| [1963] | 1 | /* | 
|---|
|  | 2 | * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith | 
|---|
|  | 3 | * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. | 
|---|
|  | 4 | * All rights reserved.  Email: russ@q12.org   Web: www.q12.org | 
|---|
|  | 5 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 6 | Bullet is Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 7 |  | 
|---|
|  | 8 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 9 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 10 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 11 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 12 | subject to the following restrictions: | 
|---|
|  | 13 |  | 
|---|
|  | 14 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 15 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 16 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 17 | */ | 
|---|
|  | 18 |  | 
|---|
|  | 19 | ///ODE box-box collision detection is adapted to work with Bullet | 
|---|
|  | 20 |  | 
|---|
|  | 21 | #include "btBoxBoxDetector.h" | 
|---|
|  | 22 | #include "BulletCollision/CollisionShapes/btBoxShape.h" | 
|---|
|  | 23 |  | 
|---|
|  | 24 | #include <float.h> | 
|---|
|  | 25 | #include <string.h> | 
|---|
|  | 26 |  | 
|---|
|  | 27 | btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2) | 
|---|
|  | 28 | : m_box1(box1), | 
|---|
|  | 29 | m_box2(box2) | 
|---|
|  | 30 | { | 
|---|
|  | 31 |  | 
|---|
|  | 32 | } | 
|---|
|  | 33 |  | 
|---|
|  | 34 |  | 
|---|
|  | 35 | // given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and | 
|---|
|  | 36 | // generate contact points. this returns 0 if there is no contact otherwise | 
|---|
|  | 37 | // it returns the number of contacts generated. | 
|---|
|  | 38 | // `normal' returns the contact normal. | 
|---|
|  | 39 | // `depth' returns the maximum penetration depth along that normal. | 
|---|
|  | 40 | // `return_code' returns a number indicating the type of contact that was | 
|---|
|  | 41 | // detected: | 
|---|
|  | 42 | //        1,2,3 = box 2 intersects with a face of box 1 | 
|---|
|  | 43 | //        4,5,6 = box 1 intersects with a face of box 2 | 
|---|
|  | 44 | //        7..15 = edge-edge contact | 
|---|
|  | 45 | // `maxc' is the maximum number of contacts allowed to be generated, i.e. | 
|---|
|  | 46 | // the size of the `contact' array. | 
|---|
|  | 47 | // `contact' and `skip' are the contact array information provided to the | 
|---|
|  | 48 | // collision functions. this function only fills in the position and depth | 
|---|
|  | 49 | // fields. | 
|---|
|  | 50 | struct dContactGeom; | 
|---|
|  | 51 | #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)]) | 
|---|
|  | 52 | #define dInfinity FLT_MAX | 
|---|
|  | 53 |  | 
|---|
|  | 54 |  | 
|---|
|  | 55 | /*PURE_INLINE btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } | 
|---|
|  | 56 | PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); } | 
|---|
|  | 57 | PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); } | 
|---|
|  | 58 | PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); } | 
|---|
|  | 59 | */ | 
|---|
|  | 60 | static btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } | 
|---|
|  | 61 | static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); } | 
|---|
|  | 62 | static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); } | 
|---|
|  | 63 | static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); } | 
|---|
|  | 64 | #define dMULTIPLYOP1_331(A,op,B,C) \ | 
|---|
|  | 65 | {\ | 
|---|
|  | 66 | (A)[0] op dDOT41((B),(C)); \ | 
|---|
|  | 67 | (A)[1] op dDOT41((B+1),(C)); \ | 
|---|
|  | 68 | (A)[2] op dDOT41((B+2),(C)); \ | 
|---|
|  | 69 | } | 
|---|
|  | 70 |  | 
|---|
|  | 71 | #define dMULTIPLYOP0_331(A,op,B,C) \ | 
|---|
|  | 72 | { \ | 
|---|
|  | 73 | (A)[0] op dDOT((B),(C)); \ | 
|---|
|  | 74 | (A)[1] op dDOT((B+4),(C)); \ | 
|---|
|  | 75 | (A)[2] op dDOT((B+8),(C)); \ | 
|---|
|  | 76 | } | 
|---|
|  | 77 |  | 
|---|
|  | 78 | #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) | 
|---|
|  | 79 | #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) | 
