| [1963] | 1 | /* |
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library |
|---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
|---|
| 4 | |
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. |
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. |
|---|
| 7 | Permission is granted to anyone to use this software for any purpose, |
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely, |
|---|
| 9 | subject to the following restrictions: |
|---|
| 10 | |
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. |
|---|
| 14 | */ |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include "btHingeConstraint.h" |
|---|
| 18 | #include "BulletDynamics/Dynamics/btRigidBody.h" |
|---|
| 19 | #include "LinearMath/btTransformUtil.h" |
|---|
| 20 | #include "LinearMath/btMinMax.h" |
|---|
| 21 | #include <new> |
|---|
| 22 | |
|---|
| 23 | |
|---|
| 24 | btHingeConstraint::btHingeConstraint() |
|---|
| 25 | : btTypedConstraint (HINGE_CONSTRAINT_TYPE), |
|---|
| 26 | m_enableAngularMotor(false) |
|---|
| 27 | { |
|---|
| 28 | } |
|---|
| 29 | |
|---|
| 30 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, |
|---|
| 31 | btVector3& axisInA,btVector3& axisInB) |
|---|
| 32 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB), |
|---|
| 33 | m_angularOnly(false), |
|---|
| 34 | m_enableAngularMotor(false) |
|---|
| 35 | { |
|---|
| 36 | m_rbAFrame.getOrigin() = pivotInA; |
|---|
| 37 | |
|---|
| 38 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
|---|
| 39 | btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0); |
|---|
| 40 | |
|---|
| 41 | btVector3 rbAxisA2; |
|---|
| 42 | btScalar projection = axisInA.dot(rbAxisA1); |
|---|
| 43 | if (projection >= 1.0f - SIMD_EPSILON) { |
|---|
| 44 | rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
|---|
| 45 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
|---|
| 46 | } else if (projection <= -1.0f + SIMD_EPSILON) { |
|---|
| 47 | rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2); |
|---|
| 48 | rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1); |
|---|
| 49 | } else { |
|---|
| 50 | rbAxisA2 = axisInA.cross(rbAxisA1); |
|---|
| 51 | rbAxisA1 = rbAxisA2.cross(axisInA); |
|---|
| 52 | } |
|---|
| 53 | |
|---|
| 54 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
|---|
| 55 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
|---|
| 56 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
|---|
| 57 | |
|---|
| 58 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
|---|
| 59 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
|---|
| 60 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
|---|
| 61 | |
|---|
| 62 | m_rbBFrame.getOrigin() = pivotInB; |
|---|
| 63 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),-axisInB.getX(), |
|---|
| 64 | rbAxisB1.getY(),rbAxisB2.getY(),-axisInB.getY(), |
|---|
| 65 | rbAxisB1.getZ(),rbAxisB2.getZ(),-axisInB.getZ() ); |
|---|
| 66 | |
|---|
| 67 | //start with free |
|---|
| 68 | m_lowerLimit = btScalar(1e30); |
|---|
| 69 | m_upperLimit = btScalar(-1e30); |
|---|
| 70 | m_biasFactor = 0.3f; |
|---|
| 71 | m_relaxationFactor = 1.0f; |
|---|
| 72 | m_limitSoftness = 0.9f; |
|---|
| 73 | m_solveLimit = false; |
|---|
| 74 | |
|---|
| 75 | } |
|---|
| 76 | |
|---|
| 77 | |
|---|
| 78 | |
|---|
| 79 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA) |
|---|
| 80 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false) |
|---|
| 81 | { |
|---|
| 82 | |
|---|
| 83 | // since no frame is given, assume this to be zero angle and just pick rb transform axis |
|---|
| 84 | // fixed axis in worldspace |
|---|
| 85 | btVector3 rbAxisA1, rbAxisA2; |
|---|
| 86 | btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2); |
|---|
| 87 | |
|---|
| 88 | m_rbAFrame.getOrigin() = pivotInA; |
|---|
| 89 | m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(), |
|---|
| 90 | rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(), |
|---|
| 91 | rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() ); |
|---|
| 92 | |
|---|
| 93 | btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * -axisInA; |
|---|
| 94 | |
|---|
| 95 | btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB); |
|---|
| 96 | btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1); |
|---|
| 97 | btVector3 rbAxisB2 = axisInB.cross(rbAxisB1); |
|---|
| 98 | |
|---|
| 99 | |
|---|
| 100 | m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA); |
