| [1963] | 1 |  | 
|---|
|  | 2 | /* | 
|---|
|  | 3 | * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith | 
|---|
|  | 4 | * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. | 
|---|
|  | 5 | * All rights reserved.  Email: russ@q12.org   Web: www.q12.org | 
|---|
|  | 6 | Bullet Continuous Collision Detection and Physics Library | 
|---|
|  | 7 | Bullet is Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
|  | 8 |  | 
|---|
|  | 9 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
|  | 10 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
|  | 11 | Permission is granted to anyone to use this software for any purpose, | 
|---|
|  | 12 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
|  | 13 | subject to the following restrictions: | 
|---|
|  | 14 |  | 
|---|
|  | 15 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
|  | 16 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
|  | 17 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
|  | 18 | */ | 
|---|
|  | 19 |  | 
|---|
|  | 20 | ///ODE box-box collision detection is adapted to work with Bullet | 
|---|
|  | 21 |  | 
|---|
|  | 22 | #include "btBoxBoxDetector.h" | 
|---|
|  | 23 | #include "BulletCollision/CollisionShapes/btBoxShape.h" | 
|---|
|  | 24 |  | 
|---|
|  | 25 | #include <float.h> | 
|---|
|  | 26 | #include <string.h> | 
|---|
|  | 27 |  | 
|---|
|  | 28 | btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2) | 
|---|
|  | 29 | : m_box1(box1), | 
|---|
|  | 30 | m_box2(box2) | 
|---|
|  | 31 | { | 
|---|
|  | 32 |  | 
|---|
|  | 33 | } | 
|---|
|  | 34 |  | 
|---|
|  | 35 |  | 
|---|
|  | 36 | // given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and | 
|---|
|  | 37 | // generate contact points. this returns 0 if there is no contact otherwise | 
|---|
|  | 38 | // it returns the number of contacts generated. | 
|---|
|  | 39 | // `normal' returns the contact normal. | 
|---|
|  | 40 | // `depth' returns the maximum penetration depth along that normal. | 
|---|
|  | 41 | // `return_code' returns a number indicating the type of contact that was | 
|---|
|  | 42 | // detected: | 
|---|
|  | 43 | //        1,2,3 = box 2 intersects with a face of box 1 | 
|---|
|  | 44 | //        4,5,6 = box 1 intersects with a face of box 2 | 
|---|
|  | 45 | //        7..15 = edge-edge contact | 
|---|
|  | 46 | // `maxc' is the maximum number of contacts allowed to be generated, i.e. | 
|---|
|  | 47 | // the size of the `contact' array. | 
|---|
|  | 48 | // `contact' and `skip' are the contact array information provided to the | 
|---|
|  | 49 | // collision functions. this function only fills in the position and depth | 
|---|
|  | 50 | // fields. | 
|---|
|  | 51 | struct dContactGeom; | 
|---|
|  | 52 | #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)]) | 
|---|
|  | 53 | #define dInfinity FLT_MAX | 
|---|
|  | 54 |  | 
|---|
|  | 55 |  | 
|---|
|  | 56 | /*PURE_INLINE btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } | 
|---|
|  | 57 | PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); } | 
|---|
|  | 58 | PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); } | 
|---|
|  | 59 | PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); } | 
|---|
|  | 60 | */ | 
|---|
|  | 61 | static btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); } | 
|---|
|  | 62 | static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); } | 
|---|
|  | 63 | static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); } | 
|---|
|  | 64 | static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); } | 
|---|
|  | 65 | #define dMULTIPLYOP1_331(A,op,B,C) \ | 
|---|
|  | 66 | {\ | 
|---|
|  | 67 | (A)[0] op dDOT41((B),(C)); \ | 
|---|
|  | 68 | (A)[1] op dDOT41((B+1),(C)); \ | 
|---|
|  | 69 | (A)[2] op dDOT41((B+2),(C)); \ | 
|---|
|  | 70 | } | 
|---|
|  | 71 |  | 
|---|
|  | 72 | #define dMULTIPLYOP0_331(A,op,B,C) \ | 
|---|
|  | 73 | { \ | 
|---|
|  | 74 | (A)[0] op dDOT((B),(C)); \ | 
|---|