|---|
|  | 80 |  | 
|---|
|  | 81 | typedef btScalar dMatrix3[4*3]; | 
|---|
|  | 82 |  | 
|---|
|  | 83 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, | 
|---|
|  | 84 | const btVector3& pb, const btVector3& ub, | 
|---|
|  | 85 | btScalar *alpha, btScalar *beta); | 
|---|
|  | 86 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, | 
|---|
|  | 87 | const btVector3& pb, const btVector3& ub, | 
|---|
|  | 88 | btScalar *alpha, btScalar *beta) | 
|---|
|  | 89 | { | 
|---|
|  | 90 | btVector3 p; | 
|---|
|  | 91 | p[0] = pb[0] - pa[0]; | 
|---|
|  | 92 | p[1] = pb[1] - pa[1]; | 
|---|
|  | 93 | p[2] = pb[2] - pa[2]; | 
|---|
|  | 94 | btScalar uaub = dDOT(ua,ub); | 
|---|
|  | 95 | btScalar q1 =  dDOT(ua,p); | 
|---|
|  | 96 | btScalar q2 = -dDOT(ub,p); | 
|---|
|  | 97 | btScalar d = 1-uaub*uaub; | 
|---|
|  | 98 | if (d <= btScalar(0.0001f)) { | 
|---|
|  | 99 | // @@@ this needs to be made more robust | 
|---|
|  | 100 | *alpha = 0; | 
|---|
|  | 101 | *beta  = 0; | 
|---|
|  | 102 | } | 
|---|
|  | 103 | else { | 
|---|
|  | 104 | d = 1.f/d; | 
|---|
|  | 105 | *alpha = (q1 + uaub*q2)*d; | 
|---|
|  | 106 | *beta  = (uaub*q1 + q2)*d; | 
|---|
|  | 107 | } | 
|---|
|  | 108 | } | 
|---|
|  | 109 |  | 
|---|
|  | 110 |  | 
|---|
|  | 111 |  | 
|---|
|  | 112 | // find all the intersection points between the 2D rectangle with vertices | 
|---|
|  | 113 | // at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]), | 
|---|
|  | 114 | // (p[2],p[3]),(p[4],p[5]),(p[6],p[7]). | 
|---|
|  | 115 | // | 
|---|
|  | 116 | // the intersection points are returned as x,y pairs in the 'ret' array. | 
|---|
|  | 117 | // the number of intersection points is returned by the function (this will | 
|---|
|  | 118 | // be in the range 0 to 8). | 
|---|
|  | 119 |  | 
|---|
|  | 120 | static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16]) | 
|---|
|  | 121 | { | 
|---|
|  | 122 | // q (and r) contain nq (and nr) coordinate points for the current (and | 
|---|
|  | 123 | // chopped) polygons | 
|---|
|  | 124 | int nq=4,nr=0; | 
|---|
|  | 125 | btScalar buffer[16]; | 
|---|
|  | 126 | btScalar *q = p; | 
|---|
|  | 127 | btScalar *r = ret; | 
|---|
|  | 128 | for (int dir=0; dir <= 1; dir++) { | 
|---|
|  | 129 | // direction notation: xy[0] = x axis, xy[1] = y axis | 
|---|
|  | 130 | for (int sign=-1; sign <= 1; sign += 2) { | 
|---|
|  | 131 | // chop q along the line xy[dir] = sign*h[dir] | 
|---|
|  | 132 | btScalar *pq = q; | 
|---|
|  | 133 | btScalar *pr = r; | 
|---|
|  | 134 | nr = 0; | 
|---|
|  | 135 | for (int i=nq; i > 0; i--) { | 
|---|
|  | 136 | // go through all points in q and all lines between adjacent points | 
|---|
|  | 137 | if (sign*pq[dir] < h[dir]) { | 
|---|
|  | 138 | // this point is inside the chopping line | 
|---|
|  | 139 | pr[0] = pq[0]; | 
|---|
|  | 140 | pr[1] = pq[1]; | 
|---|
|  | 141 | pr += 2; | 
|---|
|  | 142 | nr++; | 
|---|
|  | 143 | if (nr & 8) { | 
|---|
|  | 144 | q = r; | 
|---|
|  | 145 | goto done; | 
|---|
|  | 146 | } | 
|---|
|  | 147 | } | 
|---|
|  | 148 | btScalar *nextq = (i > 1) ? pq+2 : q; | 
|---|
|  | 149 | if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) { | 
|---|
|  | 150 | // this line crosses the chopping line | 
|---|
|  | 151 | pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) / | 
|---|
|  | 152 | (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]); | 
|---|
|  | 153 | pr[dir] = sign*h[dir]; | 
|---|
|  | 154 | pr += 2; | 
|---|
|  | 155 | nr++; | 
|---|
|  | 156 | if (nr & 8) { | 
|---|
|  | 157 | q = r; | 
|---|
|  | 158 | goto done; | 
|---|
|  | 159 | } | 
|---|
|  | 160 | } | 
|---|
|  | 161 | pq += 2; | 
|---|
|  | 162 | } | 
|---|
|  | 163 | q = r; | 
|---|
|  | 164 | r = (q==ret) ? buffer : ret; | 
|---|
|  | 165 | nq = nr; | 
|---|
|  | 166 | } | 
|---|
|  | 167 | } | 
|---|
|  | 168 | done: | 
|---|
|  | 169 | if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar)); | 
|---|
|  | 170 | return nr; | 
|---|
|  | 171 | } | 
|---|
|  | 172 |  | 
|---|
|  | 173 |  | 
|---|
|  | 174 | #define M__PI 3.14159265f | 
