| [1963] | 1 | /* | 
|---|
 | 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
 | 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
 | 4 |  | 
|---|
 | 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
 | 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
 | 7 | Permission is granted to anyone to use this software for any purpose,  | 
|---|
 | 8 | including commercial applications, and to alter it and redistribute it freely,  | 
|---|
 | 9 | subject to the following restrictions: | 
|---|
 | 10 |  | 
|---|
 | 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
 | 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
 | 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
 | 14 | */ | 
|---|
 | 15 |  | 
|---|
 | 16 | #include "btQuantizedBvh.h" | 
|---|
 | 17 |  | 
|---|
 | 18 | #include "LinearMath/btAabbUtil2.h" | 
|---|
 | 19 | #include "LinearMath/btIDebugDraw.h" | 
|---|
| [8351] | 20 | #include "LinearMath/btSerializer.h" | 
|---|
| [1963] | 21 |  | 
|---|
| [2430] | 22 | #define RAYAABB2 | 
|---|
| [1963] | 23 |  | 
|---|
| [2430] | 24 | btQuantizedBvh::btQuantizedBvh() :  | 
|---|
 | 25 |                                         m_bulletVersion(BT_BULLET_VERSION), | 
|---|
 | 26 |                                         m_useQuantization(false),  | 
|---|
| [1963] | 27 |                                         //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) | 
|---|
 | 28 |                                         m_traversalMode(TRAVERSAL_STACKLESS) | 
|---|
 | 29 |                                         //m_traversalMode(TRAVERSAL_RECURSIVE) | 
|---|
 | 30 |                                         ,m_subtreeHeaderCount(0) //PCK: add this line | 
|---|
| [2430] | 31 | { | 
|---|
 | 32 |         m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY); | 
|---|
 | 33 |         m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY); | 
|---|
| [1963] | 34 | } | 
|---|
 | 35 |  | 
|---|
 | 36 |  | 
|---|
 | 37 |  | 
|---|
 | 38 |  | 
|---|
 | 39 |  | 
|---|
 | 40 | void btQuantizedBvh::buildInternal() | 
|---|
 | 41 | { | 
|---|
 | 42 |         ///assumes that caller filled in the m_quantizedLeafNodes | 
|---|
 | 43 |         m_useQuantization = true; | 
|---|
 | 44 |         int numLeafNodes = 0; | 
|---|
 | 45 |          | 
|---|
 | 46 |         if (m_useQuantization) | 
|---|
 | 47 |         { | 
|---|
 | 48 |                 //now we have an array of leafnodes in m_leafNodes | 
|---|
 | 49 |                 numLeafNodes = m_quantizedLeafNodes.size(); | 
|---|
 | 50 |  | 
|---|
 | 51 |                 m_quantizedContiguousNodes.resize(2*numLeafNodes); | 
|---|
 | 52 |  | 
|---|
 | 53 |         } | 
|---|
 | 54 |  | 
|---|
 | 55 |         m_curNodeIndex = 0; | 
|---|
 | 56 |  | 
|---|
 | 57 |         buildTree(0,numLeafNodes); | 
|---|
 | 58 |  | 
|---|
 | 59 |         ///if the entire tree is small then subtree size, we need to create a header info for the tree | 
|---|
 | 60 |         if(m_useQuantization && !m_SubtreeHeaders.size()) | 
|---|
 | 61 |         { | 
|---|
 | 62 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
 | 63 |                 subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); | 
|---|
 | 64 |                 subtree.m_rootNodeIndex = 0; | 
|---|
 | 65 |                 subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); | 
|---|
 | 66 |         } | 
|---|
 | 67 |  | 
|---|
 | 68 |         //PCK: update the copy of the size | 
|---|
 | 69 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
 | 70 |  | 
|---|
 | 71 |         //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary | 
|---|
 | 72 |         m_quantizedLeafNodes.clear(); | 
|---|
 | 73 |         m_leafNodes.clear(); | 
|---|
 | 74 | } | 
|---|
 | 75 |  | 
|---|
 | 76 |  | 
|---|
 | 77 |  | 
|---|
 | 78 | ///just for debugging, to visualize the individual patches/subtrees | 
|---|
 | 79 | #ifdef DEBUG_PATCH_COLORS | 
|---|
 | 80 | btVector3 color[4]= | 
|---|
 | 81 | { | 
|---|
| [8351] | 82 |         btVector3(1,0,0), | 
|---|
 | 83 |         btVector3(0,1,0), | 
|---|
 | 84 |         btVector3(0,0,1), | 
|---|
 | 85 |         btVector3(0,1,1) | 
|---|
| [1963] | 86 | }; | 
|---|
 | 87 | #endif //DEBUG_PATCH_COLORS | 
|---|
 | 88 |  | 
|---|
 | 89 |  | 
|---|
 | 90 |  | 
|---|
 | 91 | void    btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) | 
|---|
 | 92 | { | 
|---|
 | 93 |         //enlarge the AABB to avoid division by zero when initializing the quantization values | 
|---|
 | 94 |         btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); | 
|---|
 | 95 |         m_bvhAabbMin = bvhAabbMin - clampValue; | 
|---|
 | 96 |         m_bvhAabbMax = bvhAabbMax + clampValue; | 
|---|
 | 97 |         btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; | 
|---|
 | 98 |         m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; | 
|---|
 | 99 |         m_useQuantization = true; | 
|---|
 | 100 | } | 
|---|
 | 101 |  | 
|---|
 | 102 |  | 
|---|
 | 103 |  | 
|---|
 | 104 |  | 
|---|
 | 105 | btQuantizedBvh::~btQuantizedBvh() | 
|---|
 | 106 | { | 
|---|
 | 107 | } | 
|---|
 | 108 |  | 
|---|
 | 109 | #ifdef DEBUG_TREE_BUILDING | 
|---|
 | 110 | int gStackDepth = 0; | 
|---|
 | 111 | int gMaxStackDepth = 0; | 
|---|
 | 112 | #endif //DEBUG_TREE_BUILDING | 
|---|
 | 113 |  | 
|---|
 | 114 | void    btQuantizedBvh::buildTree       (int startIndex,int endIndex) | 
|---|
 | 115 | { | 
|---|
 | 116 | #ifdef DEBUG_TREE_BUILDING | 
|---|
 | 117 |         gStackDepth++; | 
|---|
 | 118 |         if (gStackDepth > gMaxStackDepth) | 
|---|
 | 119 |                 gMaxStackDepth = gStackDepth; | 
|---|
 | 120 | #endif //DEBUG_TREE_BUILDING | 
|---|
 | 121 |  | 
|---|
 | 122 |  | 
|---|
 | 123 |         int splitAxis, splitIndex, i; | 
|---|
 | 124 |         int numIndices =endIndex-startIndex; | 
|---|
 | 125 |         int curIndex = m_curNodeIndex; | 
|---|
 | 126 |  | 
|---|
| [2430] | 127 |         btAssert(numIndices>0); | 
|---|
| [1963] | 128 |  | 
|---|
 | 129 |         if (numIndices==1) | 
|---|
 | 130 |         { | 
|---|
 | 131 | #ifdef DEBUG_TREE_BUILDING | 
|---|
 | 132 |                 gStackDepth--; | 
|---|
 | 133 | #endif //DEBUG_TREE_BUILDING | 
|---|
 | 134 |                  | 
|---|
 | 135 |                 assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); | 
|---|
 | 136 |  | 
|---|
 | 137 |                 m_curNodeIndex++; | 
|---|
 | 138 |                 return;  | 
|---|
 | 139 |         } | 
|---|
 | 140 |         //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. | 
|---|
 | 141 |          | 
|---|
 | 142 |         splitAxis = calcSplittingAxis(startIndex,endIndex); | 
|---|
 | 143 |  | 
|---|
 | 144 |         splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); | 
|---|
 | 145 |  | 
|---|
 | 146 |         int internalNodeIndex = m_curNodeIndex; | 
|---|
 | 147 |          | 
|---|
| [2430] | 148 |         //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. | 
|---|
 | 149 |         //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values | 
|---|
 | 150 |         setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization | 
|---|
 | 151 |         setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization | 
|---|
| [1963] | 152 |          | 
|---|
| [2430] | 153 |          | 
|---|
| [1963] | 154 |         for (i=startIndex;i<endIndex;i++) | 
|---|
 | 155 |         { | 
|---|
 | 156 |                 mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); | 
|---|
 | 157 |         } | 
|---|
 | 158 |  | 
|---|
 | 159 |         m_curNodeIndex++; | 
|---|
 | 160 |          | 
|---|
 | 161 |  | 
|---|
 | 162 |         //internalNode->m_escapeIndex; | 
|---|
 | 163 |          | 
|---|
 | 164 |         int leftChildNodexIndex = m_curNodeIndex; | 
|---|
 | 165 |  | 
|---|
 | 166 |         //build left child tree | 
|---|
 | 167 |         buildTree(startIndex,splitIndex); | 
|---|
 | 168 |  | 
|---|
 | 169 |         int rightChildNodexIndex = m_curNodeIndex; | 
|---|
 | 170 |         //build right child tree | 
|---|
 | 171 |         buildTree(splitIndex,endIndex); | 
|---|
 | 172 |  | 
|---|
 | 173 | #ifdef DEBUG_TREE_BUILDING | 
|---|
 | 174 |         gStackDepth--; | 
|---|
 | 175 | #endif //DEBUG_TREE_BUILDING | 
|---|
 | 176 |  | 
|---|
 | 177 |         int escapeIndex = m_curNodeIndex - curIndex; | 
|---|
 | 178 |  | 
|---|
 | 179 |         if (m_useQuantization) | 
|---|
 | 180 |         { | 
|---|
 | 181 |                 //escapeIndex is the number of nodes of this subtree | 
|---|
 | 182 |                 const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); | 
|---|
 | 183 |                 const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; | 
|---|
 | 184 |                 if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
 | 185 |                 { | 
|---|
 | 186 |                         updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); | 
|---|
 | 187 |                 } | 
|---|
| [2430] | 188 |         } else | 
|---|
 | 189 |         { | 
|---|
 | 190 |  | 
|---|
| [1963] | 191 |         } | 
|---|
 | 192 |  | 
|---|
 | 193 |         setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); | 
|---|
 | 194 |  | 
|---|
 | 195 | } | 
|---|
 | 196 |  | 
|---|
 | 197 | void    btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) | 
