| 1 | /* | 
|---|
| 2 | ----------------------------------------------------------------------------- | 
|---|
| 3 | This source file is part of OGRE | 
|---|
| 4 |     (Object-oriented Graphics Rendering Engine) | 
|---|
| 5 | For the latest info, see http://www.ogre3d.org/ | 
|---|
| 6 |  | 
|---|
| 7 | Copyright (c) 2000-2006 Torus Knot Software Ltd | 
|---|
| 8 | Also see acknowledgements in Readme.html | 
|---|
| 9 |  | 
|---|
| 10 | This program is free software; you can redistribute it and/or modify it under | 
|---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software | 
|---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later | 
|---|
| 13 | version. | 
|---|
| 14 |  | 
|---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. | 
|---|
| 18 |  | 
|---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with | 
|---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
|---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to | 
|---|
| 22 | http://www.gnu.org/copyleft/lesser.txt. | 
|---|
| 23 |  | 
|---|
| 24 | You may alternatively use this source under the terms of a specific version of | 
|---|
| 25 | the OGRE Unrestricted License provided you have obtained such a license from | 
|---|
| 26 | Torus Knot Software Ltd. | 
|---|
| 27 | ----------------------------------------------------------------------------- | 
|---|
| 28 | */ | 
|---|
| 29 | #ifndef __Vector3_H__ | 
|---|
| 30 | #define __Vector3_H__ | 
|---|
| 31 |  | 
|---|
| 32 | #include "OgrePrerequisites.h" | 
|---|
| 33 | #include "OgreMath.h" | 
|---|
| 34 | #include "OgreQuaternion.h" | 
|---|
| 35 | #include <ostream> | 
|---|
| 36 |  | 
|---|
| 37 | namespace Ogre | 
|---|
| 38 | { | 
|---|
| 39 |  | 
|---|
| 40 |     /** Standard 3-dimensional vector. | 
|---|
| 41 |         @remarks | 
|---|
| 42 |             A direction in 3D space represented as distances along the 3 | 
|---|
| 43 |             orthogonal axes (x, y, z). Note that positions, directions and | 
|---|
| 44 |             scaling factors can be represented by a vector, depending on how | 
|---|
| 45 |             you interpret the values. | 
|---|
| 46 |     */ | 
|---|
| 47 |     class _OgreExport Vector3 | 
|---|
| 48 |     { | 
|---|
| 49 |     public: | 
|---|
| 50 |                 Real x, y, z; | 
|---|
| 51 |  | 
|---|
| 52 |     public: | 
|---|
| 53 |         inline Vector3() | 
|---|
| 54 |         { | 
|---|
| 55 |         } | 
|---|
| 56 |  | 
|---|
| 57 |         inline Vector3( const Real fX, const Real fY, const Real fZ ) | 
|---|
| 58 |             : x( fX ), y( fY ), z( fZ ) | 
|---|
| 59 |         { | 
|---|
| 60 |         } | 
|---|
| 61 |  | 
|---|
| 62 |         inline explicit Vector3( const Real afCoordinate[3] ) | 
|---|
| 63 |             : x( afCoordinate[0] ), | 
|---|
| 64 |               y( afCoordinate[1] ), | 
|---|
| 65 |               z( afCoordinate[2] ) | 
|---|
| 66 |         { | 
|---|
| 67 |         } | 
|---|
| 68 |  | 
|---|
| 69 |         inline explicit Vector3( const int afCoordinate[3] ) | 
|---|
| 70 |         { | 
|---|
| 71 |             x = (Real)afCoordinate[0]; | 
|---|
| 72 |             y = (Real)afCoordinate[1]; | 
|---|
| 73 |             z = (Real)afCoordinate[2]; | 
|---|
| 74 |         } | 
|---|
| 75 |  | 
|---|
| 76 |         inline explicit Vector3( Real* const r ) | 
|---|
| 77 |             : x( r[0] ), y( r[1] ), z( r[2] ) | 
|---|
| 78 |         { | 
|---|
| 79 |         } | 
|---|
| 80 |  | 
|---|
| 81 |         inline explicit Vector3( const Real scaler ) | 
|---|
| 82 |             : x( scaler ) | 
|---|
| 83 |             , y( scaler ) | 
|---|
| 84 |             , z( scaler ) | 
|---|
| 85 |         { | 
|---|
| 86 |         } | 
|---|
| 87 |  | 
|---|
| 88 |  | 
|---|
| 89 |                 inline Real operator [] ( const size_t i ) const | 
|---|
| 90 |         { | 
|---|
| 91 |             assert( i < 3 ); | 
|---|
| 92 |  | 
|---|