|  | 75 | (A)[1] op dDOT((B+4),(C)); \ | 
|---|
|  | 76 | (A)[2] op dDOT((B+8),(C)); \ | 
|---|
|  | 77 | } | 
|---|
|  | 78 |  | 
|---|
|  | 79 | #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) | 
|---|
|  | 80 | #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) | 
|---|
|  | 81 |  | 
|---|
|  | 82 | typedef btScalar dMatrix3[4*3]; | 
|---|
|  | 83 |  | 
|---|
|  | 84 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, | 
|---|
|  | 85 | const btVector3& pb, const btVector3& ub, | 
|---|
|  | 86 | btScalar *alpha, btScalar *beta); | 
|---|
|  | 87 | void dLineClosestApproach (const btVector3& pa, const btVector3& ua, | 
|---|
|  | 88 | const btVector3& pb, const btVector3& ub, | 
|---|
|  | 89 | btScalar *alpha, btScalar *beta) | 
|---|
|  | 90 | { | 
|---|
|  | 91 | btVector3 p; | 
|---|
|  | 92 | p[0] = pb[0] - pa[0]; | 
|---|
|  | 93 | p[1] = pb[1] - pa[1]; | 
|---|
|  | 94 | p[2] = pb[2] - pa[2]; | 
|---|
|  | 95 | btScalar uaub = dDOT(ua,ub); | 
|---|
|  | 96 | btScalar q1 =  dDOT(ua,p); | 
|---|
|  | 97 | btScalar q2 = -dDOT(ub,p); | 
|---|
|  | 98 | btScalar d = 1-uaub*uaub; | 
|---|
|  | 99 | if (d <= btScalar(0.0001f)) { | 
|---|
|  | 100 | // @@@ this needs to be made more robust | 
|---|
|  | 101 | *alpha = 0; | 
|---|
|  | 102 | *beta  = 0; | 
|---|
|  | 103 | } | 
|---|
|  | 104 | else { | 
|---|
|  | 105 | d = 1.f/d; | 
|---|
|  | 106 | *alpha = (q1 + uaub*q2)*d; | 
|---|
|  | 107 | *beta  = (uaub*q1 + q2)*d; | 
|---|
|  | 108 | } | 
|---|
|  | 109 | } | 
|---|
|  | 110 |  | 
|---|
|  | 111 |  | 
|---|
|  | 112 |  | 
|---|
|  | 113 | // find all the intersection points between the 2D rectangle with vertices | 
|---|
|  | 114 | // at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]), | 
|---|
|  | 115 | // (p[2],p[3]),(p[4],p[5]),(p[6],p[7]). | 
|---|
|  | 116 | // | 
|---|
|  | 117 | // the intersection points are returned as x,y pairs in the 'ret' array. | 
|---|
|  | 118 | // the number of intersection points is returned by the function (this will | 
|---|
|  | 119 | // be in the range 0 to 8). | 
|---|
|  | 120 |  | 
|---|
|  | 121 | static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16]) | 
|---|
|  | 122 | { | 
|---|
|  | 123 | // q (and r) contain nq (and nr) coordinate points for the current (and | 
|---|
|  | 124 | // chopped) polygons | 
|---|
|  | 125 | int nq=4,nr=0; | 
|---|
|  | 126 | btScalar buffer[16]; | 
|---|
|  | 127 | btScalar *q = p; | 
|---|
|  | 128 | btScalar *r = ret; | 
|---|
|  | 129 | for (int dir=0; dir <= 1; dir++) { | 
|---|
|  | 130 | // direction notation: xy[0] = x axis, xy[1] = y axis | 
|---|
|  | 131 | for (int sign=-1; sign <= 1; sign += 2) { | 
|---|
|  | 132 | // chop q along the line xy[dir] = sign*h[dir] | 
|---|
|  | 133 | btScalar *pq = q; | 
|---|
|  | 134 | btScalar *pr = r; | 
|---|
|  | 135 | nr = 0; | 
|---|
|  | 136 | for (int i=nq; i > 0; i--) { | 
|---|
|  | 137 | // go through all points in q and all lines between adjacent points | 
|---|
|  | 138 | if (sign*pq[dir] < h[dir]) { | 
|---|
|  | 139 | // this point is inside the chopping line | 
|---|
|  | 140 | pr[0] = pq[0]; | 
|---|
|  | 141 | pr[1] = pq[1]; | 
|---|
|  | 142 | pr += 2; | 
|---|
|  | 143 | nr++; | 
|---|
|  | 144 | if (nr & 8) { | 
|---|
|  | 145 | q = r; | 
|---|
|  | 146 | goto done; | 
|---|
|  | 147 | } | 
|---|
|  | 148 | } | 
|---|
|  | 149 | btScalar *nextq = (i > 1) ? pq+2 : q; | 
|---|
|  | 150 | if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) { | 
|---|
|  | 151 | // this line crosses the chopping line | 
|---|
|  | 152 | pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) / | 
|---|
|  | 153 | (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]); | 
|---|
|  | 154 | pr[dir] = sign*h[dir]; | 
|---|
|  | 155 | pr += 2; | 
|---|
|  | 156 | nr++; | 
|---|
|  | 157 | if (nr & 8) { | 
|---|
|  | 158 | q = r; | 
|---|
|  | 159 | goto done; | 
|---|
|  | 160 | } | 
|---|
|  | 161 | } | 
|---|
|  | 162 | pq += 2; | 
|---|
|  | 163 | } | 
|---|