|---|
 | 198 | { | 
|---|
 | 199 |         btAssert(m_useQuantization); | 
|---|
 | 200 |  | 
|---|
 | 201 |         btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; | 
|---|
 | 202 |         int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); | 
|---|
 | 203 |         int leftSubTreeSizeInBytes =  leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
 | 204 |          | 
|---|
 | 205 |         btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; | 
|---|
 | 206 |         int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); | 
|---|
 | 207 |         int rightSubTreeSizeInBytes =  rightSubTreeSize *  static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
 | 208 |  | 
|---|
 | 209 |         if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
 | 210 |         { | 
|---|
 | 211 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
 | 212 |                 subtree.setAabbFromQuantizeNode(leftChildNode); | 
|---|
 | 213 |                 subtree.m_rootNodeIndex = leftChildNodexIndex; | 
|---|
 | 214 |                 subtree.m_subtreeSize = leftSubTreeSize; | 
|---|
 | 215 |         } | 
|---|
 | 216 |  | 
|---|
 | 217 |         if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
 | 218 |         { | 
|---|
 | 219 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
 | 220 |                 subtree.setAabbFromQuantizeNode(rightChildNode); | 
|---|
 | 221 |                 subtree.m_rootNodeIndex = rightChildNodexIndex; | 
|---|
 | 222 |                 subtree.m_subtreeSize = rightSubTreeSize; | 
|---|
 | 223 |         } | 
|---|
 | 224 |  | 
|---|
 | 225 |         //PCK: update the copy of the size | 
|---|
 | 226 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
 | 227 | } | 
|---|
 | 228 |  | 
|---|
 | 229 |  | 
|---|
 | 230 | int     btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) | 
|---|
 | 231 | { | 
|---|
 | 232 |         int i; | 
|---|
 | 233 |         int splitIndex =startIndex; | 
|---|
 | 234 |         int numIndices = endIndex - startIndex; | 
|---|
 | 235 |         btScalar splitValue; | 
|---|
 | 236 |  | 
|---|
 | 237 |         btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
 | 238 |         for (i=startIndex;i<endIndex;i++) | 
|---|
 | 239 |         { | 
|---|
 | 240 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
 | 241 |                 means+=center; | 
|---|
 | 242 |         } | 
|---|
 | 243 |         means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
 | 244 |          | 
|---|
 | 245 |         splitValue = means[splitAxis]; | 
|---|
 | 246 |          | 
|---|
 | 247 |         //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. | 
|---|
 | 248 |         for (i=startIndex;i<endIndex;i++) | 
|---|
 | 249 |         { | 
|---|
 | 250 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
 | 251 |                 if (center[splitAxis] > splitValue) | 
|---|
 | 252 |                 { | 
|---|
 | 253 |                         //swap | 
|---|
 | 254 |                         swapLeafNodes(i,splitIndex); | 
|---|
 | 255 |                         splitIndex++; | 
|---|
 | 256 |                 } | 
|---|
 | 257 |         } | 
|---|
 | 258 |  | 
|---|
 | 259 |         //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex | 
|---|
 | 260 |         //otherwise the tree-building might fail due to stack-overflows in certain cases. | 
|---|
 | 261 |         //unbalanced1 is unsafe: it can cause stack overflows | 
|---|
 | 262 |         //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); | 
|---|
 | 263 |  | 
|---|
 | 264 |         //unbalanced2 should work too: always use center (perfect balanced trees)        | 
|---|
 | 265 |         //bool unbalanced2 = true; | 
|---|
 | 266 |  | 
|---|
 | 267 |         //this should be safe too: | 
|---|
 | 268 |         int rangeBalancedIndices = numIndices/3; | 
|---|
 | 269 |         bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); | 
|---|
 | 270 |          | 
|---|
 | 271 |         if (unbalanced) | 
|---|
 | 272 |         { | 
|---|
 | 273 |                 splitIndex = startIndex+ (numIndices>>1); | 
|---|
 | 274 |         } | 
|---|
 | 275 |  | 
|---|
 | 276 |         bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); | 
|---|
 | 277 |         (void)unbal; | 
|---|
 | 278 |         btAssert(!unbal); | 
|---|
 | 279 |  | 
|---|
 | 280 |         return splitIndex; | 
|---|
 | 281 | } | 
|---|
 | 282 |  | 
|---|
 | 283 |  | 
|---|
 | 284 | int     btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) | 
|---|
 | 285 | { | 
|---|
 | 286 |         int i; | 
|---|
 | 287 |  | 
|---|
 | 288 |         btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
 | 289 |         btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
 | 290 |         int numIndices = endIndex-startIndex; | 
|---|
 | 291 |  | 
|---|
 | 292 |         for (i=startIndex;i<endIndex;i++) | 
|---|
 | 293 |         { | 
|---|
 | 294 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
 | 295 |                 means+=center; | 
|---|
 | 296 |         } | 
|---|
 | 297 |         means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
 | 298 |                  | 
|---|
 | 299 |         for (i=startIndex;i<endIndex;i++) | 
|---|
 | 300 |         { | 
|---|
 | 301 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
 | 302 |                 btVector3 diff2 = center-means; | 
|---|
 | 303 |                 diff2 = diff2 * diff2; | 
|---|
 | 304 |                 variance += diff2; | 
|---|
 | 305 |         } | 
|---|
 | 306 |         variance *= (btScalar(1.)/      ((btScalar)numIndices-1)        ); | 
|---|
 | 307 |          | 
|---|
 | 308 |         return variance.maxAxis(); | 
|---|
 | 309 | } | 
|---|
 | 310 |  | 
|---|
 | 311 |  | 
|---|
 | 312 |  | 
|---|
 | 313 | void    btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
 | 314 | { | 
|---|
 | 315 |         //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) | 
|---|
 | 316 |  | 
|---|
 | 317 |         if (m_useQuantization) | 
|---|
 | 318 |         { | 
|---|
 | 319 |                 ///quantize query AABB | 
|---|
 | 320 |                 unsigned short int quantizedQueryAabbMin[3]; | 
|---|
 | 321 |                 unsigned short int quantizedQueryAabbMax[3]; | 
|---|
 | 322 |                 quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); | 
|---|
 | 323 |                 quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); | 
|---|
 | 324 |  | 
|---|
 | 325 |                 switch (m_traversalMode) | 
|---|
 | 326 |                 { | 
|---|
 | 327 |                 case TRAVERSAL_STACKLESS: | 
|---|
 | 328 |                                 walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); | 
|---|
 | 329 |                         break; | 
|---|
 | 330 |                 case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: | 
|---|
 | 331 |                                 walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
 | 332 |                         break; | 
|---|
 | 333 |                 case TRAVERSAL_RECURSIVE: | 
|---|
 | 334 |                         { | 
|---|
 | 335 |                                 const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; | 
|---|
 | 336 |                                 walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
 | 337 |                         } | 
|---|
 | 338 |                         break; | 
|---|
 | 339 |                 default: | 
|---|
 | 340 |                         //unsupported | 
|---|
 | 341 |                         btAssert(0); | 
|---|
 | 342 |                 } | 
|---|
 | 343 |         } else | 
|---|
 | 344 |         { | 
|---|
 | 345 |                 walkStacklessTree(nodeCallback,aabbMin,aabbMax); | 
|---|
 | 346 |         } | 
|---|
 | 347 | } | 
|---|
 | 348 |  | 
|---|
 | 349 |  | 
|---|
 | 350 | int maxIterations = 0; | 
|---|
 | 351 |  | 
|---|
| [2430] | 352 |  | 
|---|
| [1963] | 353 | void    btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
 | 354 | { | 
|---|
 | 355 |         btAssert(!m_useQuantization); | 
|---|
 | 356 |  | 
|---|
 | 357 |         const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; | 
|---|
 | 358 |         int escapeIndex, curIndex = 0; | 
|---|
 | 359 |         int walkIterations = 0; | 
|---|
 | 360 |         bool isLeafNode; | 
|---|
 | 361 |         //PCK: unsigned instead of bool | 
|---|
 | 362 |         unsigned aabbOverlap; | 
|---|
 | 363 |  | 
|---|
 | 364 |         while (curIndex < m_curNodeIndex) | 
|---|
 | 365 |         { | 
|---|
 | 366 |                 //catch bugs in tree data | 
|---|
| [2430] | 367 |                 btAssert (walkIterations < m_curNodeIndex); | 
|---|
| [1963] | 368 |  | 
|---|
 | 369 |                 walkIterations++; | 
|---|
 | 370 |                 aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); | 
|---|
 | 371 |                 isLeafNode = rootNode->m_escapeIndex == -1; | 
|---|
 | 372 |                  | 
|---|
 | 373 |                 //PCK: unsigned instead of bool | 
|---|
 | 374 |                 if (isLeafNode && (aabbOverlap != 0)) | 
|---|
 | 375 |                 { | 
|---|
 | 376 |                         nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); | 
|---|
 | 377 |                 }  | 
|---|