| 93 |             return *(&x+i); | 
|---|
| 94 |         } | 
|---|
| 95 |  | 
|---|
| 96 |                 inline Real& operator [] ( const size_t i ) | 
|---|
| 97 |         { | 
|---|
| 98 |             assert( i < 3 ); | 
|---|
| 99 |  | 
|---|
| 100 |             return *(&x+i); | 
|---|
| 101 |         } | 
|---|
| 102 |                 /// Pointer accessor for direct copying | 
|---|
| 103 |                 inline Real* ptr() | 
|---|
| 104 |                 { | 
|---|
| 105 |                         return &x; | 
|---|
| 106 |                 } | 
|---|
| 107 |                 /// Pointer accessor for direct copying | 
|---|
| 108 |                 inline const Real* ptr() const | 
|---|
| 109 |                 { | 
|---|
| 110 |                         return &x; | 
|---|
| 111 |                 } | 
|---|
| 112 |  | 
|---|
| 113 |         /** Assigns the value of the other vector. | 
|---|
| 114 |             @param | 
|---|
| 115 |                 rkVector The other vector | 
|---|
| 116 |         */ | 
|---|
| 117 |         inline Vector3& operator = ( const Vector3& rkVector ) | 
|---|
| 118 |         { | 
|---|
| 119 |             x = rkVector.x; | 
|---|
| 120 |             y = rkVector.y; | 
|---|
| 121 |             z = rkVector.z; | 
|---|
| 122 |  | 
|---|
| 123 |             return *this; | 
|---|
| 124 |         } | 
|---|
| 125 |  | 
|---|
| 126 |         inline Vector3& operator = ( const Real fScaler ) | 
|---|
| 127 |         { | 
|---|
| 128 |             x = fScaler; | 
|---|
| 129 |             y = fScaler; | 
|---|
| 130 |             z = fScaler; | 
|---|
| 131 |  | 
|---|
| 132 |             return *this; | 
|---|
| 133 |         } | 
|---|
| 134 |  | 
|---|
| 135 |         inline bool operator == ( const Vector3& rkVector ) const | 
|---|
| 136 |         { | 
|---|
| 137 |             return ( x == rkVector.x && y == rkVector.y && z == rkVector.z ); | 
|---|
| 138 |         } | 
|---|
| 139 |  | 
|---|
| 140 |         inline bool operator != ( const Vector3& rkVector ) const | 
|---|
| 141 |         { | 
|---|
| 142 |             return ( x != rkVector.x || y != rkVector.y || z != rkVector.z ); | 
|---|
| 143 |         } | 
|---|
| 144 |  | 
|---|
| 145 |         // arithmetic operations | 
|---|
| 146 |         inline Vector3 operator + ( const Vector3& rkVector ) const | 
|---|
| 147 |         { | 
|---|
| 148 |             return Vector3( | 
|---|
| 149 |                 x + rkVector.x, | 
|---|
| 150 |                 y + rkVector.y, | 
|---|
| 151 |                 z + rkVector.z); | 
|---|
| 152 |         } | 
|---|
| 153 |  | 
|---|
| 154 |         inline Vector3 operator - ( const Vector3& rkVector ) const | 
|---|
| 155 |         { | 
|---|
| 156 |             return Vector3( | 
|---|
| 157 |                 x - rkVector.x, | 
|---|
| 158 |                 y - rkVector.y, | 
|---|
| 159 |                 z - rkVector.z); | 
|---|
| 160 |         } | 
|---|
| 161 |  | 
|---|
| 162 |         inline Vector3 operator * ( const Real fScalar ) const | 
|---|
| 163 |         { | 
|---|
| 164 |             return Vector3( | 
|---|
| 165 |                 x * fScalar, | 
|---|
| 166 |                 y * fScalar, | 
|---|
| 167 |                 z * fScalar); | 
|---|
| 168 |         } | 
|---|
| 169 |  | 
|---|
| 170 |         inline Vector3 operator * ( const Vector3& rhs) const | 
|---|
| 171 |         { | 
|---|
| 172 |             return Vector3( | 
|---|
| 173 |                 x * rhs.x, | 
|---|
| 174 |                 y * rhs.y, | 
|---|
| 175 |                 z * rhs.z); | 
|---|
| 176 |         } | 
|---|
| 177 |  | 
|---|
| 178 |         inline Vector3 operator / ( const Real fScalar ) const | 
|---|
| 179 |         { | 
|---|
| 180 |             assert( fScalar != 0.0 ); | 
|---|
| 181 |  | 
|---|
| 182 |             Real fInv = 1.0 / fScalar; | 
|---|
| 183 |  | 
|---|
| 184 |             return Vector3( | 