|  | 164 | q = r; | 
|---|
|  | 165 | r = (q==ret) ? buffer : ret; | 
|---|
|  | 166 | nq = nr; | 
|---|
|  | 167 | } | 
|---|
|  | 168 | } | 
|---|
|  | 169 | done: | 
|---|
|  | 170 | if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar)); | 
|---|
|  | 171 | return nr; | 
|---|
|  | 172 | } | 
|---|
|  | 173 |  | 
|---|
|  | 174 |  | 
|---|
|  | 175 | #define M__PI 3.14159265f | 
|---|
|  | 176 |  | 
|---|
|  | 177 | // given n points in the plane (array p, of size 2*n), generate m points that | 
|---|
|  | 178 | // best represent the whole set. the definition of 'best' here is not | 
|---|
|  | 179 | // predetermined - the idea is to select points that give good box-box | 
|---|
|  | 180 | // collision detection behavior. the chosen point indexes are returned in the | 
|---|
|  | 181 | // array iret (of size m). 'i0' is always the first entry in the array. | 
|---|
|  | 182 | // n must be in the range [1..8]. m must be in the range [1..n]. i0 must be | 
|---|
|  | 183 | // in the range [0..n-1]. | 
|---|
|  | 184 |  | 
|---|
|  | 185 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]); | 
|---|
|  | 186 | void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]) | 
|---|
|  | 187 | { | 
|---|
|  | 188 | // compute the centroid of the polygon in cx,cy | 
|---|
|  | 189 | int i,j; | 
|---|
|  | 190 | btScalar a,cx,cy,q; | 
|---|
|  | 191 | if (n==1) { | 
|---|
|  | 192 | cx = p[0]; | 
|---|
|  | 193 | cy = p[1]; | 
|---|
|  | 194 | } | 
|---|
|  | 195 | else if (n==2) { | 
|---|
|  | 196 | cx = btScalar(0.5)*(p[0] + p[2]); | 
|---|
|  | 197 | cy = btScalar(0.5)*(p[1] + p[3]); | 
|---|
|  | 198 | } | 
|---|
|  | 199 | else { | 
|---|
|  | 200 | a = 0; | 
|---|
|  | 201 | cx = 0; | 
|---|
|  | 202 | cy = 0; | 
|---|
|  | 203 | for (i=0; i<(n-1); i++) { | 
|---|
|  | 204 | q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1]; | 
|---|
|  | 205 | a += q; | 
|---|
|  | 206 | cx += q*(p[i*2]+p[i*2+2]); | 
|---|
|  | 207 | cy += q*(p[i*2+1]+p[i*2+3]); | 
|---|
|  | 208 | } | 
|---|
|  | 209 | q = p[n*2-2]*p[1] - p[0]*p[n*2-1]; | 
|---|
| [2430] | 210 | if (btFabs(a+q) > SIMD_EPSILON) | 
|---|
|  | 211 | { | 
|---|
|  | 212 | a = 1.f/(btScalar(3.0)*(a+q)); | 
|---|
|  | 213 | } else | 
|---|
|  | 214 | { | 
|---|
|  | 215 | a=1e30f; | 
|---|
|  | 216 | } | 
|---|
| [1963] | 217 | cx = a*(cx + q*(p[n*2-2]+p[0])); | 
|---|
|  | 218 | cy = a*(cy + q*(p[n*2-1]+p[1])); | 
|---|
|  | 219 | } | 
|---|
|  | 220 |  | 
|---|
|  | 221 | // compute the angle of each point w.r.t. the centroid | 
|---|
|  | 222 | btScalar A[8]; | 
|---|
|  | 223 | for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx); | 
|---|
|  | 224 |  | 
|---|
|  | 225 | // search for points that have angles closest to A[i0] + i*(2*pi/m). | 
|---|
|  | 226 | int avail[8]; | 
|---|
|  | 227 | for (i=0; i<n; i++) avail[i] = 1; | 
|---|
|  | 228 | avail[i0] = 0; | 
|---|
|  | 229 | iret[0] = i0; | 
|---|
|  | 230 | iret++; | 
|---|
|  | 231 | for (j=1; j<m; j++) { | 
|---|
|  | 232 | a = btScalar(j)*(2*M__PI/m) + A[i0]; | 
|---|
|  | 233 | if (a > M__PI) a -= 2*M__PI; | 
|---|
|  | 234 | btScalar maxdiff=1e9,diff; | 
|---|
|  | 235 |  | 
|---|
|  | 236 | *iret = i0;                 // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0 | 
|---|
|  | 237 |  | 
|---|
|  | 238 | for (i=0; i<n; i++) { | 
|---|
|  | 239 | if (avail[i]) { | 
|---|
|  | 240 | diff = btFabs (A[i]-a); | 
|---|
|  | 241 | if (diff > M__PI) diff = 2*M__PI - diff; | 
|---|
|  | 242 | if (diff < maxdiff) { | 
|---|
|  | 243 | maxdiff = diff; | 
|---|
|  | 244 | *iret = i; | 
|---|
|  | 245 | } | 
|---|
|  | 246 | } | 
|---|
|  | 247 | } | 
|---|
|  | 248 | #if defined(DEBUG) || defined (_DEBUG) | 
|---|
|  | 249 | btAssert (*iret != i0);     // ensure iret got set | 
|---|
|  | 250 | #endif | 
|---|
|  | 251 | avail[*iret] = 0; | 
|---|
|  | 252 | iret++; | 
|---|
|  | 253 | } | 
|---|
|  | 254 | } | 
|---|
|  | 255 |  | 
|---|
|  | 256 |  | 
|---|
|  | 257 |  | 
|---|