 | 378 |                  | 
|---|
 | 379 |                 //PCK: unsigned instead of bool | 
|---|
 | 380 |                 if ((aabbOverlap != 0) || isLeafNode) | 
|---|
 | 381 |                 { | 
|---|
 | 382 |                         rootNode++; | 
|---|
 | 383 |                         curIndex++; | 
|---|
 | 384 |                 } else | 
|---|
 | 385 |                 { | 
|---|
 | 386 |                         escapeIndex = rootNode->m_escapeIndex; | 
|---|
 | 387 |                         rootNode += escapeIndex; | 
|---|
 | 388 |                         curIndex += escapeIndex; | 
|---|
 | 389 |                 } | 
|---|
 | 390 |         } | 
|---|
 | 391 |         if (maxIterations < walkIterations) | 
|---|
 | 392 |                 maxIterations = walkIterations; | 
|---|
 | 393 |  | 
|---|
 | 394 | } | 
|---|
 | 395 |  | 
|---|
 | 396 | /* | 
|---|
 | 397 | ///this was the original recursive traversal, before we optimized towards stackless traversal | 
|---|
 | 398 | void    btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
 | 399 | { | 
|---|
 | 400 |         bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); | 
|---|
 | 401 |         if (aabbOverlap) | 
|---|
 | 402 |         { | 
|---|
 | 403 |                 isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); | 
|---|
 | 404 |                 if (isLeafNode) | 
|---|
 | 405 |                 { | 
|---|
 | 406 |                         nodeCallback->processNode(rootNode); | 
|---|
 | 407 |                 } else | 
|---|
 | 408 |                 { | 
|---|
 | 409 |                         walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); | 
|---|
 | 410 |                         walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); | 
|---|
 | 411 |                 } | 
|---|
 | 412 |         } | 
|---|
 | 413 |  | 
|---|
 | 414 | } | 
|---|
 | 415 | */ | 
|---|
 | 416 |  | 
|---|
 | 417 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
 | 418 | { | 
|---|
 | 419 |         btAssert(m_useQuantization); | 
|---|
 | 420 |          | 
|---|
 | 421 |         bool isLeafNode; | 
|---|
 | 422 |         //PCK: unsigned instead of bool | 
|---|
 | 423 |         unsigned aabbOverlap; | 
|---|
 | 424 |  | 
|---|
 | 425 |         //PCK: unsigned instead of bool | 
|---|
 | 426 |         aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); | 
|---|
 | 427 |         isLeafNode = currentNode->isLeafNode(); | 
|---|
 | 428 |                  | 
|---|
 | 429 |         //PCK: unsigned instead of bool | 
|---|
 | 430 |         if (aabbOverlap != 0) | 
|---|
 | 431 |         { | 
|---|
 | 432 |                 if (isLeafNode) | 
|---|
 | 433 |                 { | 
|---|
 | 434 |                         nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); | 
|---|
 | 435 |                 } else | 
|---|
 | 436 |                 { | 
|---|
 | 437 |                         //process left and right children | 
|---|
 | 438 |                         const btQuantizedBvhNode* leftChildNode = currentNode+1; | 
|---|
 | 439 |                         walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
 | 440 |  | 
|---|
 | 441 |                         const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); | 
|---|
 | 442 |                         walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
 | 443 |                 } | 
|---|
 | 444 |         }                | 
|---|
 | 445 | } | 
|---|
 | 446 |  | 
|---|
 | 447 |  | 
|---|
 | 448 |  | 
|---|
| [2430] | 449 | void    btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const | 
|---|
 | 450 | { | 
|---|
 | 451 |         btAssert(!m_useQuantization); | 
|---|
| [1963] | 452 |  | 
|---|
| [2430] | 453 |         const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; | 
|---|
 | 454 |         int escapeIndex, curIndex = 0; | 
|---|
 | 455 |         int walkIterations = 0; | 
|---|
 | 456 |         bool isLeafNode; | 
|---|
 | 457 |         //PCK: unsigned instead of bool | 
|---|
 | 458 |         unsigned aabbOverlap=0; | 
|---|
 | 459 |         unsigned rayBoxOverlap=0; | 
|---|
 | 460 |         btScalar lambda_max = 1.0; | 
|---|
 | 461 |          | 
|---|
 | 462 |                 /* Quick pruning by quantized box */ | 
|---|
 | 463 |         btVector3 rayAabbMin = raySource; | 
|---|
 | 464 |         btVector3 rayAabbMax = raySource; | 
|---|
 | 465 |         rayAabbMin.setMin(rayTarget); | 
|---|
 | 466 |         rayAabbMax.setMax(rayTarget); | 
|---|
| [1963] | 467 |  | 
|---|
| [2430] | 468 |         /* Add box cast extents to bounding box */ | 
|---|
 | 469 |         rayAabbMin += aabbMin; | 
|---|
 | 470 |         rayAabbMax += aabbMax; | 
|---|
 | 471 |  | 
|---|
 | 472 | #ifdef RAYAABB2 | 
|---|
 | 473 |         btVector3 rayDir = (rayTarget-raySource); | 
|---|
 | 474 |         rayDir.normalize (); | 
|---|
 | 475 |         lambda_max = rayDir.dot(rayTarget-raySource); | 
|---|
 | 476 |         ///what about division by zero? --> just set rayDirection[i] to 1.0 | 
|---|
 | 477 |         btVector3 rayDirectionInverse; | 
|---|
| [8351] | 478 |         rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0]; | 
|---|
 | 479 |         rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1]; | 
|---|
 | 480 |         rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2]; | 
|---|
| [2430] | 481 |         unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; | 
|---|
 | 482 | #endif | 
|---|
 | 483 |  | 
|---|
 | 484 |         btVector3 bounds[2]; | 
|---|
 | 485 |  | 
|---|
 | 486 |         while (curIndex < m_curNodeIndex) | 
|---|
 | 487 |         { | 
|---|
 | 488 |                 btScalar param = 1.0; | 
|---|
 | 489 |                 //catch bugs in tree data | 
|---|
 | 490 |                 btAssert (walkIterations < m_curNodeIndex); | 
|---|
 | 491 |  | 
|---|
 | 492 |                 walkIterations++; | 
|---|
 | 493 |  | 
|---|
 | 494 |                 bounds[0] = rootNode->m_aabbMinOrg; | 
|---|
 | 495 |                 bounds[1] = rootNode->m_aabbMaxOrg; | 
|---|
 | 496 |                 /* Add box cast extents */ | 
|---|
| [8351] | 497 |                 bounds[0] -= aabbMax; | 
|---|
 | 498 |                 bounds[1] -= aabbMin; | 
|---|
| [2430] | 499 |  | 
|---|
 | 500 |                 aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); | 
|---|
 | 501 |                 //perhaps profile if it is worth doing the aabbOverlap test first | 
|---|
 | 502 |  | 
|---|
 | 503 | #ifdef RAYAABB2 | 
|---|
 | 504 |                         ///careful with this check: need to check division by zero (above) and fix the unQuantize method | 
|---|
 | 505 |                         ///thanks Joerg/hiker for the reproduction case! | 
|---|
 | 506 |                         ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 | 
|---|
 | 507 |                 rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; | 
|---|
 | 508 |  | 
|---|
 | 509 | #else | 
|---|
 | 510 |                 btVector3 normal; | 
|---|
 | 511 |                 rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal); | 
|---|
 | 512 | #endif | 
|---|
 | 513 |  | 
|---|
 | 514 |                 isLeafNode = rootNode->m_escapeIndex == -1; | 
|---|
 | 515 |                  | 
|---|
 | 516 |                 //PCK: unsigned instead of bool | 
|---|
 | 517 |                 if (isLeafNode && (rayBoxOverlap != 0)) | 
|---|
 | 518 |                 { | 
|---|
 | 519 |                         nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); | 
|---|
 | 520 |                 }  | 
|---|
 | 521 |                  | 
|---|
 | 522 |                 //PCK: unsigned instead of bool | 
|---|
 | 523 |                 if ((rayBoxOverlap != 0) || isLeafNode) | 
|---|
 | 524 |                 { | 
|---|
 | 525 |                         rootNode++; | 
|---|
 | 526 |                         curIndex++; | 
|---|
 | 527 |                 } else | 
|---|
 | 528 |                 { | 
|---|
 | 529 |                         escapeIndex = rootNode->m_escapeIndex; | 
|---|
 | 530 |                         rootNode += escapeIndex; | 
|---|
 | 531 |                         curIndex += escapeIndex; | 
|---|
 | 532 |                 } | 
|---|
 | 533 |         } | 
|---|
 | 534 |         if (maxIterations < walkIterations) | 
|---|
 | 535 |                 maxIterations = walkIterations; | 
|---|
 | 536 |  | 
|---|
 | 537 | } | 
|---|
 | 538 |  | 
|---|
 | 539 |  | 
|---|
 | 540 |  | 
|---|
| [1963] | 541 | void    btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const | 
|---|
 | 542 | { | 
|---|
 | 543 |         btAssert(m_useQuantization); | 
|---|
 | 544 |          | 
|---|
 | 545 |         int curIndex = startNodeIndex; | 
|---|
 | 546 |         int walkIterations = 0; | 
|---|
 | 547 |         int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
 | 548 |         (void)subTreeSize; | 
|---|
 | 549 |  | 
|---|
 | 550 |         const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
 | 551 |         int escapeIndex; | 
|---|
 | 552 |          | 
|---|
 | 553 |         bool isLeafNode; | 
|---|
 | 554 |         //PCK: unsigned instead of bool | 
|---|
 | 555 |         unsigned boxBoxOverlap = 0; | 
|---|
 | 556 |         unsigned rayBoxOverlap = 0; | 
|---|
 | 557 |  | 
|---|
 | 558 |         btScalar lambda_max = 1.0; | 