|---|
|  | 175 |  | 
|---|
|  | 176 | // given n points in the plane (array p, of size 2*n), generate m points that | 
|---|
|  | 177 | // best represent the whole set. the definition of 'best' here is not | 
|---|
|  | 178 | // predetermined - the idea is to select points that give good box-box | 
|---|
|  | 179 | // collision detection behavior. the chosen point indexes are returned in the | 
|---|
|  | 180 | // array iret (of size m). 'i0' is always the first entry in the array. | 
|---|
|  | 181 | // n must be in the range [1..8]. m must be in the range [1..n]. i0 must be | 
|---|
|  | 182 | // in the range [0..n-1]. | 
|---|
|  | 183 |  | 
|---|
|  | 184 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]); | 
|---|
|  | 185 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]) | 
|---|
|  | 186 | { | 
|---|
|  | 187 | // compute the centroid of the polygon in cx,cy | 
|---|
|  | 188 | int i,j; | 
|---|
|  | 189 | btScalar a,cx,cy,q; | 
|---|
|  | 190 | if (n==1) { | 
|---|
|  | 191 | cx = p[0]; | 
|---|
|  | 192 | cy = p[1]; | 
|---|
|  | 193 | } | 
|---|
|  | 194 | else if (n==2) { | 
|---|
|  | 195 | cx = btScalar(0.5)*(p[0] + p[2]); | 
|---|
|  | 196 | cy = btScalar(0.5)*(p[1] + p[3]); | 
|---|
|  | 197 | } | 
|---|
|  | 198 | else { | 
|---|
|  | 199 | a = 0; | 
|---|
|  | 200 | cx = 0; | 
|---|
|  | 201 | cy = 0; | 
|---|
|  | 202 | for (i=0; i<(n-1); i++) { | 
|---|
|  | 203 | q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1]; | 
|---|
|  | 204 | a += q; | 
|---|
|  | 205 | cx += q*(p[i*2]+p[i*2+2]); | 
|---|
|  | 206 | cy += q*(p[i*2+1]+p[i*2+3]); | 
|---|
|  | 207 | } | 
|---|
|  | 208 | q = p[n*2-2]*p[1] - p[0]*p[n*2-1]; | 
|---|
| [2430] | 209 | if (btFabs(a+q) > SIMD_EPSILON) | 
|---|
|  | 210 | { | 
|---|
|  | 211 | a = 1.f/(btScalar(3.0)*(a+q)); | 
|---|
|  | 212 | } else | 
|---|
|  | 213 | { | 
|---|
| [8351] | 214 | a=BT_LARGE_FLOAT; | 
|---|
| [2430] | 215 | } | 
|---|
| [1963] | 216 | cx = a*(cx + q*(p[n*2-2]+p[0])); | 
|---|
|  | 217 | cy = a*(cy + q*(p[n*2-1]+p[1])); | 
|---|
|  | 218 | } | 
|---|
|  | 219 |  | 
|---|
|  | 220 | // compute the angle of each point w.r.t. the centroid | 
|---|
|  | 221 | btScalar A[8]; | 
|---|
|  | 222 | for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx); | 
|---|
|  | 223 |  | 
|---|
|  | 224 | // search for points that have angles closest to A[i0] + i*(2*pi/m). | 
|---|
|  | 225 | int avail[8]; | 
|---|
|  | 226 | for (i=0; i<n; i++) avail[i] = 1; | 
|---|
|  | 227 | avail[i0] = 0; | 
|---|
|  | 228 | iret[0] = i0; | 
|---|
|  | 229 | iret++; | 
|---|
|  | 230 | for (j=1; j<m; j++) { | 
|---|
|  | 231 | a = btScalar(j)*(2*M__PI/m) + A[i0]; | 
|---|
|  | 232 | if (a > M__PI) a -= 2*M__PI; | 
|---|
|  | 233 | btScalar maxdiff=1e9,diff; | 
|---|
|  | 234 |  | 
|---|
|  | 235 | *iret = i0;                 // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0 | 
|---|
|  | 236 |  | 
|---|
|  | 237 | for (i=0; i<n; i++) { | 
|---|
|  | 238 | if (avail[i]) { | 
|---|
|  | 239 | diff = btFabs (A[i]-a); | 
|---|
|  | 240 | if (diff > M__PI) diff = 2*M__PI - diff; | 
|---|
|  | 241 | if (diff < maxdiff) { | 
|---|
|  | 242 | maxdiff = diff; | 
|---|
|  | 243 | *iret = i; | 
|---|
|  | 244 | } | 
|---|
|  | 245 | } | 
|---|
|  | 246 | } | 
|---|
|  | 247 | #if defined(DEBUG) || defined (_DEBUG) | 
|---|
|  | 248 | btAssert (*iret != i0);     // ensure iret got set | 
|---|
|  | 249 | #endif | 
|---|
|  | 250 | avail[*iret] = 0; | 
|---|
|  | 251 | iret++; | 
|---|
|  | 252 | } | 
|---|
|  | 253 | } | 
|---|
|  | 254 |  | 
|---|
|  | 255 |  | 
|---|
|  | 256 |  | 
|---|
|  | 257 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, | 
|---|
|  | 258 | const btVector3& side1, const btVector3& p2, | 
|---|
|  | 259 | const dMatrix3 R2, const btVector3& side2, | 
|---|
|  | 260 | btVector3& normal, btScalar *depth, int *return_code, | 
|---|
|  | 261 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output); | 
|---|
|  | 262 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, | 
|---|
|  | 263 | const btVector3& side1, const btVector3& p2, | 
|---|