|  | 258 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, | 
|---|
|  | 259 | const btVector3& side1, const btVector3& p2, | 
|---|
|  | 260 | const dMatrix3 R2, const btVector3& side2, | 
|---|
|  | 261 | btVector3& normal, btScalar *depth, int *return_code, | 
|---|
|  | 262 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output); | 
|---|
|  | 263 | int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, | 
|---|
|  | 264 | const btVector3& side1, const btVector3& p2, | 
|---|
|  | 265 | const dMatrix3 R2, const btVector3& side2, | 
|---|
|  | 266 | btVector3& normal, btScalar *depth, int *return_code, | 
|---|
|  | 267 | int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output) | 
|---|
|  | 268 | { | 
|---|
|  | 269 | const btScalar fudge_factor = btScalar(1.05); | 
|---|
|  | 270 | btVector3 p,pp,normalC; | 
|---|
|  | 271 | const btScalar *normalR = 0; | 
|---|
|  | 272 | btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, | 
|---|
|  | 273 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; | 
|---|
|  | 274 | int i,j,invert_normal,code; | 
|---|
|  | 275 |  | 
|---|
|  | 276 | // get vector from centers of box 1 to box 2, relative to box 1 | 
|---|
|  | 277 | p = p2 - p1; | 
|---|
|  | 278 | dMULTIPLY1_331 (pp,R1,p);             // get pp = p relative to body 1 | 
|---|
|  | 279 |  | 
|---|
|  | 280 | // get side lengths / 2 | 
|---|
|  | 281 | A[0] = side1[0]*btScalar(0.5); | 
|---|
|  | 282 | A[1] = side1[1]*btScalar(0.5); | 
|---|
|  | 283 | A[2] = side1[2]*btScalar(0.5); | 
|---|
|  | 284 | B[0] = side2[0]*btScalar(0.5); | 
|---|
|  | 285 | B[1] = side2[1]*btScalar(0.5); | 
|---|
|  | 286 | B[2] = side2[2]*btScalar(0.5); | 
|---|
|  | 287 |  | 
|---|
|  | 288 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 | 
|---|
|  | 289 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); | 
|---|
|  | 290 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); | 
|---|
|  | 291 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); | 
|---|
|  | 292 |  | 
|---|
|  | 293 | Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); | 
|---|
|  | 294 | Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); | 
|---|
|  | 295 | Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); | 
|---|
|  | 296 |  | 
|---|
|  | 297 | // for all 15 possible separating axes: | 
|---|
|  | 298 | //   * see if the axis separates the boxes. if so, return 0. | 
|---|
|  | 299 | //   * find the depth of the penetration along the separating axis (s2) | 
|---|
|  | 300 | //   * if this is the largest depth so far, record it. | 
|---|
|  | 301 | // the normal vector will be set to the separating axis with the smallest | 
|---|
|  | 302 | // depth. note: normalR is set to point to a column of R1 or R2 if that is | 
|---|
|  | 303 | // the smallest depth normal so far. otherwise normalR is 0 and normalC is | 
|---|
|  | 304 | // set to a vector relative to body 1. invert_normal is 1 if the sign of | 
|---|
|  | 305 | // the normal should be flipped. | 
|---|
|  | 306 |  | 
|---|
|  | 307 | #define TST(expr1,expr2,norm,cc) \ | 
|---|
|  | 308 | s2 = btFabs(expr1) - (expr2); \ | 
|---|
|  | 309 | if (s2 > 0) return 0; \ | 
|---|
|  | 310 | if (s2 > s) { \ | 
|---|
|  | 311 | s = s2; \ | 
|---|
|  | 312 | normalR = norm; \ | 
|---|
|  | 313 | invert_normal = ((expr1) < 0); \ | 
|---|
|  | 314 | code = (cc); \ | 
|---|
|  | 315 | } | 
|---|
|  | 316 |  | 
|---|
|  | 317 | s = -dInfinity; | 
|---|
|  | 318 | invert_normal = 0; | 
|---|
|  | 319 | code = 0; | 
|---|
|  | 320 |  | 
|---|
|  | 321 | // separating axis = u1,u2,u3 | 
|---|
|  | 322 | TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); | 
|---|
|  | 323 | TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); | 
|---|
|  | 324 | TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); | 
|---|
|  | 325 |  | 
|---|
|  | 326 | // separating axis = v1,v2,v3 | 
|---|
|  | 327 | TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); | 
|---|
