 
|---|
| [2882] | 654 | //----------------------------------------------------------------------------- | 
|---|
|  | 655 |  | 
|---|
| [1963] | 656 | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const | 
|---|
|  | 657 | { | 
|---|
| [2882] | 658 | return m_calculatedAxis[axis_index]; | 
|---|
| [1963] | 659 | } | 
|---|
|  | 660 |  | 
|---|
| [2882] | 661 | //----------------------------------------------------------------------------- | 
|---|
|  | 662 |  | 
|---|
| [1963] | 663 | btScalar btGeneric6DofConstraint::getAngle(int axis_index) const | 
|---|
|  | 664 | { | 
|---|
| [2882] | 665 | return m_calculatedAxisAngleDiff[axis_index]; | 
|---|
| [1963] | 666 | } | 
|---|
|  | 667 |  | 
|---|
| [2882] | 668 | //----------------------------------------------------------------------------- | 
|---|
|  | 669 |  | 
|---|
| [1963] | 670 | void btGeneric6DofConstraint::calcAnchorPos(void) | 
|---|
|  | 671 | { | 
|---|
|  | 672 | btScalar imA = m_rbA.getInvMass(); | 
|---|
|  | 673 | btScalar imB = m_rbB.getInvMass(); | 
|---|
|  | 674 | btScalar weight; | 
|---|
|  | 675 | if(imB == btScalar(0.0)) | 
|---|
|  | 676 | { | 
|---|
|  | 677 | weight = btScalar(1.0); | 
|---|
|  | 678 | } | 
|---|
|  | 679 | else | 
|---|
|  | 680 | { | 
|---|
|  | 681 | weight = imA / (imA + imB); | 
|---|
|  | 682 | } | 
|---|
|  | 683 | const btVector3& pA = m_calculatedTransformA.getOrigin(); | 
|---|
|  | 684 | const btVector3& pB = m_calculatedTransformB.getOrigin(); | 
|---|
|  | 685 | m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); | 
|---|
|  | 686 | return; | 
|---|
|  | 687 | } // btGeneric6DofConstraint::calcAnchorPos() | 
|---|
|  | 688 |  | 
|---|
| [2882] | 689 | //----------------------------------------------------------------------------- | 
|---|
|  | 690 |  | 
|---|
|  | 691 | void btGeneric6DofConstraint::calculateLinearInfo() | 
|---|
|  | 692 | { | 
|---|
|  | 693 | m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin(); | 
|---|
|  | 694 | m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff; | 
|---|
|  | 695 | for(int i = 0; i < 3; i++) | 
|---|
|  | 696 | { | 
|---|
|  | 697 | m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]); | 
|---|
|  | 698 | } | 
|---|
|  | 699 | } // btGeneric6DofConstraint::calculateLinearInfo() | 
|---|
|  | 700 |  | 
|---|
|  | 701 | //----------------------------------------------------------------------------- | 
|---|
|  | 702 |  | 
|---|
|  | 703 | int btGeneric6DofConstraint::get_limit_motor_info2( | 
|---|
|  | 704 | btRotationalLimitMotor * limot, | 
|---|
|  | 705 | btRigidBody * body0, btRigidBody * body1, | 
|---|
|  | 706 | btConstraintInfo2 *info, int row, btVector3& ax1, int rotational) | 
|---|
|  | 707 | { | 
|---|
|  | 708 | int srow = row * info->rowskip; | 
|---|
|  | 709 | int powered = limot->m_enableMotor; | 
|---|
|  | 710 | int limit = limot->m_currentLimit; | 
|---|
|  | 711 | if (powered || limit) | 
|---|
|  | 712 | {   // if the joint is powered, or has joint limits, add in the extra row | 
|---|
|  | 713 | btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis; | 
|---|
|  | 714 | btScalar *J2 = rotational ? info->m_J2angularAxis : 0; | 
|---|
|  | 715 | J1[srow+0] = ax1[0]; | 
|---|
|  | 716 | J1[srow+1] = ax1[1]; | 
|---|
|  | 717 | J1[srow+2] = ax1[2]; | 
|---|
|  | 718 | if(rotational) | 
|---|
|  | 719 | { | 
|---|
|  | 720 | J2[srow+0] = -ax1[0]; | 
|---|
|  | 721 | J2[srow+1] = -ax1[1]; | 
|---|
|  | 722 | J2[srow+2] = -ax1[2]; | 
|---|
|  | 723 | } | 
|---|
|  | 724 | if((!rotational) && limit) | 
|---|
|  | 725 | { | 
|---|
|  | 726 | btVector3 ltd;  // Linear Torque Decoupling vector | 
|---|
|  | 727 | btVector3 c = m_calculatedTransformB.getOrigin() - body0->getCenterOfMassPosition(); | 
|---|
|  | 728 | ltd = c.cross(ax1); | 
|---|
|  | 729 | info->m_J1angularAxis[srow+0] = ltd[0]; | 
|---|
|  | 730 | info->m_J1angularAxis[srow+1] = ltd[1]; | 
|---|
|  | 731 | info->m_J1angularAxis[srow+2] = ltd[2]; | 
|---|
|  | 732 |  | 
|---|
|  | 733 | c = m_calculatedTransformB.getOrigin() - body1->getCenterOfMassPosition(); | 