|  | 264 | const dMatrix3 R2, const btVector3& side2, | 
|---|
|  | 265 | btVector3& normal, btScalar *depth, int *return_code, | 
|---|
|  | 266 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output) | 
|---|
|  | 267 | { | 
|---|
|  | 268 | const btScalar fudge_factor = btScalar(1.05); | 
|---|
| [8351] | 269 | btVector3 p,pp,normalC(0.f,0.f,0.f); | 
|---|
| [1963] | 270 | const btScalar *normalR = 0; | 
|---|
|  | 271 | btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, | 
|---|
|  | 272 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; | 
|---|
|  | 273 | int i,j,invert_normal,code; | 
|---|
|  | 274 |  | 
|---|
|  | 275 | // get vector from centers of box 1 to box 2, relative to box 1 | 
|---|
|  | 276 | p = p2 - p1; | 
|---|
|  | 277 | dMULTIPLY1_331 (pp,R1,p);             // get pp = p relative to body 1 | 
|---|
|  | 278 |  | 
|---|
|  | 279 | // get side lengths / 2 | 
|---|
|  | 280 | A[0] = side1[0]*btScalar(0.5); | 
|---|
|  | 281 | A[1] = side1[1]*btScalar(0.5); | 
|---|
|  | 282 | A[2] = side1[2]*btScalar(0.5); | 
|---|
|  | 283 | B[0] = side2[0]*btScalar(0.5); | 
|---|
|  | 284 | B[1] = side2[1]*btScalar(0.5); | 
|---|
|  | 285 | B[2] = side2[2]*btScalar(0.5); | 
|---|
|  | 286 |  | 
|---|
|  | 287 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 | 
|---|
|  | 288 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); | 
|---|
|  | 289 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); | 
|---|
|  | 290 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); | 
|---|
|  | 291 |  | 
|---|
|  | 292 | Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); | 
|---|
|  | 293 | Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); | 
|---|
|  | 294 | Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); | 
|---|
|  | 295 |  | 
|---|
|  | 296 | // for all 15 possible separating axes: | 
|---|
|  | 297 | //   * see if the axis separates the boxes. if so, return 0. | 
|---|
|  | 298 | //   * find the depth of the penetration along the separating axis (s2) | 
|---|
|  | 299 | //   * if this is the largest depth so far, record it. | 
|---|
|  | 300 | // the normal vector will be set to the separating axis with the smallest | 
|---|
|  | 301 | // depth. note: normalR is set to point to a column of R1 or R2 if that is | 
|---|
|  | 302 | // the smallest depth normal so far. otherwise normalR is 0 and normalC is | 
|---|
|  | 303 | // set to a vector relative to body 1. invert_normal is 1 if the sign of | 
|---|
|  | 304 | // the normal should be flipped. | 
|---|
|  | 305 |  | 
|---|
|  | 306 | #define TST(expr1,expr2,norm,cc) \ | 
|---|
|  | 307 | s2 = btFabs(expr1) - (expr2); \ | 
|---|
|  | 308 | if (s2 > 0) return 0; \ | 
|---|
|  | 309 | if (s2 > s) { \ | 
|---|
|  | 310 | s = s2; \ | 
|---|
|  | 311 | normalR = norm; \ | 
|---|
|  | 312 | invert_normal = ((expr1) < 0); \ | 
|---|
|  | 313 | code = (cc); \ | 
|---|
|  | 314 | } | 
|---|
|  | 315 |  | 
|---|
|  | 316 | s = -dInfinity; | 
|---|
|  | 317 | invert_normal = 0; | 
|---|
|  | 318 | code = 0; | 
|---|
|  | 319 |  | 
|---|
|  | 320 | // separating axis = u1,u2,u3 | 
|---|
|  | 321 | TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); | 
|---|
|  | 322 | TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); | 
|---|
|  | 323 | TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); | 
|---|
|  | 324 |  | 
|---|
|  | 325 | // separating axis = v1,v2,v3 | 
|---|
|  | 326 | TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); | 
|---|
|  | 327 | TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); | 
|---|
|  | 328 | TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); | 
|---|
|  | 329 |  | 
|---|
|  | 330 | // note: cross product axes need to be scaled when s is computed. | 
|---|
|  | 331 | // normal (n1,n2,n3) is relative to box 1. | 
|---|
|  | 332 | #undef TST | 
|---|
|  | 333 | #define TST(expr1,expr2,n1,n2,n3,cc) \ | 
|---|
|  | 334 | s2 = btFabs(expr1) - (expr2); \ | 
|---|
| [8351] | 335 | if (s2 > SIMD_EPSILON) return 0; \ | 
|---|
| [1963] | 336 | l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ | 
|---|
| [8351] | 337 | if (l > SIMD_EPSILON) { \ | 