|  | 328 | TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); | 
|---|
|  | 329 | TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); | 
|---|
|  | 330 |  | 
|---|
|  | 331 | // note: cross product axes need to be scaled when s is computed. | 
|---|
|  | 332 | // normal (n1,n2,n3) is relative to box 1. | 
|---|
|  | 333 | #undef TST | 
|---|
|  | 334 | #define TST(expr1,expr2,n1,n2,n3,cc) \ | 
|---|
|  | 335 | s2 = btFabs(expr1) - (expr2); \ | 
|---|
|  | 336 | if (s2 > 0) return 0; \ | 
|---|
|  | 337 | l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ | 
|---|
|  | 338 | if (l > 0) { \ | 
|---|
|  | 339 | s2 /= l; \ | 
|---|
|  | 340 | if (s2*fudge_factor > s) { \ | 
|---|
|  | 341 | s = s2; \ | 
|---|
|  | 342 | normalR = 0; \ | 
|---|
|  | 343 | normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ | 
|---|
|  | 344 | invert_normal = ((expr1) < 0); \ | 
|---|
|  | 345 | code = (cc); \ | 
|---|
|  | 346 | } \ | 
|---|
|  | 347 | } | 
|---|
|  | 348 |  | 
|---|
|  | 349 | // separating axis = u1 x (v1,v2,v3) | 
|---|
|  | 350 | TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); | 
|---|
|  | 351 | TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); | 
|---|
|  | 352 | TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); | 
|---|
|  | 353 |  | 
|---|
|  | 354 | // separating axis = u2 x (v1,v2,v3) | 
|---|
|  | 355 | TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); | 
|---|
|  | 356 | TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); | 
|---|
|  | 357 | TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); | 
|---|
|  | 358 |  | 
|---|
|  | 359 | // separating axis = u3 x (v1,v2,v3) | 
|---|
|  | 360 | TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); | 
|---|
|  | 361 | TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); | 
|---|
|  | 362 | TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); | 
|---|
|  | 363 |  | 
|---|
|  | 364 | #undef TST | 
|---|
|  | 365 |  | 
|---|
|  | 366 | if (!code) return 0; | 
|---|
|  | 367 |  | 
|---|
|  | 368 | // if we get to this point, the boxes interpenetrate. compute the normal | 
|---|
|  | 369 | // in global coordinates. | 
|---|
|  | 370 | if (normalR) { | 
|---|
|  | 371 | normal[0] = normalR[0]; | 
|---|
|  | 372 | normal[1] = normalR[4]; | 
|---|
|  | 373 | normal[2] = normalR[8]; | 
|---|
|  | 374 | } | 
|---|
|  | 375 | else { | 
|---|
|  | 376 | dMULTIPLY0_331 (normal,R1,normalC); | 
|---|
|  | 377 | } | 
|---|
|  | 378 | if (invert_normal) { | 
|---|
|  | 379 | normal[0] = -normal[0]; | 
|---|
|  | 380 | normal[1] = -normal[1]; | 
|---|
|  | 381 | normal[2] = -normal[2]; | 
|---|
|  | 382 | } | 
|---|
|  | 383 | *depth = -s; | 
|---|
|  | 384 |  | 
|---|
|  | 385 | // compute contact point(s) | 
|---|
|  | 386 |  | 
|---|
|  | 387 | if (code > 6) { | 
|---|
|  | 388 | // an edge from box 1 touches an edge from box 2. | 
|---|
|  | 389 | // find a point pa on the intersecting edge of box 1 | 
|---|
|  | 390 | btVector3 pa; | 
|---|
|  | 391 | btScalar sign; | 
|---|
|  | 392 | for (i=0; i<3; i++) pa[i] = p1[i]; | 
|---|
|  | 393 | for (j=0; j<3; j++) { | 
|---|
|  | 394 | sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0); | 
|---|
|  | 395 | for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; | 
|---|
|  | 396 | } | 
|---|
|  | 397 |  | 
|---|
|  | 398 | // find a point pb on the intersecting edge of box 2 | 
|---|
|  | 399 | btVector3 pb; | 
|---|
|  | 400 | for (i=0; i<3; i++) pb[i] = p2[i]; | 
|---|
|  | 401 | for (j=0; j<3; j++) { | 
|---|
|  | 402 | sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0); | 
|---|
|  | 403 | for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; | 
|---|
|  | 404 | } | 
|---|
|  | 405 |  | 
|---|
|  | 406 | btScalar alpha,beta; | 
|---|
|  | 407 | btVector3 ua,ub; | 
|---|
|  | 408 | for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; | 
|---|
|  | 409 | for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; | 
|---|
|  | 410 |  | 
|---|