|---|
| 185 |                 x * fInv, | 
|---|
| 186 |                 y * fInv, | 
|---|
| 187 |                 z * fInv); | 
|---|
| 188 |         } | 
|---|
| 189 |  | 
|---|
| 190 |         inline Vector3 operator / ( const Vector3& rhs) const | 
|---|
| 191 |         { | 
|---|
| 192 |             return Vector3( | 
|---|
| 193 |                 x / rhs.x, | 
|---|
| 194 |                 y / rhs.y, | 
|---|
| 195 |                 z / rhs.z); | 
|---|
| 196 |         } | 
|---|
| 197 |  | 
|---|
| 198 |         inline const Vector3& operator + () const | 
|---|
| 199 |         { | 
|---|
| 200 |             return *this; | 
|---|
| 201 |         } | 
|---|
| 202 |  | 
|---|
| 203 |         inline Vector3 operator - () const | 
|---|
| 204 |         { | 
|---|
| 205 |             return Vector3(-x, -y, -z); | 
|---|
| 206 |         } | 
|---|
| 207 |  | 
|---|
| 208 |         // overloaded operators to help Vector3 | 
|---|
| 209 |         inline friend Vector3 operator * ( const Real fScalar, const Vector3& rkVector ) | 
|---|
| 210 |         { | 
|---|
| 211 |             return Vector3( | 
|---|
| 212 |                 fScalar * rkVector.x, | 
|---|
| 213 |                 fScalar * rkVector.y, | 
|---|
| 214 |                 fScalar * rkVector.z); | 
|---|
| 215 |         } | 
|---|
| 216 |  | 
|---|
| 217 |         inline friend Vector3 operator / ( const Real fScalar, const Vector3& rkVector ) | 
|---|
| 218 |         { | 
|---|
| 219 |             return Vector3( | 
|---|
| 220 |                 fScalar / rkVector.x, | 
|---|
| 221 |                 fScalar / rkVector.y, | 
|---|
| 222 |                 fScalar / rkVector.z); | 
|---|
| 223 |         } | 
|---|
| 224 |  | 
|---|
| 225 |         inline friend Vector3 operator + (const Vector3& lhs, const Real rhs) | 
|---|
| 226 |         { | 
|---|
| 227 |             return Vector3( | 
|---|
| 228 |                 lhs.x + rhs, | 
|---|
| 229 |                 lhs.y + rhs, | 
|---|
| 230 |                 lhs.z + rhs); | 
|---|
| 231 |         } | 
|---|
| 232 |  | 
|---|
| 233 |         inline friend Vector3 operator + (const Real lhs, const Vector3& rhs) | 
|---|
| 234 |         { | 
|---|
| 235 |             return Vector3( | 
|---|
| 236 |                 lhs + rhs.x, | 
|---|
| 237 |                 lhs + rhs.y, | 
|---|
| 238 |                 lhs + rhs.z); | 
|---|
| 239 |         } | 
|---|
| 240 |  | 
|---|
| 241 |         inline friend Vector3 operator - (const Vector3& lhs, const Real rhs) | 
|---|
| 242 |         { | 
|---|
| 243 |             return Vector3( | 
|---|
| 244 |                 lhs.x - rhs, | 
|---|
| 245 |                 lhs.y - rhs, | 
|---|
| 246 |                 lhs.z - rhs); | 
|---|
| 247 |         } | 
|---|
| 248 |  | 
|---|
| 249 |         inline friend Vector3 operator - (const Real lhs, const Vector3& rhs) | 
|---|
| 250 |         { | 
|---|
| 251 |             return Vector3( | 
|---|
| 252 |                 lhs - rhs.x, | 
|---|
| 253 |                 lhs - rhs.y, | 
|---|
| 254 |                 lhs - rhs.z); | 
|---|
| 255 |         } | 
|---|
| 256 |  | 
|---|
| 257 |         // arithmetic updates | 
|---|
| 258 |         inline Vector3& operator += ( const Vector3& rkVector ) | 
|---|
| 259 |         { | 
|---|
| 260 |             x += rkVector.x; | 
|---|
| 261 |             y += rkVector.y; | 
|---|
| 262 |             z += rkVector.z; | 
|---|
| 263 |  | 
|---|
| 264 |             return *this; | 
|---|
| 265 |         } | 
|---|
| 266 |  | 
|---|
| 267 |         inline Vector3& operator += ( const Real fScalar ) | 
|---|
| 268 |         { | 
|---|
| 269 |             x += fScalar; | 
|---|
| 270 |             y += fScalar; | 
|---|
| 271 |             z += fScalar; | 
|---|
| 272 |             return *this; | 
|---|
| 273 |         } | 
|---|
| 274 |  | 
|---|
| 275 |         inline Vector3& operator -= ( const Vector3& rkVector ) | 
|---|