|---|
| [1963] | 338 | s2 /= l; \ | 
|---|
|  | 339 | if (s2*fudge_factor > s) { \ | 
|---|
|  | 340 | s = s2; \ | 
|---|
|  | 341 | normalR = 0; \ | 
|---|
|  | 342 | normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ | 
|---|
|  | 343 | invert_normal = ((expr1) < 0); \ | 
|---|
|  | 344 | code = (cc); \ | 
|---|
|  | 345 | } \ | 
|---|
|  | 346 | } | 
|---|
|  | 347 |  | 
|---|
| [8351] | 348 | btScalar fudge2 (1.0e-5f); | 
|---|
|  | 349 |  | 
|---|
|  | 350 | Q11 += fudge2; | 
|---|
|  | 351 | Q12 += fudge2; | 
|---|
|  | 352 | Q13 += fudge2; | 
|---|
|  | 353 |  | 
|---|
|  | 354 | Q21 += fudge2; | 
|---|
|  | 355 | Q22 += fudge2; | 
|---|
|  | 356 | Q23 += fudge2; | 
|---|
|  | 357 |  | 
|---|
|  | 358 | Q31 += fudge2; | 
|---|
|  | 359 | Q32 += fudge2; | 
|---|
|  | 360 | Q33 += fudge2; | 
|---|
|  | 361 |  | 
|---|
| [1963] | 362 | // separating axis = u1 x (v1,v2,v3) | 
|---|
|  | 363 | TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); | 
|---|
|  | 364 | TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); | 
|---|
|  | 365 | TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); | 
|---|
|  | 366 |  | 
|---|
|  | 367 | // separating axis = u2 x (v1,v2,v3) | 
|---|
|  | 368 | TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); | 
|---|
|  | 369 | TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); | 
|---|
|  | 370 | TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); | 
|---|
|  | 371 |  | 
|---|
|  | 372 | // separating axis = u3 x (v1,v2,v3) | 
|---|
|  | 373 | TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); | 
|---|
|  | 374 | TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); | 
|---|
|  | 375 | TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); | 
|---|
|  | 376 |  | 
|---|
|  | 377 | #undef TST | 
|---|
|  | 378 |  | 
|---|
|  | 379 | if (!code) return 0; | 
|---|
|  | 380 |  | 
|---|
|  | 381 | // if we get to this point, the boxes interpenetrate. compute the normal | 
|---|
|  | 382 | // in global coordinates. | 
|---|
|  | 383 | if (normalR) { | 
|---|
|  | 384 | normal[0] = normalR[0]; | 
|---|
|  | 385 | normal[1] = normalR[4]; | 
|---|
|  | 386 | normal[2] = normalR[8]; | 
|---|
|  | 387 | } | 
|---|
|  | 388 | else { | 
|---|
|  | 389 | dMULTIPLY0_331 (normal,R1,normalC); | 
|---|
|  | 390 | } | 
|---|
|  | 391 | if (invert_normal) { | 
|---|
|  | 392 | normal[0] = -normal[0]; | 
|---|
|  | 393 | normal[1] = -normal[1]; | 
|---|
|  | 394 | normal[2] = -normal[2]; | 
|---|
|  | 395 | } | 
|---|
|  | 396 | *depth = -s; | 
|---|
|  | 397 |  | 
|---|
|  | 398 | // compute contact point(s) | 
|---|
|  | 399 |  | 
|---|
|  | 400 | if (code > 6) { | 
|---|
|  | 401 | // an edge from box 1 touches an edge from box 2. | 
|---|
|  | 402 | // find a point pa on the intersecting edge of box 1 | 
|---|
|  | 403 | btVector3 pa; | 
|---|
|  | 404 | btScalar sign; | 
|---|
|  | 405 | for (i=0; i<3; i++) pa[i] = p1[i]; | 
|---|
|  | 406 | for (j=0; j<3; j++) { | 
|---|
|  | 407 | sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0); | 
|---|
|  | 408 | for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; | 
|---|
|  | 409 | } | 
|---|
|  | 410 |  | 
|---|
|  | 411 | // find a point pb on the intersecting edge of box 2 | 
|---|
|  | 412 | btVector3 pb; | 
|---|
|  | 413 | for (i=0; i<3; i++) pb[i] = p2[i]; | 
|---|
|  | 414 | for (j=0; j<3; j++) { | 
|---|
|  | 415 | sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0); | 
|---|
|  | 416 | for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; | 
|---|
|  | 417 | } | 
|---|
|  | 418 |  | 
|---|
|  | 419 | btScalar alpha,beta; | 
|---|
|  | 420 | btVector3 ua,ub; | 
|---|
|  | 421 | for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; | 
|---|
|  | 422 | for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; | 
|---|
|  | 423 |  | 
|---|
|  | 424 | dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); | 
|---|
|  | 425 | for (i=0; i<3; i++) pa[i] += ua[i]*alpha; | 
|---|
|  | 426 | for (i=0; i<3; i++) pb[i] += ub[i]*beta; | 
|---|
|  | 427 |  | 
|---|
|  | 428 | { | 
|---|
|  | 429 |  | 