|  | 411 | dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); | 
|---|
|  | 412 | for (i=0; i<3; i++) pa[i] += ua[i]*alpha; | 
|---|
|  | 413 | for (i=0; i<3; i++) pb[i] += ub[i]*beta; | 
|---|
|  | 414 |  | 
|---|
|  | 415 | { | 
|---|
|  | 416 |  | 
|---|
|  | 417 | //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]); | 
|---|
|  | 418 | //contact[0].depth = *depth; | 
|---|
|  | 419 | btVector3 pointInWorld; | 
|---|
|  | 420 |  | 
|---|
|  | 421 | #ifdef USE_CENTER_POINT | 
|---|
|  | 422 | for (i=0; i<3; i++) | 
|---|
|  | 423 | pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5); | 
|---|
|  | 424 | output.addContactPoint(-normal,pointInWorld,-*depth); | 
|---|
|  | 425 | #else | 
|---|
|  | 426 | output.addContactPoint(-normal,pb,-*depth); | 
|---|
|  | 427 | #endif // | 
|---|
|  | 428 | *return_code = code; | 
|---|
|  | 429 | } | 
|---|
|  | 430 | return 1; | 
|---|
|  | 431 | } | 
|---|
|  | 432 |  | 
|---|
|  | 433 | // okay, we have a face-something intersection (because the separating | 
|---|
|  | 434 | // axis is perpendicular to a face). define face 'a' to be the reference | 
|---|
|  | 435 | // face (i.e. the normal vector is perpendicular to this) and face 'b' to be | 
|---|
|  | 436 | // the incident face (the closest face of the other box). | 
|---|
|  | 437 |  | 
|---|
|  | 438 | const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; | 
|---|
|  | 439 | if (code <= 3) { | 
|---|
|  | 440 | Ra = R1; | 
|---|
|  | 441 | Rb = R2; | 
|---|
|  | 442 | pa = p1; | 
|---|
|  | 443 | pb = p2; | 
|---|
|  | 444 | Sa = A; | 
|---|
|  | 445 | Sb = B; | 
|---|
|  | 446 | } | 
|---|
|  | 447 | else { | 
|---|
|  | 448 | Ra = R2; | 
|---|
|  | 449 | Rb = R1; | 
|---|
|  | 450 | pa = p2; | 
|---|
|  | 451 | pb = p1; | 
|---|
|  | 452 | Sa = B; | 
|---|
|  | 453 | Sb = A; | 
|---|
|  | 454 | } | 
|---|
|  | 455 |  | 
|---|
|  | 456 | // nr = normal vector of reference face dotted with axes of incident box. | 
|---|
|  | 457 | // anr = absolute values of nr. | 
|---|
|  | 458 | btVector3 normal2,nr,anr; | 
|---|
|  | 459 | if (code <= 3) { | 
|---|
|  | 460 | normal2[0] = normal[0]; | 
|---|
|  | 461 | normal2[1] = normal[1]; | 
|---|
|  | 462 | normal2[2] = normal[2]; | 
|---|
|  | 463 | } | 
|---|
|  | 464 | else { | 
|---|
|  | 465 | normal2[0] = -normal[0]; | 
|---|
|  | 466 | normal2[1] = -normal[1]; | 
|---|
|  | 467 | normal2[2] = -normal[2]; | 
|---|
|  | 468 | } | 
|---|
|  | 469 | dMULTIPLY1_331 (nr,Rb,normal2); | 
|---|
|  | 470 | anr[0] = btFabs (nr[0]); | 
|---|
|  | 471 | anr[1] = btFabs (nr[1]); | 
|---|
|  | 472 | anr[2] = btFabs (nr[2]); | 
|---|
|  | 473 |  | 
|---|
|  | 474 | // find the largest compontent of anr: this corresponds to the normal | 
|---|
|  | 475 | // for the indident face. the other axis numbers of the indicent face | 
|---|
|  | 476 | // are stored in a1,a2. | 
|---|
|  | 477 | int lanr,a1,a2; | 
|---|
|  | 478 | if (anr[1] > anr[0]) { | 
|---|
|  | 479 | if (anr[1] > anr[2]) { | 
|---|
|  | 480 | a1 = 0; | 
|---|
|  | 481 | lanr = 1; | 
|---|
|  | 482 | a2 = 2; | 
|---|
|  | 483 | } | 
|---|
|  | 484 | else { | 
|---|
|  | 485 | a1 = 0; | 
|---|
|  | 486 | a2 = 1; | 
|---|
|  | 487 | lanr = 2; | 
|---|
|  | 488 | } | 
|---|
|  | 489 | } | 
|---|
|  | 490 | else { | 
|---|
|  | 491 | if (anr[0] > anr[2]) { | 
|---|
|  | 492 | lanr = 0; | 
|---|
|  | 493 | a1 = 1; | 
|---|
|  | 494 | a2 = 2; | 
|---|
|  | 495 | } | 
|---|
|  | 496 | else { | 
|---|
|  | 497 | a1 = 0; | 
|---|
|  | 498 | a2 = 1; | 
|---|
|  | 499 | lanr = 2; | 
|---|
|  | 500 | } | 
|---|
|  | 501 | } | 
|---|
|  | 502 |  | 
|---|
|  | 503 | // compute center point of incident face, in reference-face coordinates | 
|---|
|  | 504 | btVector3 center; | 
|---|
|  | 505 | if (nr[lanr] < 0) { | 
|---|
|  | 506 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; | 
|---|
|  | 507 | } | 
|---|
|  | 508 | else { | 
|---|
|  | 509 | for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; | 
|---|
|  | 510 | } | 
|---|