|---|
| [2430] | 559 |  | 
|---|
| [1963] | 560 | #ifdef RAYAABB2 | 
|---|
 | 561 |         btVector3 rayDirection = (rayTarget-raySource); | 
|---|
 | 562 |         rayDirection.normalize (); | 
|---|
 | 563 |         lambda_max = rayDirection.dot(rayTarget-raySource); | 
|---|
 | 564 |         ///what about division by zero? --> just set rayDirection[i] to 1.0 | 
|---|
| [8351] | 565 |         rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0]; | 
|---|
 | 566 |         rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[1]; | 
|---|
 | 567 |         rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[2]; | 
|---|
| [1963] | 568 |         unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; | 
|---|
 | 569 | #endif | 
|---|
 | 570 |  | 
|---|
 | 571 |         /* Quick pruning by quantized box */ | 
|---|
 | 572 |         btVector3 rayAabbMin = raySource; | 
|---|
 | 573 |         btVector3 rayAabbMax = raySource; | 
|---|
 | 574 |         rayAabbMin.setMin(rayTarget); | 
|---|
 | 575 |         rayAabbMax.setMax(rayTarget); | 
|---|
 | 576 |  | 
|---|
 | 577 |         /* Add box cast extents to bounding box */ | 
|---|
 | 578 |         rayAabbMin += aabbMin; | 
|---|
 | 579 |         rayAabbMax += aabbMax; | 
|---|
 | 580 |  | 
|---|
 | 581 |         unsigned short int quantizedQueryAabbMin[3]; | 
|---|
 | 582 |         unsigned short int quantizedQueryAabbMax[3]; | 
|---|
 | 583 |         quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); | 
|---|
 | 584 |         quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); | 
|---|
 | 585 |  | 
|---|
 | 586 |         while (curIndex < endNodeIndex) | 
|---|
 | 587 |         { | 
|---|
 | 588 |  | 
|---|
 | 589 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
 | 590 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
 | 591 |                 //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
 | 592 |                 static int drawPatch = 0; | 
|---|
 | 593 |                 //need some global access to a debugDrawer | 
|---|
 | 594 |                 extern btIDebugDraw* debugDrawerPtr; | 
|---|
 | 595 |                 if (curIndex==drawPatch) | 
|---|
 | 596 |                 { | 
|---|
 | 597 |                         btVector3 aabbMin,aabbMax; | 
|---|
 | 598 |                         aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
 | 599 |                         aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
 | 600 |                         btVector3       color(1,0,0); | 
|---|
 | 601 |                         debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
 | 602 |                 } | 
|---|
 | 603 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
 | 604 |  | 
|---|
 | 605 |                 //catch bugs in tree data | 
|---|
| [2430] | 606 |                 btAssert (walkIterations < subTreeSize); | 
|---|
| [1963] | 607 |  | 
|---|
 | 608 |                 walkIterations++; | 
|---|
 | 609 |                 //PCK: unsigned instead of bool | 
|---|
 | 610 |                 // only interested if this is closer than any previous hit | 
|---|
 | 611 |                 btScalar param = 1.0; | 
|---|
 | 612 |                 rayBoxOverlap = 0; | 
|---|
 | 613 |                 boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
 | 614 |                 isLeafNode = rootNode->isLeafNode(); | 
|---|
 | 615 |                 if (boxBoxOverlap) | 
|---|
 | 616 |                 { | 
|---|
 | 617 |                         btVector3 bounds[2]; | 
|---|
 | 618 |                         bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
 | 619 |                         bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
 | 620 |                         /* Add box cast extents */ | 
|---|
| [8351] | 621 |                         bounds[0] -= aabbMax; | 
|---|
 | 622 |                         bounds[1] -= aabbMin; | 
|---|
| [1963] | 623 |                         btVector3 normal; | 
|---|
 | 624 | #if 0 | 
|---|
 | 625 |                         bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); | 
|---|
 | 626 |                         bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
 | 627 |                         if (ra2 != ra) | 
|---|
 | 628 |                         { | 
|---|
 | 629 |                                 printf("functions don't match\n"); | 
|---|
 | 630 |                         } | 
|---|
 | 631 | #endif | 
|---|
 | 632 | #ifdef RAYAABB2 | 
|---|
 | 633 |                         ///careful with this check: need to check division by zero (above) and fix the unQuantize method | 
|---|
 | 634 |                         ///thanks Joerg/hiker for the reproduction case! | 
|---|
 | 635 |                         ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 | 
|---|
 | 636 |  | 
|---|
| [2430] | 637 |                         //BT_PROFILE("btRayAabb2"); | 
|---|
| [1963] | 638 |                         rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); | 
|---|
| [2430] | 639 |                          | 
|---|
| [1963] | 640 | #else | 
|---|
 | 641 |                         rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
 | 642 | #endif | 
|---|
 | 643 |                 } | 
|---|
 | 644 |                  | 
|---|
 | 645 |                 if (isLeafNode && rayBoxOverlap) | 
|---|
 | 646 |                 { | 
|---|
 | 647 |                         nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
 | 648 |                 } | 
|---|
 | 649 |                  | 
|---|
 | 650 |                 //PCK: unsigned instead of bool | 
|---|
 | 651 |                 if ((rayBoxOverlap != 0) || isLeafNode) | 
|---|
 | 652 |                 { | 
|---|
 | 653 |                         rootNode++; | 
|---|
 | 654 |                         curIndex++; | 
|---|
 | 655 |                 } else | 
|---|
 | 656 |                 { | 
|---|
 | 657 |                         escapeIndex = rootNode->getEscapeIndex(); | 
|---|
 | 658 |                         rootNode += escapeIndex; | 
|---|
 | 659 |                         curIndex += escapeIndex; | 
|---|
 | 660 |                 } | 
|---|
 | 661 |         } | 
|---|
 | 662 |         if (maxIterations < walkIterations) | 
|---|
 | 663 |                 maxIterations = walkIterations; | 
|---|
 | 664 |  | 
|---|
 | 665 | } | 
|---|
 | 666 |  | 
|---|
 | 667 | void    btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const | 
|---|
 | 668 | { | 
|---|
 | 669 |         btAssert(m_useQuantization); | 
|---|
 | 670 |          | 
|---|
 | 671 |         int curIndex = startNodeIndex; | 
|---|
 | 672 |         int walkIterations = 0; | 
|---|
 | 673 |         int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
 | 674 |         (void)subTreeSize; | 
|---|
 | 675 |  | 
|---|
 | 676 |         const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
 | 677 |         int escapeIndex; | 
|---|
 | 678 |          | 
|---|
 | 679 |         bool isLeafNode; | 
|---|
 | 680 |         //PCK: unsigned instead of bool | 
|---|
 | 681 |         unsigned aabbOverlap; | 
|---|
 | 682 |  | 
|---|
 | 683 |         while (curIndex < endNodeIndex) | 
|---|
 | 684 |         { | 
|---|
 | 685 |  | 
|---|
 | 686 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
 | 687 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
 | 688 |                 //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
 | 689 |                 static int drawPatch = 0; | 
|---|
 | 690 |                 //need some global access to a debugDrawer | 
|---|
 | 691 |                 extern btIDebugDraw* debugDrawerPtr; | 
|---|
 | 692 |                 if (curIndex==drawPatch) | 
|---|
 | 693 |                 { | 
|---|
 | 694 |                         btVector3 aabbMin,aabbMax; | 
|---|
 | 695 |                         aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
 | 696 |                         aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
 | 697 |                         btVector3       color(1,0,0); | 
|---|
 | 698 |                         debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
 | 699 |                 } | 
|---|
 | 700 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
 | 701 |  | 
|---|
 | 702 |                 //catch bugs in tree data | 
|---|
| [2430] | 703 |                 btAssert (walkIterations < subTreeSize); | 
|---|
| [1963] | 704 |  | 
|---|
 | 705 |                 walkIterations++; | 
|---|
 | 706 |                 //PCK: unsigned instead of bool | 
|---|
 | 707 |                 aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
 | 708 |                 isLeafNode = rootNode->isLeafNode(); | 
|---|
 | 709 |                  | 
|---|
 | 710 |                 if (isLeafNode && aabbOverlap) | 
|---|
 | 711 |                 { | 
|---|
 | 712 |                         nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
 | 713 |                 }  | 
|---|
 | 714 |                  | 
|---|
 | 715 |                 //PCK: unsigned instead of bool | 
|---|
 | 716 |                 if ((aabbOverlap != 0) || isLeafNode) | 
|---|
 | 717 |                 { | 
|---|
 | 718 |                         rootNode++; | 
|---|
 | 719 |                         curIndex++; | 
|---|
 | 720 |                 } else | 
|---|