|---|
| 101 | m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(), |
|---|
| 102 | rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(), |
|---|
| 103 | rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() ); |
|---|
| 104 | |
|---|
| 105 | //start with free |
|---|
| 106 | m_lowerLimit = btScalar(1e30); |
|---|
| 107 | m_upperLimit = btScalar(-1e30); |
|---|
| 108 | m_biasFactor = 0.3f; |
|---|
| 109 | m_relaxationFactor = 1.0f; |
|---|
| 110 | m_limitSoftness = 0.9f; |
|---|
| 111 | m_solveLimit = false; |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, |
|---|
| 115 | const btTransform& rbAFrame, const btTransform& rbBFrame) |
|---|
| 116 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), |
|---|
| 117 | m_angularOnly(false), |
|---|
| 118 | m_enableAngularMotor(false) |
|---|
| 119 | { |
|---|
| 120 | // flip axis |
|---|
| 121 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
|---|
| 122 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
|---|
| 123 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
|---|
| 124 | |
|---|
| 125 | //start with free |
|---|
| 126 | m_lowerLimit = btScalar(1e30); |
|---|
| 127 | m_upperLimit = btScalar(-1e30); |
|---|
| 128 | m_biasFactor = 0.3f; |
|---|
| 129 | m_relaxationFactor = 1.0f; |
|---|
| 130 | m_limitSoftness = 0.9f; |
|---|
| 131 | m_solveLimit = false; |
|---|
| 132 | } |
|---|
| 133 | |
|---|
| 134 | |
|---|
| 135 | |
|---|
| 136 | btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame) |
|---|
| 137 | :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame), |
|---|
| 138 | m_angularOnly(false), |
|---|
| 139 | m_enableAngularMotor(false) |
|---|
| 140 | { |
|---|
| 141 | ///not providing rigidbody B means implicitly using worldspace for body B |
|---|
| 142 | |
|---|
| 143 | // flip axis |
|---|
| 144 | m_rbBFrame.getBasis()[0][2] *= btScalar(-1.); |
|---|
| 145 | m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); |
|---|
| 146 | m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); |
|---|
| 147 | |
|---|
| 148 | m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin()); |
|---|
| 149 | |
|---|
| 150 | //start with free |
|---|
| 151 | m_lowerLimit = btScalar(1e30); |
|---|
| 152 | m_upperLimit = btScalar(-1e30); |
|---|
| 153 | m_biasFactor = 0.3f; |
|---|
| 154 | m_relaxationFactor = 1.0f; |
|---|
| 155 | m_limitSoftness = 0.9f; |
|---|
| 156 | m_solveLimit = false; |
|---|
| 157 | } |
|---|
| 158 | |
|---|
| 159 | void btHingeConstraint::buildJacobian() |
|---|
| 160 | { |
|---|
| 161 | m_appliedImpulse = btScalar(0.); |
|---|
| 162 | |
|---|
| 163 | if (!m_angularOnly) |
|---|
| 164 | { |
|---|
| 165 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
|---|
| 166 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
|---|
| 167 | btVector3 relPos = pivotBInW - pivotAInW; |
|---|
| 168 | |
|---|
| 169 | btVector3 normal[3]; |
|---|
| 170 | if (relPos.length2() > SIMD_EPSILON) |
|---|
| 171 | { |
|---|
| 172 | normal[0] = relPos.normalized(); |
|---|
| 173 | } |
|---|
| 174 | else |
|---|
| 175 | { |
|---|
| 176 | normal[0].setValue(btScalar(1.0),0,0); |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | btPlaneSpace1(normal[0], normal[1], normal[2]); |
|---|
| 180 | |
|---|
| 181 | for (int i=0;i<3;i++) |
|---|
| 182 | { |
|---|
| 183 | new (&m_jac[i]) btJacobianEntry( |
|---|
| 184 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 185 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 186 | pivotAInW - m_rbA.getCenterOfMassPosition(), |
|---|
| 187 | pivotBInW - m_rbB.getCenterOfMassPosition(), |
|---|
| 188 | normal[i], |
|---|
| 189 | m_rbA.getInvInertiaDiagLocal(), |
|---|
| 190 | m_rbA.getInvMass(), |
|---|
| 191 | m_rbB.getInvInertiaDiagLocal(), |
|---|
| 192 | m_rbB.getInvMass()); |
|---|
| 193 | } |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | //calculate two perpendicular jointAxis, orthogonal to hingeAxis |
|---|
| 197 | //these two jointAxis require equal angular velocities for both bodies |
|---|
| 198 | |
|---|
| 199 | //this is unused for now, it's a todo |
|---|
| 200 | btVector3 jointAxis0local; |
|---|
| 201 | btVector3 jointAxis1local; |
|---|
| 202 | |
|---|
| 203 | btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local); |
|---|
| 204 | |
|---|
| 205 | getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
|---|
| 206 | btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local; |