|---|
|  | 734 | ltd = -c.cross(ax1); | 
|---|
|  | 735 | info->m_J2angularAxis[srow+0] = ltd[0]; | 
|---|
|  | 736 | info->m_J2angularAxis[srow+1] = ltd[1]; | 
|---|
|  | 737 | info->m_J2angularAxis[srow+2] = ltd[2]; | 
|---|
|  | 738 | } | 
|---|
|  | 739 | // if we're limited low and high simultaneously, the joint motor is | 
|---|
|  | 740 | // ineffective | 
|---|
|  | 741 | if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = 0; | 
|---|
|  | 742 | info->m_constraintError[srow] = btScalar(0.f); | 
|---|
|  | 743 | if (powered) | 
|---|
|  | 744 | { | 
|---|
|  | 745 | info->cfm[srow] = 0.0f; | 
|---|
|  | 746 | if(!limit) | 
|---|
|  | 747 | { | 
|---|
|  | 748 | info->m_constraintError[srow] += limot->m_targetVelocity; | 
|---|
|  | 749 | info->m_lowerLimit[srow] = -limot->m_maxMotorForce; | 
|---|
|  | 750 | info->m_upperLimit[srow] = limot->m_maxMotorForce; | 
|---|
|  | 751 | } | 
|---|
|  | 752 | } | 
|---|
|  | 753 | if(limit) | 
|---|
|  | 754 | { | 
|---|
|  | 755 | btScalar k = info->fps * limot->m_ERP; | 
|---|
|  | 756 | if(!rotational) | 
|---|
|  | 757 | { | 
|---|
|  | 758 | info->m_constraintError[srow] += k * limot->m_currentLimitError; | 
|---|
|  | 759 | } | 
|---|
|  | 760 | else | 
|---|
|  | 761 | { | 
|---|
|  | 762 | info->m_constraintError[srow] += -k * limot->m_currentLimitError; | 
|---|
|  | 763 | } | 
|---|
|  | 764 | info->cfm[srow] = 0.0f; | 
|---|
|  | 765 | if (limot->m_loLimit == limot->m_hiLimit) | 
|---|
|  | 766 | {   // limited low and high simultaneously | 
|---|
|  | 767 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 768 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 769 | } | 
|---|
|  | 770 | else | 
|---|
|  | 771 | { | 
|---|
|  | 772 | if (limit == 1) | 
|---|
|  | 773 | { | 
|---|
|  | 774 | info->m_lowerLimit[srow] = 0; | 
|---|
|  | 775 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
|  | 776 | } | 
|---|
|  | 777 | else | 
|---|
|  | 778 | { | 
|---|
|  | 779 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
|  | 780 | info->m_upperLimit[srow] = 0; | 
|---|
|  | 781 | } | 
|---|
|  | 782 | // deal with bounce | 
|---|
|  | 783 | if (limot->m_bounce > 0) | 
|---|
|  | 784 | { | 
|---|
|  | 785 | // calculate joint velocity | 
|---|
|  | 786 | btScalar vel; | 
|---|
|  | 787 | if (rotational) | 
|---|
|  | 788 | { | 
|---|
|  | 789 | vel = body0->getAngularVelocity().dot(ax1); | 
|---|
|  | 790 | if (body1) | 
|---|
|  | 791 | vel -= body1->getAngularVelocity().dot(ax1); | 
|---|
|  | 792 | } | 
|---|
|  | 793 | else | 
|---|
|  | 794 | { | 
|---|
|  | 795 | vel = body0->getLinearVelocity().dot(ax1); | 
|---|
|  | 796 | if (body1) | 
|---|
|  | 797 | vel -= body1->getLinearVelocity().dot(ax1); | 
|---|
|  | 798 | } | 
|---|
|  | 799 | // only apply bounce if the velocity is incoming, and if the | 
|---|
|  | 800 | // resulting c[] exceeds what we already have. | 
|---|
|  | 801 | if (limit == 1) | 
|---|
|  | 802 | { | 
|---|
|  | 803 | if (vel < 0) | 
|---|
|  | 804 | { | 
|---|
|  | 805 | btScalar newc = -limot->m_bounce* vel; | 
|---|
|  | 806 | if (newc > info->m_constraintError[srow]) | 
|---|
|  | 807 | info->m_constraintError[srow] = newc; | 
|---|
|  | 808 | } | 
|---|
|  | 809 | } | 
|---|
|  | 810 | else | 
|---|
|  | 811 | { | 
|---|
|  | 812 | if (vel > 0) | 
|---|
|  | 813 | { | 
|---|
|  | 814 | btScalar newc = -limot->m_bounce * vel; | 
|---|
|  | 815 | if (newc < info->m_constraintError[srow]) | 
|---|
|  | 816 | info->m_constraintError[srow] = newc; | 
|---|
|  | 817 | } | 
|---|
|  | 818 | } | 
|---|
|  | 819 | } | 
|---|
|  | 820 | } | 
|---|
|  | 821 | } | 
|---|
|  | 822 | return 1; | 
|---|
|  | 823 | } | 
|---|
|  | 824 | else return 0; | 
|---|
|  | 825 | } | 
|---|
|  | 826 |  | 
|---|
|  | 827 | //----------------------------------------------------------------------------- | 
|---|
|  | 828 | //----------------------------------------------------------------------------- | 
|---|
|  | 829 | //----------------------------------------------------------------------------- | 
|---|