 | 721 |                 { | 
|---|
 | 722 |                         escapeIndex = rootNode->getEscapeIndex(); | 
|---|
 | 723 |                         rootNode += escapeIndex; | 
|---|
 | 724 |                         curIndex += escapeIndex; | 
|---|
 | 725 |                 } | 
|---|
 | 726 |         } | 
|---|
 | 727 |         if (maxIterations < walkIterations) | 
|---|
 | 728 |                 maxIterations = walkIterations; | 
|---|
 | 729 |  | 
|---|
 | 730 | } | 
|---|
 | 731 |  | 
|---|
 | 732 | //This traversal can be called from Playstation 3 SPU | 
|---|
 | 733 | void    btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
 | 734 | { | 
|---|
 | 735 |         btAssert(m_useQuantization); | 
|---|
 | 736 |  | 
|---|
 | 737 |         int i; | 
|---|
 | 738 |  | 
|---|
 | 739 |  | 
|---|
 | 740 |         for (i=0;i<this->m_SubtreeHeaders.size();i++) | 
|---|
 | 741 |         { | 
|---|
 | 742 |                 const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; | 
|---|
 | 743 |  | 
|---|
 | 744 |                 //PCK: unsigned instead of bool | 
|---|
 | 745 |                 unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); | 
|---|
 | 746 |                 if (overlap != 0) | 
|---|
 | 747 |                 { | 
|---|
 | 748 |                         walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, | 
|---|
 | 749 |                                 subtree.m_rootNodeIndex, | 
|---|
 | 750 |                                 subtree.m_rootNodeIndex+subtree.m_subtreeSize); | 
|---|
 | 751 |                 } | 
|---|
 | 752 |         } | 
|---|
 | 753 | } | 
|---|
 | 754 |  | 
|---|
 | 755 |  | 
|---|
 | 756 | void    btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const | 
|---|
 | 757 | { | 
|---|
| [2430] | 758 |         reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0)); | 
|---|
| [1963] | 759 | } | 
|---|
 | 760 |  | 
|---|
 | 761 |  | 
|---|
 | 762 | void    btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
 | 763 | { | 
|---|
| [2430] | 764 |         //always use stackless | 
|---|
 | 765 |  | 
|---|
 | 766 |         if (m_useQuantization) | 
|---|
| [1963] | 767 |         { | 
|---|
 | 768 |                 walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); | 
|---|
| [2430] | 769 |         } | 
|---|
 | 770 |         else | 
|---|
 | 771 |         { | 
|---|
 | 772 |                 walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); | 
|---|
 | 773 |         } | 
|---|
 | 774 |         /* | 
|---|
 | 775 |         { | 
|---|
 | 776 |                 //recursive traversal | 
|---|
| [1963] | 777 |                 btVector3 qaabbMin = raySource; | 
|---|
 | 778 |                 btVector3 qaabbMax = raySource; | 
|---|
 | 779 |                 qaabbMin.setMin(rayTarget); | 
|---|
 | 780 |                 qaabbMax.setMax(rayTarget); | 
|---|
 | 781 |                 qaabbMin += aabbMin; | 
|---|
 | 782 |                 qaabbMax += aabbMax; | 
|---|
 | 783 |                 reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); | 
|---|
 | 784 |         } | 
|---|
| [2430] | 785 |         */ | 
|---|
 | 786 |  | 
|---|
| [1963] | 787 | } | 
|---|
 | 788 |  | 
|---|
 | 789 |  | 
|---|
 | 790 | void    btQuantizedBvh::swapLeafNodes(int i,int splitIndex) | 
|---|
 | 791 | { | 
|---|
 | 792 |         if (m_useQuantization) | 
|---|
 | 793 |         { | 
|---|
 | 794 |                         btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; | 
|---|
 | 795 |                         m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; | 
|---|
 | 796 |                         m_quantizedLeafNodes[splitIndex] = tmp; | 
|---|
 | 797 |         } else | 
|---|
 | 798 |         { | 
|---|
 | 799 |                         btOptimizedBvhNode tmp = m_leafNodes[i]; | 
|---|
 | 800 |                         m_leafNodes[i] = m_leafNodes[splitIndex]; | 
|---|
 | 801 |                         m_leafNodes[splitIndex] = tmp; | 
|---|
 | 802 |         } | 
|---|
 | 803 | } | 
|---|
 | 804 |  | 
|---|
 | 805 | void    btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) | 
|---|
 | 806 | { | 
|---|
 | 807 |         if (m_useQuantization) | 
|---|
 | 808 |         { | 
|---|
 | 809 |                 m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; | 
|---|
 | 810 |         } else | 
|---|
 | 811 |         { | 
|---|
 | 812 |                 m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; | 
|---|
 | 813 |         } | 
|---|
 | 814 | } | 
|---|
 | 815 |  | 
|---|
 | 816 | //PCK: include | 
|---|
 | 817 | #include <new> | 
|---|
 | 818 |  | 
|---|
| [2882] | 819 | #if 0 | 
|---|
| [1963] | 820 | //PCK: consts | 
|---|
 | 821 | static const unsigned BVH_ALIGNMENT = 16; | 
|---|
 | 822 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; | 
|---|
 | 823 |  | 
|---|
 | 824 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; | 
|---|
| [2882] | 825 | #endif | 
|---|
| [1963] | 826 |  | 
|---|
 | 827 |  | 
|---|
 | 828 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() | 
|---|
 | 829 | { | 
|---|
 | 830 |         // I changed this to 0 since the extra padding is not needed or used. | 
|---|
 | 831 |         return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; | 
|---|
 | 832 | } | 
|---|
 | 833 |  | 
|---|
| [8351] | 834 | unsigned btQuantizedBvh::calculateSerializeBufferSize() const | 
|---|
| [1963] | 835 | { | 
|---|
 | 836 |         unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); | 
|---|
 | 837 |         baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
 | 838 |         if (m_useQuantization) | 
|---|
 | 839 |         { | 
|---|
 | 840 |                 return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); | 
|---|
 | 841 |         } | 
|---|
 | 842 |         return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); | 
|---|
 | 843 | } | 
|---|
 | 844 |  | 
|---|
| [8351] | 845 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const | 
|---|
| [1963] | 846 | { | 
|---|
| [2430] | 847 |         btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); | 
|---|
| [1963] | 848 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
 | 849 |  | 
|---|
 | 850 | /*      if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
 | 851 |         { | 
|---|
 | 852 |                 ///check alignedment for buffer? | 
|---|
 | 853 |                 btAssert(0); | 
|---|
 | 854 |                 return false; | 
|---|
 | 855 |         } | 
|---|
 | 856 | */ | 
|---|
 | 857 |  | 
|---|
 | 858 |         btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; | 
|---|
 | 859 |  | 
|---|
 | 860 |         // construct the class so the virtual function table, etc will be set up | 
|---|
 | 861 |         // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
 | 862 |         new (targetBvh) btQuantizedBvh; | 
|---|
 | 863 |  | 
|---|
 | 864 |         if (i_swapEndian) | 
|---|
 | 865 |         { | 
|---|
 | 866 |                 targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); | 
|---|
 | 867 |  | 
|---|
 | 868 |  | 
|---|
 | 869 |                 btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); | 
|---|
 | 870 |                 btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); | 
|---|
 | 871 |                 btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); | 
|---|
 | 872 |  | 
|---|
 | 873 |                 targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); | 
|---|
 | 874 |                 targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); | 
|---|
 | 875 |         } | 
|---|
 | 876 |         else | 
|---|
 | 877 |         { | 
|---|
 | 878 |                 targetBvh->m_curNodeIndex = m_curNodeIndex; | 
|---|
 | 879 |                 targetBvh->m_bvhAabbMin = m_bvhAabbMin; | 
|---|
 | 880 |                 targetBvh->m_bvhAabbMax = m_bvhAabbMax; | 
|---|
 | 881 |                 targetBvh->m_bvhQuantization = m_bvhQuantization; | 
|---|
 | 882 |                 targetBvh->m_traversalMode = m_traversalMode; | 
|---|
 | 883 |                 targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; | 
|---|
 | 884 |         } | 
|---|
 | 885 |  | 
|---|
 | 886 |         targetBvh->m_useQuantization = m_useQuantization; | 
|---|
 | 887 |  | 
|---|
 | 888 |         unsigned char *nodeData = (unsigned char *)targetBvh; | 
|---|
 | 889 |         nodeData += sizeof(btQuantizedBvh); | 
|---|
 | 890 |          | 
|---|
 | 891 |         unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
 | 892 |         nodeData += sizeToAdd; | 
|---|
 | 893 |          | 
|---|
 | 894 |         int nodeCount = m_curNodeIndex; | 
|---|
 | 895 |  | 
|---|
 | 896 |         if (m_useQuantization) | 
|---|
 | 897 |         { | 
|---|
 | 898 |                 targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
 | 899 |  | 
|---|
 | 900 |                 if (i_swapEndian) | 
|---|
 | 901 |                 { | 
|---|
 | 902 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 903 |                         { | 
|---|
 | 904 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
 | 905 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
 | 906 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
 | 907 |  | 
|---|
 | 908 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
 | 909 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