|---|
| 207 | btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local; |
|---|
| 208 | btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
|---|
| 209 | |
|---|
| 210 | new (&m_jacAng[0]) btJacobianEntry(jointAxis0, |
|---|
| 211 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 212 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 213 | m_rbA.getInvInertiaDiagLocal(), |
|---|
| 214 | m_rbB.getInvInertiaDiagLocal()); |
|---|
| 215 | |
|---|
| 216 | new (&m_jacAng[1]) btJacobianEntry(jointAxis1, |
|---|
| 217 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 218 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 219 | m_rbA.getInvInertiaDiagLocal(), |
|---|
| 220 | m_rbB.getInvInertiaDiagLocal()); |
|---|
| 221 | |
|---|
| 222 | new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld, |
|---|
| 223 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 224 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), |
|---|
| 225 | m_rbA.getInvInertiaDiagLocal(), |
|---|
| 226 | m_rbB.getInvInertiaDiagLocal()); |
|---|
| 227 | |
|---|
| 228 | |
|---|
| 229 | // Compute limit information |
|---|
| 230 | btScalar hingeAngle = getHingeAngle(); |
|---|
| 231 | |
|---|
| 232 | //set bias, sign, clear accumulator |
|---|
| 233 | m_correction = btScalar(0.); |
|---|
| 234 | m_limitSign = btScalar(0.); |
|---|
| 235 | m_solveLimit = false; |
|---|
| 236 | m_accLimitImpulse = btScalar(0.); |
|---|
| 237 | |
|---|
| 238 | // if (m_lowerLimit < m_upperLimit) |
|---|
| 239 | if (m_lowerLimit <= m_upperLimit) |
|---|
| 240 | { |
|---|
| 241 | // if (hingeAngle <= m_lowerLimit*m_limitSoftness) |
|---|
| 242 | if (hingeAngle <= m_lowerLimit) |
|---|
| 243 | { |
|---|
| 244 | m_correction = (m_lowerLimit - hingeAngle); |
|---|
| 245 | m_limitSign = 1.0f; |
|---|
| 246 | m_solveLimit = true; |
|---|
| 247 | } |
|---|
| 248 | // else if (hingeAngle >= m_upperLimit*m_limitSoftness) |
|---|
| 249 | else if (hingeAngle >= m_upperLimit) |
|---|
| 250 | { |
|---|
| 251 | m_correction = m_upperLimit - hingeAngle; |
|---|
| 252 | m_limitSign = -1.0f; |
|---|
| 253 | m_solveLimit = true; |
|---|
| 254 | } |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | //Compute K = J*W*J' for hinge axis |
|---|
| 258 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
|---|
| 259 | m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) + |
|---|
| 260 | getRigidBodyB().computeAngularImpulseDenominator(axisA)); |
|---|
| 261 | |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | void btHingeConstraint::solveConstraint(btScalar timeStep) |
|---|
| 265 | { |
|---|
| 266 | |
|---|
| 267 | btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); |
|---|
| 268 | btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); |
|---|
| 269 | |
|---|
| 270 | btScalar tau = btScalar(0.3); |
|---|
| 271 | |
|---|
| 272 | //linear part |
|---|
| 273 | if (!m_angularOnly) |
|---|
| 274 | { |
|---|
| 275 | btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); |
|---|
| 276 | btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); |
|---|
| 277 | |
|---|
| 278 | btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1); |
|---|
| 279 | btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2); |
|---|
| 280 | btVector3 vel = vel1 - vel2; |
|---|
| 281 | |
|---|
| 282 | for (int i=0;i<3;i++) |
|---|
| 283 | { |
|---|
| 284 | const btVector3& normal = m_jac[i].m_linearJointAxis; |
|---|
| 285 | btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); |
|---|
| 286 | |
|---|
| 287 | btScalar rel_vel; |
|---|
| 288 | rel_vel = normal.dot(vel); |
|---|
| 289 | //positional error (zeroth order error) |
|---|
| 290 | btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal |
|---|
| 291 | btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; |
|---|
| 292 | m_appliedImpulse += impulse; |
|---|
| 293 | btVector3 impulse_vector = normal * impulse; |
|---|
| 294 | m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition()); |
|---|
| 295 | m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition()); |
|---|
| 296 | } |
|---|
| 297 | } |
|---|
| 298 | |
|---|
| 299 | |
|---|
| 300 | { |
|---|
| 301 | ///solve angular part |
|---|
| 302 | |
|---|
| 303 | // get axes in world space |
|---|
| 304 | btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2); |
|---|
| 305 | btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2); |