| 276 |         { | 
|---|
| 277 |             x -= rkVector.x; | 
|---|
| 278 |             y -= rkVector.y; | 
|---|
| 279 |             z -= rkVector.z; | 
|---|
| 280 |  | 
|---|
| 281 |             return *this; | 
|---|
| 282 |         } | 
|---|
| 283 |  | 
|---|
| 284 |         inline Vector3& operator -= ( const Real fScalar ) | 
|---|
| 285 |         { | 
|---|
| 286 |             x -= fScalar; | 
|---|
| 287 |             y -= fScalar; | 
|---|
| 288 |             z -= fScalar; | 
|---|
| 289 |             return *this; | 
|---|
| 290 |         } | 
|---|
| 291 |  | 
|---|
| 292 |         inline Vector3& operator *= ( const Real fScalar ) | 
|---|
| 293 |         { | 
|---|
| 294 |             x *= fScalar; | 
|---|
| 295 |             y *= fScalar; | 
|---|
| 296 |             z *= fScalar; | 
|---|
| 297 |             return *this; | 
|---|
| 298 |         } | 
|---|
| 299 |  | 
|---|
| 300 |         inline Vector3& operator *= ( const Vector3& rkVector ) | 
|---|
| 301 |         { | 
|---|
| 302 |             x *= rkVector.x; | 
|---|
| 303 |             y *= rkVector.y; | 
|---|
| 304 |             z *= rkVector.z; | 
|---|
| 305 |  | 
|---|
| 306 |             return *this; | 
|---|
| 307 |         } | 
|---|
| 308 |  | 
|---|
| 309 |         inline Vector3& operator /= ( const Real fScalar ) | 
|---|
| 310 |         { | 
|---|
| 311 |             assert( fScalar != 0.0 ); | 
|---|
| 312 |  | 
|---|
| 313 |             Real fInv = 1.0 / fScalar; | 
|---|
| 314 |  | 
|---|
| 315 |             x *= fInv; | 
|---|
| 316 |             y *= fInv; | 
|---|
| 317 |             z *= fInv; | 
|---|
| 318 |  | 
|---|
| 319 |             return *this; | 
|---|
| 320 |         } | 
|---|
| 321 |  | 
|---|
| 322 |         inline Vector3& operator /= ( const Vector3& rkVector ) | 
|---|
| 323 |         { | 
|---|
| 324 |             x /= rkVector.x; | 
|---|
| 325 |             y /= rkVector.y; | 
|---|
| 326 |             z /= rkVector.z; | 
|---|
| 327 |  | 
|---|
| 328 |             return *this; | 
|---|
| 329 |         } | 
|---|
| 330 |  | 
|---|
| 331 |  | 
|---|
| 332 |         /** Returns the length (magnitude) of the vector. | 
|---|
| 333 |             @warning | 
|---|
| 334 |                 This operation requires a square root and is expensive in | 
|---|
| 335 |                 terms of CPU operations. If you don't need to know the exact | 
|---|
| 336 |                 length (e.g. for just comparing lengths) use squaredLength() | 
|---|
| 337 |                 instead. | 
|---|
| 338 |         */ | 
|---|
| 339 |         inline Real length () const | 
|---|
| 340 |         { | 
|---|
| 341 |             return Math::Sqrt( x * x + y * y + z * z ); | 
|---|
| 342 |         } | 
|---|
| 343 |  | 
|---|
| 344 |         /** Returns the square of the length(magnitude) of the vector. | 
|---|
| 345 |             @remarks | 
|---|
| 346 |                 This  method is for efficiency - calculating the actual | 
|---|
| 347 |                 length of a vector requires a square root, which is expensive | 
|---|
| 348 |                 in terms of the operations required. This method returns the | 
|---|
| 349 |                 square of the length of the vector, i.e. the same as the | 
|---|
| 350 |                 length but before the square root is taken. Use this if you | 
|---|
| 351 |                 want to find the longest / shortest vector without incurring | 
|---|
| 352 |                 the square root. | 
|---|
| 353 |         */ | 
|---|
| 354 |         inline Real squaredLength () const | 
|---|
| 355 |         { | 
|---|
| 356 |             return x * x + y * y + z * z; | 
|---|
| 357 |         } | 
|---|
| 358 |  | 
|---|
| 359 |         /** Returns the distance to another vector. | 
|---|
| 360 |             @warning | 
|---|
| 361 |                 This operation requires a square root and is expensive in | 
|---|