 | 910 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
 | 911 |  | 
|---|
 | 912 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
 | 913 |                         } | 
|---|
 | 914 |                 } | 
|---|
 | 915 |                 else | 
|---|
 | 916 |                 { | 
|---|
 | 917 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 918 |                         { | 
|---|
 | 919 |          | 
|---|
 | 920 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; | 
|---|
 | 921 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; | 
|---|
 | 922 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; | 
|---|
 | 923 |  | 
|---|
 | 924 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; | 
|---|
 | 925 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; | 
|---|
 | 926 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; | 
|---|
 | 927 |  | 
|---|
 | 928 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; | 
|---|
 | 929 |  | 
|---|
 | 930 |  | 
|---|
 | 931 |                         } | 
|---|
 | 932 |                 } | 
|---|
 | 933 |                 nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
 | 934 |  | 
|---|
 | 935 |                 // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
 | 936 |                 // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
 | 937 |                 // so the memory (which is not freed) is left alone | 
|---|
 | 938 |                 targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
 | 939 |         } | 
|---|
 | 940 |         else | 
|---|
 | 941 |         { | 
|---|
 | 942 |                 targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
 | 943 |  | 
|---|
 | 944 |                 if (i_swapEndian) | 
|---|
 | 945 |                 { | 
|---|
 | 946 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 947 |                         { | 
|---|
 | 948 |                                 btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
 | 949 |                                 btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
 | 950 |  | 
|---|
 | 951 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
 | 952 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
 | 953 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
 | 954 |                         } | 
|---|
 | 955 |                 } | 
|---|
 | 956 |                 else | 
|---|
 | 957 |                 { | 
|---|
 | 958 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 959 |                         { | 
|---|
 | 960 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; | 
|---|
 | 961 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; | 
|---|
 | 962 |  | 
|---|
 | 963 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; | 
|---|
 | 964 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; | 
|---|
 | 965 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; | 
|---|
 | 966 |                         } | 
|---|
 | 967 |                 } | 
|---|
 | 968 |                 nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
 | 969 |  | 
|---|
 | 970 |                 // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
 | 971 |                 // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
 | 972 |                 // so the memory (which is not freed) is left alone | 
|---|
 | 973 |                 targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
 | 974 |         } | 
|---|
 | 975 |  | 
|---|
 | 976 |         sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
 | 977 |         nodeData += sizeToAdd; | 
|---|
 | 978 |  | 
|---|
 | 979 |         // Now serialize the subtree headers | 
|---|
 | 980 |         targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); | 
|---|
 | 981 |         if (i_swapEndian) | 
|---|
 | 982 |         { | 
|---|
 | 983 |                 for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
 | 984 |                 { | 
|---|
 | 985 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
 | 986 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
 | 987 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
 | 988 |  | 
|---|
 | 989 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
 | 990 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
 | 991 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
 | 992 |  | 
|---|
 | 993 |                         targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
 | 994 |                         targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
 | 995 |                 } | 
|---|
 | 996 |         } | 
|---|
 | 997 |         else | 
|---|
 | 998 |         { | 
|---|
 | 999 |                 for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
 | 1000 |                 { | 
|---|
 | 1001 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
 | 1002 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
 | 1003 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
 | 1004 |  | 
|---|
 | 1005 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
 | 1006 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
 | 1007 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
 | 1008 |  | 
|---|
 | 1009 |                         targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); | 
|---|
 | 1010 |                         targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); | 
|---|
 | 1011 |  | 
|---|
 | 1012 |                         // need to clear padding in destination buffer | 
|---|
 | 1013 |                         targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; | 
|---|
 | 1014 |                         targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; | 
|---|
 | 1015 |                         targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; | 
|---|
 | 1016 |                 } | 
|---|
 | 1017 |         } | 
|---|
 | 1018 |         nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
 | 1019 |  | 
|---|
 | 1020 |         // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
 | 1021 |         // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
 | 1022 |         // so the memory (which is not freed) is left alone | 
|---|
 | 1023 |         targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); | 
|---|
 | 1024 |  | 
|---|
 | 1025 |         // this wipes the virtual function table pointer at the start of the buffer for the class | 
|---|
 | 1026 |         *((void**)o_alignedDataBuffer) = NULL; | 
|---|
 | 1027 |  | 
|---|
 | 1028 |         return true; | 
|---|
 | 1029 | } | 
|---|
 | 1030 |  | 
|---|
 | 1031 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) | 
|---|
 | 1032 | { | 
|---|
 | 1033 |  | 
|---|
 | 1034 |         if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
 | 1035 |         { | 
|---|
 | 1036 |                 return NULL; | 
|---|
 | 1037 |         } | 
|---|
 | 1038 |         btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; | 
|---|
 | 1039 |  | 
|---|
 | 1040 |         if (i_swapEndian) | 
|---|
 | 1041 |         { | 
|---|
 | 1042 |                 bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); | 
|---|
 | 1043 |  | 
|---|
 | 1044 |                 btUnSwapVector3Endian(bvh->m_bvhAabbMin); | 
|---|
 | 1045 |                 btUnSwapVector3Endian(bvh->m_bvhAabbMax); | 
|---|
 | 1046 |                 btUnSwapVector3Endian(bvh->m_bvhQuantization); | 
|---|
 | 1047 |  | 
|---|
 | 1048 |                 bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); | 
|---|
 | 1049 |                 bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); | 
|---|
 | 1050 |         } | 
|---|
 | 1051 |  | 
|---|
 | 1052 |         unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); | 
|---|
 | 1053 |         btAssert(calculatedBufSize <= i_dataBufferSize); | 
|---|
 | 1054 |  | 
|---|
 | 1055 |         if (calculatedBufSize > i_dataBufferSize) | 
|---|
 | 1056 |         { | 
|---|
 | 1057 |                 return NULL; | 
|---|
 | 1058 |         } | 
|---|
 | 1059 |  | 
|---|
 | 1060 |         unsigned char *nodeData = (unsigned char *)bvh; | 
|---|
 | 1061 |         nodeData += sizeof(btQuantizedBvh); | 
|---|
 | 1062 |          | 
|---|
 | 1063 |         unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
 | 1064 |         nodeData += sizeToAdd; | 
|---|
 | 1065 |          | 
|---|
 | 1066 |         int nodeCount = bvh->m_curNodeIndex; | 
|---|
 | 1067 |  | 
|---|
 | 1068 |         // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor | 
|---|
 | 1069 |         // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
 | 1070 |         new (bvh) btQuantizedBvh(*bvh, false); | 
|---|
 | 1071 |  | 
|---|
 | 1072 |         if (bvh->m_useQuantization) | 
|---|
 | 1073 |         { | 
|---|
 | 1074 |                 bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
 | 1075 |  | 
|---|
 | 1076 |                 if (i_swapEndian) | 
|---|
 | 1077 |                 { | 
|---|
 | 1078 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 1079 |                         { | 
|---|
 | 1080 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
 | 1081 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
 | 1082 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
 | 1083 |  | 
|---|
 | 1084 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