|---|
| 306 | |
|---|
| 307 | const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); |
|---|
| 308 | const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); |
|---|
| 309 | |
|---|
| 310 | btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); |
|---|
| 311 | btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); |
|---|
| 312 | |
|---|
| 313 | btVector3 angAorthog = angVelA - angVelAroundHingeAxisA; |
|---|
| 314 | btVector3 angBorthog = angVelB - angVelAroundHingeAxisB; |
|---|
| 315 | btVector3 velrelOrthog = angAorthog-angBorthog; |
|---|
| 316 | { |
|---|
| 317 | //solve orthogonal angular velocity correction |
|---|
| 318 | btScalar relaxation = btScalar(1.); |
|---|
| 319 | btScalar len = velrelOrthog.length(); |
|---|
| 320 | if (len > btScalar(0.00001)) |
|---|
| 321 | { |
|---|
| 322 | btVector3 normal = velrelOrthog.normalized(); |
|---|
| 323 | btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) + |
|---|
| 324 | getRigidBodyB().computeAngularImpulseDenominator(normal); |
|---|
| 325 | // scale for mass and relaxation |
|---|
| 326 | velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor; |
|---|
| 327 | } |
|---|
| 328 | |
|---|
| 329 | //solve angular positional correction |
|---|
| 330 | btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep); |
|---|
| 331 | btScalar len2 = angularError.length(); |
|---|
| 332 | if (len2>btScalar(0.00001)) |
|---|
| 333 | { |
|---|
| 334 | btVector3 normal2 = angularError.normalized(); |
|---|
| 335 | btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) + |
|---|
| 336 | getRigidBodyB().computeAngularImpulseDenominator(normal2); |
|---|
| 337 | angularError *= (btScalar(1.)/denom2) * relaxation; |
|---|
| 338 | } |
|---|
| 339 | |
|---|
| 340 | m_rbA.applyTorqueImpulse(-velrelOrthog+angularError); |
|---|
| 341 | m_rbB.applyTorqueImpulse(velrelOrthog-angularError); |
|---|
| 342 | |
|---|
| 343 | // solve limit |
|---|
| 344 | if (m_solveLimit) |
|---|
| 345 | { |
|---|
| 346 | btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign; |
|---|
| 347 | |
|---|
| 348 | btScalar impulseMag = amplitude * m_kHinge; |
|---|
| 349 | |
|---|
| 350 | // Clamp the accumulated impulse |
|---|
| 351 | btScalar temp = m_accLimitImpulse; |
|---|
| 352 | m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) ); |
|---|
| 353 | impulseMag = m_accLimitImpulse - temp; |
|---|
| 354 | |
|---|
| 355 | |
|---|
| 356 | btVector3 impulse = axisA * impulseMag * m_limitSign; |
|---|
| 357 | m_rbA.applyTorqueImpulse(impulse); |
|---|
| 358 | m_rbB.applyTorqueImpulse(-impulse); |
|---|
| 359 | } |
|---|
| 360 | } |
|---|
| 361 | |
|---|
| 362 | //apply motor |
|---|
| 363 | if (m_enableAngularMotor) |
|---|
| 364 | { |
|---|
| 365 | //todo: add limits too |
|---|
| 366 | btVector3 angularLimit(0,0,0); |
|---|
| 367 | |
|---|
| 368 | btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; |
|---|
| 369 | btScalar projRelVel = velrel.dot(axisA); |
|---|
| 370 | |
|---|
| 371 | btScalar desiredMotorVel = m_motorTargetVelocity; |
|---|
| 372 | btScalar motor_relvel = desiredMotorVel - projRelVel; |
|---|
| 373 | |
|---|
| 374 | btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;; |
|---|
| 375 | //todo: should clip against accumulated impulse |
|---|
| 376 | btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; |
|---|
| 377 | clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; |
|---|
| 378 | btVector3 motorImp = clippedMotorImpulse * axisA; |
|---|
| 379 | |
|---|
| 380 | m_rbA.applyTorqueImpulse(motorImp+angularLimit); |
|---|
| 381 | m_rbB.applyTorqueImpulse(-motorImp-angularLimit); |
|---|
| 382 | |
|---|
| 383 | } |
|---|
| 384 | } |
|---|
| 385 | |
|---|
| 386 | } |
|---|
| 387 | |
|---|
| 388 | void btHingeConstraint::updateRHS(btScalar timeStep) |
|---|
| 389 | { |
|---|
| 390 | (void)timeStep; |
|---|
| 391 | |
|---|
| 392 | } |
|---|
| 393 | |
|---|
| 394 | btScalar btHingeConstraint::getHingeAngle() |
|---|
| 395 | { |
|---|
| 396 | const btVector3 refAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(0); |
|---|
| 397 | const btVector3 refAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(1); |
|---|
| 398 | const btVector3 swingAxis = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(1); |
|---|
| 399 | |
|---|
| 400 | return btAtan2Fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) ); |
|---|
| 401 | } |
|---|
| 402 | |
|---|