|---|
|  | 430 | //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]); | 
|---|
|  | 431 | //contact[0].depth = *depth; | 
|---|
|  | 432 | btVector3 pointInWorld; | 
|---|
|  | 433 |  | 
|---|
|  | 434 | #ifdef USE_CENTER_POINT | 
|---|
|  | 435 | for (i=0; i<3; i++) | 
|---|
|  | 436 | pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5); | 
|---|
|  | 437 | output.addContactPoint(-normal,pointInWorld,-*depth); | 
|---|
|  | 438 | #else | 
|---|
|  | 439 | output.addContactPoint(-normal,pb,-*depth); | 
|---|
| [8351] | 440 |  | 
|---|
| [1963] | 441 | #endif // | 
|---|
|  | 442 | *return_code = code; | 
|---|
|  | 443 | } | 
|---|
|  | 444 | return 1; | 
|---|
|  | 445 | } | 
|---|
|  | 446 |  | 
|---|
|  | 447 | // okay, we have a face-something intersection (because the separating | 
|---|
|  | 448 | // axis is perpendicular to a face). define face 'a' to be the reference | 
|---|
|  | 449 | // face (i.e. the normal vector is perpendicular to this) and face 'b' to be | 
|---|
|  | 450 | // the incident face (the closest face of the other box). | 
|---|
|  | 451 |  | 
|---|
|  | 452 | const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; | 
|---|
|  | 453 | if (code <= 3) { | 
|---|
|  | 454 | Ra = R1; | 
|---|
|  | 455 | Rb = R2; | 
|---|
|  | 456 | pa = p1; | 
|---|
|  | 457 | pb = p2; | 
|---|
|  | 458 | Sa = A; | 
|---|
|  | 459 | Sb = B; | 
|---|
|  | 460 | } | 
|---|
|  | 461 | else { | 
|---|
|  | 462 | Ra = R2; | 
|---|
|  | 463 | Rb = R1; | 
|---|
|  | 464 | pa = p2; | 
|---|
|  | 465 | pb = p1; | 
|---|
|  | 466 | Sa = B; | 
|---|
|  | 467 | Sb = A; | 
|---|
|  | 468 | } | 
|---|
|  | 469 |  | 
|---|
|  | 470 | // nr = normal vector of reference face dotted with axes of incident box. | 
|---|
|  | 471 | // anr = absolute values of nr. | 
|---|
|  | 472 | btVector3 normal2,nr,anr; | 
|---|
|  | 473 | if (code <= 3) { | 
|---|
|  | 474 | normal2[0] = normal[0]; | 
|---|
|  | 475 | normal2[1] = normal[1]; | 
|---|
|  | 476 | normal2[2] = normal[2]; | 
|---|
|  | 477 | } | 
|---|
|  | 478 | else { | 
|---|
|  | 479 | normal2[0] = -normal[0]; | 
|---|
|  | 480 | normal2[1] = -normal[1]; | 
|---|
|  | 481 | normal2[2] = -normal[2]; | 
|---|
|  | 482 | } | 
|---|
|  | 483 | dMULTIPLY1_331 (nr,Rb,normal2); | 
|---|
|  | 484 | anr[0] = btFabs (nr[0]); | 
|---|
|  | 485 | anr[1] = btFabs (nr[1]); | 
|---|
|  | 486 | anr[2] = btFabs (nr[2]); | 
|---|
|  | 487 |  | 
|---|
|  | 488 | // find the largest compontent of anr: this corresponds to the normal | 
|---|
|  | 489 | // for the indident face. the other axis numbers of the indicent face | 
|---|
|  | 490 | // are stored in a1,a2. | 
|---|
|  | 491 | int lanr,a1,a2; | 
|---|
|  | 492 | if (anr[1] > anr[0]) { | 
|---|
|  | 493 | if (anr[1] > anr[2]) { | 
|---|
|  | 494 | a1 = 0; | 
|---|
|  | 495 | lanr = 1; | 
|---|
|  | 496 | a2 = 2; | 
|---|
|  | 497 | } | 
|---|
|  | 498 | else { | 
|---|
|  | 499 | a1 = 0; | 
|---|
|  | 500 | a2 = 1; | 
|---|
|  | 501 | lanr = 2; | 
|---|
|  | 502 | } | 
|---|
|  | 503 | } | 
|---|
|  | 504 | else { | 
|---|
|  | 505 | if (anr[0] > anr[2]) { | 
|---|
|  | 506 | lanr = 0; | 
|---|
|  | 507 | a1 = 1; | 
|---|
|  | 508 | a2 = 2; | 
|---|
|  | 509 | } | 
|---|
|  | 510 | else { | 
|---|
|  | 511 | a1 = 0; | 
|---|
|  | 512 | a2 = 1; | 
|---|
|  | 513 | lanr = 2; | 
|---|
|  | 514 | } | 
|---|
|  | 515 | } | 
|---|
|  | 516 |  | 
|---|
|  | 517 | // compute center point of incident face, in reference-face coordinates | 
|---|
|  | 518 | btVector3 center; | 
|---|
|  | 519 | if (nr[lanr] < 0) { | 
|---|
|  | 520 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; | 
|---|
|  | 521 | } | 
|---|
|  | 522 | else { | 
|---|
|  | 523 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; | 
|---|
|  | 524 | } | 
|---|
|  | 525 |  | 
|---|
|  | 526 | // find the normal and non-normal axis numbers of the reference box | 
|---|
|  | 527 | int codeN,code1,code2; | 
|---|
|  | 528 | if (code <= 3) codeN = code-1; else codeN = code-4; | 
|---|
|  | 529 | if (codeN==0) { | 
|---|
|  | 530 | code1 = 1; | 
|---|
|  | 531 | code2 = 2; | 
|---|
|  | 532 | } | 