 | 1085 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
 | 1086 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
 | 1087 |  | 
|---|
 | 1088 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
 | 1089 |                         } | 
|---|
 | 1090 |                 } | 
|---|
 | 1091 |                 nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
 | 1092 |         } | 
|---|
 | 1093 |         else | 
|---|
 | 1094 |         { | 
|---|
 | 1095 |                 bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
 | 1096 |  | 
|---|
 | 1097 |                 if (i_swapEndian) | 
|---|
 | 1098 |                 { | 
|---|
 | 1099 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
 | 1100 |                         { | 
|---|
 | 1101 |                                 btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
 | 1102 |                                 btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
 | 1103 |                                  | 
|---|
 | 1104 |                                 bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
 | 1105 |                                 bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
 | 1106 |                                 bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
 | 1107 |                         } | 
|---|
 | 1108 |                 } | 
|---|
 | 1109 |                 nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
 | 1110 |         } | 
|---|
 | 1111 |  | 
|---|
 | 1112 |         sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
 | 1113 |         nodeData += sizeToAdd; | 
|---|
 | 1114 |  | 
|---|
 | 1115 |         // Now serialize the subtree headers | 
|---|
 | 1116 |         bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); | 
|---|
 | 1117 |         if (i_swapEndian) | 
|---|
 | 1118 |         { | 
|---|
 | 1119 |                 for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) | 
|---|
 | 1120 |                 { | 
|---|
 | 1121 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
 | 1122 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
 | 1123 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
 | 1124 |  | 
|---|
 | 1125 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
 | 1126 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
 | 1127 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
 | 1128 |  | 
|---|
 | 1129 |                         bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
 | 1130 |                         bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
 | 1131 |                 } | 
|---|
 | 1132 |         } | 
|---|
 | 1133 |  | 
|---|
 | 1134 |         return bvh; | 
|---|
 | 1135 | } | 
|---|
 | 1136 |  | 
|---|
 | 1137 | // Constructor that prevents btVector3's default constructor from being called | 
|---|
 | 1138 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : | 
|---|
 | 1139 | m_bvhAabbMin(self.m_bvhAabbMin), | 
|---|
 | 1140 | m_bvhAabbMax(self.m_bvhAabbMax), | 
|---|
| [2430] | 1141 | m_bvhQuantization(self.m_bvhQuantization), | 
|---|
 | 1142 | m_bulletVersion(BT_BULLET_VERSION) | 
|---|
| [1963] | 1143 | { | 
|---|
 | 1144 |  | 
|---|
 | 1145 | } | 
|---|
 | 1146 |  | 
|---|
| [8351] | 1147 | void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData) | 
|---|
 | 1148 | { | 
|---|
 | 1149 |         m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax); | 
|---|
 | 1150 |         m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin); | 
|---|
 | 1151 |         m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization); | 
|---|
| [1963] | 1152 |  | 
|---|
| [8351] | 1153 |         m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex; | 
|---|
 | 1154 |         m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0; | 
|---|
 | 1155 |          | 
|---|
 | 1156 |         { | 
|---|
 | 1157 |                 int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes; | 
|---|
 | 1158 |                 m_contiguousNodes.resize(numElem); | 
|---|
| [1963] | 1159 |  | 
|---|
| [8351] | 1160 |                 if (numElem) | 
|---|
 | 1161 |                 { | 
|---|
 | 1162 |                         btOptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr; | 
|---|
| [2882] | 1163 |  | 
|---|
| [8351] | 1164 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1165 |                         { | 
|---|
 | 1166 |                                 m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg); | 
|---|
 | 1167 |                                 m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg); | 
|---|
 | 1168 |                                 m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; | 
|---|
 | 1169 |                                 m_contiguousNodes[i].m_subPart = memPtr->m_subPart; | 
|---|
 | 1170 |                                 m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; | 
|---|
 | 1171 |                         } | 
|---|
 | 1172 |                 } | 
|---|
 | 1173 |         } | 
|---|
 | 1174 |  | 
|---|
 | 1175 |         { | 
|---|
 | 1176 |                 int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes; | 
|---|
 | 1177 |                 m_quantizedContiguousNodes.resize(numElem); | 
|---|
 | 1178 |                  | 
|---|
 | 1179 |                 if (numElem) | 
|---|
 | 1180 |                 { | 
|---|
 | 1181 |                         btQuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr; | 
|---|
 | 1182 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1183 |                         { | 
|---|
 | 1184 |                                 m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; | 
|---|
 | 1185 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; | 
|---|
 | 1186 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
 | 1187 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
 | 1188 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
 | 1189 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
 | 1190 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
 | 1191 |                         } | 
|---|
 | 1192 |                 } | 
|---|
 | 1193 |         } | 
|---|
 | 1194 |  | 
|---|
 | 1195 |         m_traversalMode = btTraversalMode(quantizedBvhFloatData.m_traversalMode); | 
|---|
 | 1196 |          | 
|---|
 | 1197 |         { | 
|---|
 | 1198 |                 int numElem = quantizedBvhFloatData.m_numSubtreeHeaders; | 
|---|
 | 1199 |                 m_SubtreeHeaders.resize(numElem); | 
|---|
 | 1200 |                 if (numElem) | 
|---|
 | 1201 |                 { | 
|---|
 | 1202 |                         btBvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr; | 
|---|
 | 1203 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1204 |                         { | 
|---|
 | 1205 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; | 
|---|
 | 1206 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
 | 1207 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
 | 1208 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
 | 1209 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
 | 1210 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
 | 1211 |                                 m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; | 
|---|
 | 1212 |                                 m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; | 
|---|
 | 1213 |                         } | 
|---|
 | 1214 |                 } | 
|---|
 | 1215 |         } | 
|---|
 | 1216 | } | 
|---|
 | 1217 |  | 
|---|
 | 1218 | void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData) | 
|---|
 | 1219 | { | 
|---|
 | 1220 |         m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax); | 
|---|
 | 1221 |         m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin); | 
|---|
 | 1222 |         m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization); | 
|---|
 | 1223 |  | 
|---|
 | 1224 |         m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex; | 
|---|
 | 1225 |         m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0; | 
|---|
 | 1226 |          | 
|---|
 | 1227 |         { | 
|---|
 | 1228 |                 int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes; | 
|---|
 | 1229 |                 m_contiguousNodes.resize(numElem); | 
|---|
 | 1230 |  | 
|---|
 | 1231 |                 if (numElem) | 
|---|
 | 1232 |                 { | 
|---|
 | 1233 |                         btOptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr; | 
|---|
 | 1234 |  | 
|---|
 | 1235 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1236 |                         { | 
|---|
 | 1237 |                                 m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg); | 
|---|
 | 1238 |                                 m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg); | 
|---|
 | 1239 |                                 m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; | 
|---|
 | 1240 |                                 m_contiguousNodes[i].m_subPart = memPtr->m_subPart; | 
|---|
 | 1241 |                                 m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; | 
|---|
 | 1242 |                         } | 
|---|
 | 1243 |                 } | 
|---|