|  | 511 |  | 
|---|
|  | 512 | // find the normal and non-normal axis numbers of the reference box | 
|---|
|  | 513 | int codeN,code1,code2; | 
|---|
|  | 514 | if (code <= 3) codeN = code-1; else codeN = code-4; | 
|---|
|  | 515 | if (codeN==0) { | 
|---|
|  | 516 | code1 = 1; | 
|---|
|  | 517 | code2 = 2; | 
|---|
|  | 518 | } | 
|---|
|  | 519 | else if (codeN==1) { | 
|---|
|  | 520 | code1 = 0; | 
|---|
|  | 521 | code2 = 2; | 
|---|
|  | 522 | } | 
|---|
|  | 523 | else { | 
|---|
|  | 524 | code1 = 0; | 
|---|
|  | 525 | code2 = 1; | 
|---|
|  | 526 | } | 
|---|
|  | 527 |  | 
|---|
|  | 528 | // find the four corners of the incident face, in reference-face coordinates | 
|---|
|  | 529 | btScalar quad[8];     // 2D coordinate of incident face (x,y pairs) | 
|---|
|  | 530 | btScalar c1,c2,m11,m12,m21,m22; | 
|---|
|  | 531 | c1 = dDOT14 (center,Ra+code1); | 
|---|
|  | 532 | c2 = dDOT14 (center,Ra+code2); | 
|---|
|  | 533 | // optimize this? - we have already computed this data above, but it is not | 
|---|
|  | 534 | // stored in an easy-to-index format. for now it's quicker just to recompute | 
|---|
|  | 535 | // the four dot products. | 
|---|
|  | 536 | m11 = dDOT44 (Ra+code1,Rb+a1); | 
|---|
|  | 537 | m12 = dDOT44 (Ra+code1,Rb+a2); | 
|---|
|  | 538 | m21 = dDOT44 (Ra+code2,Rb+a1); | 
|---|
|  | 539 | m22 = dDOT44 (Ra+code2,Rb+a2); | 
|---|
|  | 540 | { | 
|---|
|  | 541 | btScalar k1 = m11*Sb[a1]; | 
|---|
|  | 542 | btScalar k2 = m21*Sb[a1]; | 
|---|
|  | 543 | btScalar k3 = m12*Sb[a2]; | 
|---|
|  | 544 | btScalar k4 = m22*Sb[a2]; | 
|---|
|  | 545 | quad[0] = c1 - k1 - k3; | 
|---|
|  | 546 | quad[1] = c2 - k2 - k4; | 
|---|
|  | 547 | quad[2] = c1 - k1 + k3; | 
|---|
|  | 548 | quad[3] = c2 - k2 + k4; | 
|---|
|  | 549 | quad[4] = c1 + k1 + k3; | 
|---|
|  | 550 | quad[5] = c2 + k2 + k4; | 
|---|
|  | 551 | quad[6] = c1 + k1 - k3; | 
|---|
|  | 552 | quad[7] = c2 + k2 - k4; | 
|---|
|  | 553 | } | 
|---|
|  | 554 |  | 
|---|
|  | 555 | // find the size of the reference face | 
|---|
|  | 556 | btScalar rect[2]; | 
|---|
|  | 557 | rect[0] = Sa[code1]; | 
|---|
|  | 558 | rect[1] = Sa[code2]; | 
|---|
|  | 559 |  | 
|---|
|  | 560 | // intersect the incident and reference faces | 
|---|
|  | 561 | btScalar ret[16]; | 
|---|
|  | 562 | int n = intersectRectQuad2 (rect,quad,ret); | 
|---|
|  | 563 | if (n < 1) return 0;          // this should never happen | 
|---|
|  | 564 |  | 
|---|
|  | 565 | // convert the intersection points into reference-face coordinates, | 
|---|
|  | 566 | // and compute the contact position and depth for each point. only keep | 
|---|
|  | 567 | // those points that have a positive (penetrating) depth. delete points in | 
|---|
|  | 568 | // the 'ret' array as necessary so that 'point' and 'ret' correspond. | 
|---|
|  | 569 | btScalar point[3*8];          // penetrating contact points | 
|---|
|  | 570 | btScalar dep[8];                      // depths for those points | 
|---|
|  | 571 | btScalar det1 = 1.f/(m11*m22 - m12*m21); | 
|---|
|  | 572 | m11 *= det1; | 
|---|
|  | 573 | m12 *= det1; | 
|---|
|  | 574 | m21 *= det1; | 
|---|
|  | 575 | m22 *= det1; | 
|---|
|  | 576 | int cnum = 0;                 // number of penetrating contact points found | 
|---|
|  | 577 | for (j=0; j < n; j++) { | 
|---|
|  | 578 | btScalar k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); | 
|---|
|  | 579 | btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); | 
|---|
|  | 580 | for (i=0; i<3; i++) point[cnum*3+i] = | 
|---|
|  | 581 | center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; | 
|---|
|  | 582 | dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); | 
|---|
|  | 583 | if (dep[cnum] >= 0) { | 
|---|
|  | 584 | ret[cnum*2] = ret[j*2]; | 
|---|
|  | 585 | ret[cnum*2+1] = ret[j*2+1]; | 
|---|
|  | 586 | cnum++; | 
|---|
|  | 587 | } | 
|---|
|  | 588 | } | 
|---|
|  | 589 | if (cnum < 1) return 0;       // this should never happen | 
|---|
|  | 590 |  | 