|---|
|  | 533 | else if (codeN==1) { | 
|---|
|  | 534 | code1 = 0; | 
|---|
|  | 535 | code2 = 2; | 
|---|
|  | 536 | } | 
|---|
|  | 537 | else { | 
|---|
|  | 538 | code1 = 0; | 
|---|
|  | 539 | code2 = 1; | 
|---|
|  | 540 | } | 
|---|
|  | 541 |  | 
|---|
|  | 542 | // find the four corners of the incident face, in reference-face coordinates | 
|---|
|  | 543 | btScalar quad[8];     // 2D coordinate of incident face (x,y pairs) | 
|---|
|  | 544 | btScalar c1,c2,m11,m12,m21,m22; | 
|---|
|  | 545 | c1 = dDOT14 (center,Ra+code1); | 
|---|
|  | 546 | c2 = dDOT14 (center,Ra+code2); | 
|---|
|  | 547 | // optimize this? - we have already computed this data above, but it is not | 
|---|
|  | 548 | // stored in an easy-to-index format. for now it's quicker just to recompute | 
|---|
|  | 549 | // the four dot products. | 
|---|
|  | 550 | m11 = dDOT44 (Ra+code1,Rb+a1); | 
|---|
|  | 551 | m12 = dDOT44 (Ra+code1,Rb+a2); | 
|---|
|  | 552 | m21 = dDOT44 (Ra+code2,Rb+a1); | 
|---|
|  | 553 | m22 = dDOT44 (Ra+code2,Rb+a2); | 
|---|
|  | 554 | { | 
|---|
|  | 555 | btScalar k1 = m11*Sb[a1]; | 
|---|
|  | 556 | btScalar k2 = m21*Sb[a1]; | 
|---|
|  | 557 | btScalar k3 = m12*Sb[a2]; | 
|---|
|  | 558 | btScalar k4 = m22*Sb[a2]; | 
|---|
|  | 559 | quad[0] = c1 - k1 - k3; | 
|---|
|  | 560 | quad[1] = c2 - k2 - k4; | 
|---|
|  | 561 | quad[2] = c1 - k1 + k3; | 
|---|
|  | 562 | quad[3] = c2 - k2 + k4; | 
|---|
|  | 563 | quad[4] = c1 + k1 + k3; | 
|---|
|  | 564 | quad[5] = c2 + k2 + k4; | 
|---|
|  | 565 | quad[6] = c1 + k1 - k3; | 
|---|
|  | 566 | quad[7] = c2 + k2 - k4; | 
|---|
|  | 567 | } | 
|---|
|  | 568 |  | 
|---|
|  | 569 | // find the size of the reference face | 
|---|
|  | 570 | btScalar rect[2]; | 
|---|
|  | 571 | rect[0] = Sa[code1]; | 
|---|
|  | 572 | rect[1] = Sa[code2]; | 
|---|
|  | 573 |  | 
|---|
|  | 574 | // intersect the incident and reference faces | 
|---|
|  | 575 | btScalar ret[16]; | 
|---|
|  | 576 | int n = intersectRectQuad2 (rect,quad,ret); | 
|---|
|  | 577 | if (n < 1) return 0;          // this should never happen | 
|---|
|  | 578 |  | 
|---|
|  | 579 | // convert the intersection points into reference-face coordinates, | 
|---|
|  | 580 | // and compute the contact position and depth for each point. only keep | 
|---|
|  | 581 | // those points that have a positive (penetrating) depth. delete points in | 
|---|
|  | 582 | // the 'ret' array as necessary so that 'point' and 'ret' correspond. | 
|---|
|  | 583 | btScalar point[3*8];          // penetrating contact points | 
|---|
|  | 584 | btScalar dep[8];                      // depths for those points | 
|---|
|  | 585 | btScalar det1 = 1.f/(m11*m22 - m12*m21); | 
|---|
|  | 586 | m11 *= det1; | 
|---|
|  | 587 | m12 *= det1; | 
|---|
|  | 588 | m21 *= det1; | 
|---|
|  | 589 | m22 *= det1; | 
|---|
|  | 590 | int cnum = 0;                 // number of penetrating contact points found | 
|---|
|  | 591 | for (j=0; j < n; j++) { | 
|---|
|  | 592 | btScalar k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); | 
|---|
|  | 593 | btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); | 
|---|
|  | 594 | for (i=0; i<3; i++) point[cnum*3+i] = | 
|---|
|  | 595 | center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; | 
|---|
|  | 596 | dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); | 
|---|
|  | 597 | if (dep[cnum] >= 0) { | 
|---|
|  | 598 | ret[cnum*2] = ret[j*2]; | 
|---|
|  | 599 | ret[cnum*2+1] = ret[j*2+1]; | 
|---|
|  | 600 | cnum++; | 
|---|
|  | 601 | } | 
|---|
|  | 602 | } | 
|---|
|  | 603 | if (cnum < 1) return 0;       // this should never happen | 
|---|
|  | 604 |  | 
|---|
|  | 605 | // we can't generate more contacts than we actually have | 
|---|
|  | 606 | if (maxc > cnum) maxc = cnum; | 
|---|
|  | 607 | if (maxc < 1) maxc = 1; | 
|---|
|  | 608 |  | 
|---|
|  | 609 | if (cnum <= maxc) { | 
|---|
| [8351] | 610 |  | 
|---|
|  | 611 | if (code<4) | 
|---|
|  | 612 | { | 
|---|
| [1963] | 613 | // we have less contacts than we need, so we use them all | 
|---|
| [8351] | 614 | for (j=0; j < cnum; j++) | 
|---|
|  | 615 | { | 