 | 1244 |         } | 
|---|
 | 1245 |  | 
|---|
 | 1246 |         { | 
|---|
 | 1247 |                 int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes; | 
|---|
 | 1248 |                 m_quantizedContiguousNodes.resize(numElem); | 
|---|
 | 1249 |                  | 
|---|
 | 1250 |                 if (numElem) | 
|---|
 | 1251 |                 { | 
|---|
 | 1252 |                         btQuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr; | 
|---|
 | 1253 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1254 |                         { | 
|---|
 | 1255 |                                 m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; | 
|---|
 | 1256 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; | 
|---|
 | 1257 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
 | 1258 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
 | 1259 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
 | 1260 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
 | 1261 |                                 m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
 | 1262 |                         } | 
|---|
 | 1263 |                 } | 
|---|
 | 1264 |         } | 
|---|
 | 1265 |  | 
|---|
 | 1266 |         m_traversalMode = btTraversalMode(quantizedBvhDoubleData.m_traversalMode); | 
|---|
 | 1267 |          | 
|---|
 | 1268 |         { | 
|---|
 | 1269 |                 int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders; | 
|---|
 | 1270 |                 m_SubtreeHeaders.resize(numElem); | 
|---|
 | 1271 |                 if (numElem) | 
|---|
 | 1272 |                 { | 
|---|
 | 1273 |                         btBvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr; | 
|---|
 | 1274 |                         for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1275 |                         { | 
|---|
 | 1276 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; | 
|---|
 | 1277 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
 | 1278 |                                 m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
 | 1279 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
 | 1280 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
 | 1281 |                                 m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
 | 1282 |                                 m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; | 
|---|
 | 1283 |                                 m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; | 
|---|
 | 1284 |                         } | 
|---|
 | 1285 |                 } | 
|---|
 | 1286 |         } | 
|---|
 | 1287 |  | 
|---|
 | 1288 | } | 
|---|
 | 1289 |  | 
|---|
 | 1290 |  | 
|---|
 | 1291 |  | 
|---|
 | 1292 | ///fills the dataBuffer and returns the struct name (and 0 on failure) | 
|---|
 | 1293 | const char*     btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const | 
|---|
 | 1294 | { | 
|---|
 | 1295 |         btQuantizedBvhData* quantizedData = (btQuantizedBvhData*)dataBuffer; | 
|---|
 | 1296 |          | 
|---|
 | 1297 |         m_bvhAabbMax.serialize(quantizedData->m_bvhAabbMax); | 
|---|
 | 1298 |         m_bvhAabbMin.serialize(quantizedData->m_bvhAabbMin); | 
|---|
 | 1299 |         m_bvhQuantization.serialize(quantizedData->m_bvhQuantization); | 
|---|
 | 1300 |  | 
|---|
 | 1301 |         quantizedData->m_curNodeIndex = m_curNodeIndex; | 
|---|
 | 1302 |         quantizedData->m_useQuantization = m_useQuantization; | 
|---|
 | 1303 |          | 
|---|
 | 1304 |         quantizedData->m_numContiguousLeafNodes = m_contiguousNodes.size(); | 
|---|
 | 1305 |         quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*) (m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0); | 
|---|
 | 1306 |         if (quantizedData->m_contiguousNodesPtr) | 
|---|
 | 1307 |         { | 
|---|
 | 1308 |                 int sz = sizeof(btOptimizedBvhNodeData); | 
|---|
 | 1309 |                 int numElem = m_contiguousNodes.size(); | 
|---|
 | 1310 |                 btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
 | 1311 |                 btOptimizedBvhNodeData* memPtr = (btOptimizedBvhNodeData*)chunk->m_oldPtr; | 
|---|
 | 1312 |                 for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1313 |                 { | 
|---|
 | 1314 |                         m_contiguousNodes[i].m_aabbMaxOrg.serialize(memPtr->m_aabbMaxOrg); | 
|---|
 | 1315 |                         m_contiguousNodes[i].m_aabbMinOrg.serialize(memPtr->m_aabbMinOrg); | 
|---|
 | 1316 |                         memPtr->m_escapeIndex = m_contiguousNodes[i].m_escapeIndex; | 
|---|
 | 1317 |                         memPtr->m_subPart = m_contiguousNodes[i].m_subPart; | 
|---|
 | 1318 |                         memPtr->m_triangleIndex = m_contiguousNodes[i].m_triangleIndex; | 
|---|
 | 1319 |                 } | 
|---|
 | 1320 |                 serializer->finalizeChunk(chunk,"btOptimizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_contiguousNodes[0]); | 
|---|
 | 1321 |         } | 
|---|
 | 1322 |  | 
|---|
 | 1323 |         quantizedData->m_numQuantizedContiguousNodes = m_quantizedContiguousNodes.size(); | 
|---|
 | 1324 | //      printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes); | 
|---|
 | 1325 |         quantizedData->m_quantizedContiguousNodesPtr =(btQuantizedBvhNodeData*) (m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0); | 
|---|
 | 1326 |         if (quantizedData->m_quantizedContiguousNodesPtr) | 
|---|
 | 1327 |         { | 
|---|
 | 1328 |                 int sz = sizeof(btQuantizedBvhNodeData); | 
|---|
 | 1329 |                 int numElem = m_quantizedContiguousNodes.size(); | 
|---|
 | 1330 |                 btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
 | 1331 |                 btQuantizedBvhNodeData* memPtr = (btQuantizedBvhNodeData*)chunk->m_oldPtr; | 
|---|
 | 1332 |                 for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1333 |                 { | 
|---|
 | 1334 |                         memPtr->m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex; | 
|---|
 | 1335 |                         memPtr->m_quantizedAabbMax[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[0]; | 
|---|
 | 1336 |                         memPtr->m_quantizedAabbMax[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[1]; | 
|---|
 | 1337 |                         memPtr->m_quantizedAabbMax[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[2]; | 
|---|
 | 1338 |                         memPtr->m_quantizedAabbMin[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[0]; | 
|---|
 | 1339 |                         memPtr->m_quantizedAabbMin[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[1]; | 
|---|
 | 1340 |                         memPtr->m_quantizedAabbMin[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[2]; | 
|---|
 | 1341 |                 } | 
|---|
 | 1342 |                 serializer->finalizeChunk(chunk,"btQuantizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_quantizedContiguousNodes[0]); | 
|---|
 | 1343 |         } | 
|---|
 | 1344 |  | 
|---|
 | 1345 |         quantizedData->m_traversalMode = int(m_traversalMode); | 
|---|
 | 1346 |         quantizedData->m_numSubtreeHeaders = m_SubtreeHeaders.size(); | 
|---|
 | 1347 |  | 
|---|
 | 1348 |         quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*) (m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0); | 
|---|
 | 1349 |         if (quantizedData->m_subTreeInfoPtr) | 
|---|
 | 1350 |         { | 
|---|
 | 1351 |                 int sz = sizeof(btBvhSubtreeInfoData); | 
|---|
 | 1352 |                 int numElem = m_SubtreeHeaders.size(); | 
|---|
 | 1353 |                 btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
 | 1354 |                 btBvhSubtreeInfoData* memPtr = (btBvhSubtreeInfoData*)chunk->m_oldPtr; | 
|---|
 | 1355 |                 for (int i=0;i<numElem;i++,memPtr++) | 
|---|
 | 1356 |                 { | 
|---|
 | 1357 |                         memPtr->m_quantizedAabbMax[0] = m_SubtreeHeaders[i].m_quantizedAabbMax[0]; | 
|---|
 | 1358 |                         memPtr->m_quantizedAabbMax[1] = m_SubtreeHeaders[i].m_quantizedAabbMax[1]; | 
|---|
 | 1359 |                         memPtr->m_quantizedAabbMax[2] = m_SubtreeHeaders[i].m_quantizedAabbMax[2]; | 
|---|
 | 1360 |                         memPtr->m_quantizedAabbMin[0] = m_SubtreeHeaders[i].m_quantizedAabbMin[0]; | 
|---|
 | 1361 |                         memPtr->m_quantizedAabbMin[1] = m_SubtreeHeaders[i].m_quantizedAabbMin[1]; | 
|---|
 | 1362 |                         memPtr->m_quantizedAabbMin[2] = m_SubtreeHeaders[i].m_quantizedAabbMin[2]; | 
|---|
 | 1363 |  | 
|---|
 | 1364 |                         memPtr->m_rootNodeIndex = m_SubtreeHeaders[i].m_rootNodeIndex; | 
|---|
 | 1365 |                         memPtr->m_subtreeSize = m_SubtreeHeaders[i].m_subtreeSize; | 
|---|
 | 1366 |                 } | 
|---|
 | 1367 |                 serializer->finalizeChunk(chunk,"btBvhSubtreeInfoData",BT_ARRAY_CODE,(void*)&m_SubtreeHeaders[0]); | 
|---|
 | 1368 |         } | 
|---|
 | 1369 |         return btQuantizedBvhDataName; | 
|---|
 | 1370 | } | 
|---|
 | 1371 |  | 
|---|
 | 1372 |  | 
|---|
 | 1373 |  | 
|---|
 | 1374 |  | 
|---|
 | 1375 |  | 
|---|