|---|
|  | 591 | // we can't generate more contacts than we actually have | 
|---|
|  | 592 | if (maxc > cnum) maxc = cnum; | 
|---|
|  | 593 | if (maxc < 1) maxc = 1; | 
|---|
|  | 594 |  | 
|---|
|  | 595 | if (cnum <= maxc) { | 
|---|
|  | 596 | // we have less contacts than we need, so we use them all | 
|---|
|  | 597 | for (j=0; j < cnum; j++) { | 
|---|
|  | 598 |  | 
|---|
|  | 599 | //AddContactPoint... | 
|---|
|  | 600 |  | 
|---|
|  | 601 | //dContactGeom *con = CONTACT(contact,skip*j); | 
|---|
|  | 602 | //for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; | 
|---|
|  | 603 | //con->depth = dep[j]; | 
|---|
|  | 604 |  | 
|---|
|  | 605 | btVector3 pointInWorld; | 
|---|
|  | 606 | for (i=0; i<3; i++) | 
|---|
|  | 607 | pointInWorld[i] = point[j*3+i] + pa[i]; | 
|---|
|  | 608 | output.addContactPoint(-normal,pointInWorld,-dep[j]); | 
|---|
|  | 609 |  | 
|---|
|  | 610 | } | 
|---|
|  | 611 | } | 
|---|
|  | 612 | else { | 
|---|
|  | 613 | // we have more contacts than are wanted, some of them must be culled. | 
|---|
|  | 614 | // find the deepest point, it is always the first contact. | 
|---|
|  | 615 | int i1 = 0; | 
|---|
|  | 616 | btScalar maxdepth = dep[0]; | 
|---|
|  | 617 | for (i=1; i<cnum; i++) { | 
|---|
|  | 618 | if (dep[i] > maxdepth) { | 
|---|
|  | 619 | maxdepth = dep[i]; | 
|---|
|  | 620 | i1 = i; | 
|---|
|  | 621 | } | 
|---|
|  | 622 | } | 
|---|
|  | 623 |  | 
|---|
|  | 624 | int iret[8]; | 
|---|
|  | 625 | cullPoints2 (cnum,ret,maxc,i1,iret); | 
|---|
|  | 626 |  | 
|---|
|  | 627 | for (j=0; j < maxc; j++) { | 
|---|
|  | 628 | //      dContactGeom *con = CONTACT(contact,skip*j); | 
|---|
|  | 629 | //    for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; | 
|---|
|  | 630 | //  con->depth = dep[iret[j]]; | 
|---|
|  | 631 |  | 
|---|
|  | 632 | btVector3 posInWorld; | 
|---|
|  | 633 | for (i=0; i<3; i++) | 
|---|
|  | 634 | posInWorld[i] = point[iret[j]*3+i] + pa[i]; | 
|---|
|  | 635 | output.addContactPoint(-normal,posInWorld,-dep[iret[j]]); | 
|---|
|  | 636 | } | 
|---|
|  | 637 | cnum = maxc; | 
|---|
|  | 638 | } | 
|---|
|  | 639 |  | 
|---|
|  | 640 | *return_code = code; | 
|---|
|  | 641 | return cnum; | 
|---|
|  | 642 | } | 
|---|
|  | 643 |  | 
|---|
|  | 644 | void    btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/) | 
|---|
|  | 645 | { | 
|---|
|  | 646 |  | 
|---|
|  | 647 | const btTransform& transformA = input.m_transformA; | 
|---|
|  | 648 | const btTransform& transformB = input.m_transformB; | 
|---|
|  | 649 |  | 
|---|
|  | 650 | int skip = 0; | 
|---|
|  | 651 | dContactGeom *contact = 0; | 
|---|
|  | 652 |  | 
|---|
|  | 653 | dMatrix3 R1; | 
|---|
|  | 654 | dMatrix3 R2; | 
|---|
|  | 655 |  | 
|---|
|  | 656 | for (int j=0;j<3;j++) | 
|---|
|  | 657 | { | 
|---|
|  | 658 | R1[0+4*j] = transformA.getBasis()[j].x(); | 
|---|
|  | 659 | R2[0+4*j] = transformB.getBasis()[j].x(); | 
|---|
|  | 660 |  | 
|---|
|  | 661 | R1[1+4*j] = transformA.getBasis()[j].y(); | 
|---|
|  | 662 | R2[1+4*j] = transformB.getBasis()[j].y(); | 
|---|
|  | 663 |  | 
|---|
|  | 664 |  | 
|---|
|  | 665 | R1[2+4*j] = transformA.getBasis()[j].z(); | 
|---|
|  | 666 | R2[2+4*j] = transformB.getBasis()[j].z(); | 
|---|
|  | 667 |  | 
|---|
|  | 668 | } | 
|---|
|  | 669 |  | 
|---|
|  | 670 |  | 
|---|
|  | 671 |  | 
|---|
|  | 672 | btVector3 normal; | 
|---|
|  | 673 | btScalar depth; | 
|---|
|  | 674 | int return_code; | 
|---|
|  | 675 | int maxc = 4; | 
|---|
|  | 676 |  | 
|---|
|  | 677 |  | 
|---|
|  | 678 | dBoxBox2 (transformA.getOrigin(), | 
|---|
|  | 679 | R1, | 
|---|
|  | 680 | 2.f*m_box1->getHalfExtentsWithMargin(), | 
|---|
|  | 681 | transformB.getOrigin(), | 
|---|
|  | 682 | R2, | 
|---|
|  | 683 | 2.f*m_box2->getHalfExtentsWithMargin(), | 
|---|
|  | 684 | normal, &depth, &return_code, | 
|---|
|  | 685 | maxc, contact, skip, | 
|---|
|  | 686 | output | 
|---|
|  | 687 | ); | 
|---|
|  | 688 |  | 
|---|
|  | 689 | } | 
|---|