|---|
| [1963] | 616 | btVector3 pointInWorld; | 
|---|
|  | 617 | for (i=0; i<3; i++) | 
|---|
|  | 618 | pointInWorld[i] = point[j*3+i] + pa[i]; | 
|---|
|  | 619 | output.addContactPoint(-normal,pointInWorld,-dep[j]); | 
|---|
|  | 620 |  | 
|---|
|  | 621 | } | 
|---|
| [8351] | 622 | } else | 
|---|
|  | 623 | { | 
|---|
|  | 624 | // we have less contacts than we need, so we use them all | 
|---|
|  | 625 | for (j=0; j < cnum; j++) | 
|---|
|  | 626 | { | 
|---|
|  | 627 | btVector3 pointInWorld; | 
|---|
|  | 628 | for (i=0; i<3; i++) | 
|---|
|  | 629 | pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j]; | 
|---|
|  | 630 | //pointInWorld[i] = point[j*3+i] + pa[i]; | 
|---|
|  | 631 | output.addContactPoint(-normal,pointInWorld,-dep[j]); | 
|---|
|  | 632 | } | 
|---|
|  | 633 | } | 
|---|
| [1963] | 634 | } | 
|---|
|  | 635 | else { | 
|---|
|  | 636 | // we have more contacts than are wanted, some of them must be culled. | 
|---|
|  | 637 | // find the deepest point, it is always the first contact. | 
|---|
|  | 638 | int i1 = 0; | 
|---|
|  | 639 | btScalar maxdepth = dep[0]; | 
|---|
|  | 640 | for (i=1; i<cnum; i++) { | 
|---|
|  | 641 | if (dep[i] > maxdepth) { | 
|---|
|  | 642 | maxdepth = dep[i]; | 
|---|
|  | 643 | i1 = i; | 
|---|
|  | 644 | } | 
|---|
|  | 645 | } | 
|---|
|  | 646 |  | 
|---|
|  | 647 | int iret[8]; | 
|---|
|  | 648 | cullPoints2 (cnum,ret,maxc,i1,iret); | 
|---|
|  | 649 |  | 
|---|
|  | 650 | for (j=0; j < maxc; j++) { | 
|---|
|  | 651 | //      dContactGeom *con = CONTACT(contact,skip*j); | 
|---|
|  | 652 | //    for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; | 
|---|
|  | 653 | //  con->depth = dep[iret[j]]; | 
|---|
|  | 654 |  | 
|---|
|  | 655 | btVector3 posInWorld; | 
|---|
|  | 656 | for (i=0; i<3; i++) | 
|---|
|  | 657 | posInWorld[i] = point[iret[j]*3+i] + pa[i]; | 
|---|
| [8351] | 658 | if (code<4) | 
|---|
|  | 659 | { | 
|---|
|  | 660 | output.addContactPoint(-normal,posInWorld,-dep[iret[j]]); | 
|---|
|  | 661 | } else | 
|---|
|  | 662 | { | 
|---|
|  | 663 | output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]); | 
|---|
|  | 664 | } | 
|---|
| [1963] | 665 | } | 
|---|
|  | 666 | cnum = maxc; | 
|---|
|  | 667 | } | 
|---|
|  | 668 |  | 
|---|
|  | 669 | *return_code = code; | 
|---|
|  | 670 | return cnum; | 
|---|
|  | 671 | } | 
|---|
|  | 672 |  | 
|---|
|  | 673 | void    btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/) | 
|---|
|  | 674 | { | 
|---|
|  | 675 |  | 
|---|
|  | 676 | const btTransform& transformA = input.m_transformA; | 
|---|
|  | 677 | const btTransform& transformB = input.m_transformB; | 
|---|
|  | 678 |  | 
|---|
|  | 679 | int skip = 0; | 
|---|
|  | 680 | dContactGeom *contact = 0; | 
|---|
|  | 681 |  | 
|---|
|  | 682 | dMatrix3 R1; | 
|---|
|  | 683 | dMatrix3 R2; | 
|---|
|  | 684 |  | 
|---|
|  | 685 | for (int j=0;j<3;j++) | 
|---|
|  | 686 | { | 
|---|
|  | 687 | R1[0+4*j] = transformA.getBasis()[j].x(); | 
|---|
|  | 688 | R2[0+4*j] = transformB.getBasis()[j].x(); | 
|---|
|  | 689 |  | 
|---|
|  | 690 | R1[1+4*j] = transformA.getBasis()[j].y(); | 
|---|
|  | 691 | R2[1+4*j] = transformB.getBasis()[j].y(); | 
|---|
|  | 692 |  | 
|---|
|  | 693 |  | 
|---|
|  | 694 | R1[2+4*j] = transformA.getBasis()[j].z(); | 
|---|
|  | 695 | R2[2+4*j] = transformB.getBasis()[j].z(); | 
|---|
|  | 696 |  | 
|---|
|  | 697 | } | 
|---|
|  | 698 |  | 
|---|
|  | 699 |  | 
|---|
|  | 700 |  | 
|---|
|  | 701 | btVector3 normal; | 
|---|
|  | 702 | btScalar depth; | 
|---|
|  | 703 | int return_code; | 
|---|
|  | 704 | int maxc = 4; | 
|---|
|  | 705 |  | 
|---|
|  | 706 |  | 
|---|
|  | 707 | dBoxBox2 (transformA.getOrigin(), | 
|---|
|  | 708 | R1, | 
|---|
|  | 709 | 2.f*m_box1->getHalfExtentsWithMargin(), | 
|---|
|  | 710 | transformB.getOrigin(), | 
|---|
|  | 711 | R2, | 
|---|
|  | 712 | 2.f*m_box2->getHalfExtentsWithMargin(), | 
|---|
|  | 713 | normal, &depth, &return_code, | 
|---|
|  | 714 | maxc, contact, skip, | 
|---|
|  | 715 | output | 
|---|
|  | 716 | ); | 
|---|
|  | 717 |  | 
|---|
|  | 718 | } | 
|---|