| 362 |                 terms of CPU operations. If you don't need to know the exact | 
|---|
| 363 |                 distance (e.g. for just comparing distances) use squaredDistance() | 
|---|
| 364 |                 instead. | 
|---|
| 365 |         */ | 
|---|
| 366 |         inline Real distance(const Vector3& rhs) const | 
|---|
| 367 |         { | 
|---|
| 368 |             return (*this - rhs).length(); | 
|---|
| 369 |         } | 
|---|
| 370 |  | 
|---|
| 371 |         /** Returns the square of the distance to another vector. | 
|---|
| 372 |             @remarks | 
|---|
| 373 |                 This method is for efficiency - calculating the actual | 
|---|
| 374 |                 distance to another vector requires a square root, which is | 
|---|
| 375 |                 expensive in terms of the operations required. This method | 
|---|
| 376 |                 returns the square of the distance to another vector, i.e. | 
|---|
| 377 |                 the same as the distance but before the square root is taken. | 
|---|
| 378 |                 Use this if you want to find the longest / shortest distance | 
|---|
| 379 |                 without incurring the square root. | 
|---|
| 380 |         */ | 
|---|
| 381 |         inline Real squaredDistance(const Vector3& rhs) const | 
|---|
| 382 |         { | 
|---|
| 383 |             return (*this - rhs).squaredLength(); | 
|---|
| 384 |         } | 
|---|
| 385 |  | 
|---|
| 386 |         /** Calculates the dot (scalar) product of this vector with another. | 
|---|
| 387 |             @remarks | 
|---|
| 388 |                 The dot product can be used to calculate the angle between 2 | 
|---|
| 389 |                 vectors. If both are unit vectors, the dot product is the | 
|---|
| 390 |                 cosine of the angle; otherwise the dot product must be | 
|---|
| 391 |                 divided by the product of the lengths of both vectors to get | 
|---|
| 392 |                 the cosine of the angle. This result can further be used to | 
|---|
| 393 |                 calculate the distance of a point from a plane. | 
|---|
| 394 |             @param | 
|---|
| 395 |                 vec Vector with which to calculate the dot product (together | 
|---|
| 396 |                 with this one). | 
|---|
| 397 |             @returns | 
|---|
| 398 |                 A float representing the dot product value. | 
|---|
| 399 |         */ | 
|---|
| 400 |         inline Real dotProduct(const Vector3& vec) const | 
|---|
| 401 |         { | 
|---|
| 402 |             return x * vec.x + y * vec.y + z * vec.z; | 
|---|
| 403 |         } | 
|---|
| 404 |  | 
|---|
| 405 |         /** Calculates the absolute dot (scalar) product of this vector with another. | 
|---|
| 406 |             @remarks | 
|---|
| 407 |                 This function work similar dotProduct, except it use absolute value | 
|---|
| 408 |                 of each component of the vector to computing. | 
|---|
| 409 |             @param | 
|---|
| 410 |                 vec Vector with which to calculate the absolute dot product (together | 
|---|
| 411 |                 with this one). | 
|---|
| 412 |             @returns | 
|---|
| 413 |                 A Real representing the absolute dot product value. | 
|---|
| 414 |         */ | 
|---|
| 415 |         inline Real absDotProduct(const Vector3& vec) const | 
|---|
| 416 |         { | 
|---|
| 417 |             return Math::Abs(x * vec.x) + Math::Abs(y * vec.y) + Math::Abs(z * vec.z); | 
|---|
| 418 |         } | 
|---|
| 419 |  | 
|---|
| 420 |         /** Normalises the vector. | 
|---|
| 421 |             @remarks | 
|---|
| 422 |                 This method normalises the vector such that it's | 
|---|
| 423 |                 length / magnitude is 1. The result is called a unit vector. | 
|---|
| 424 |             @note | 
|---|
| 425 |                 This function will not crash for zero-sized vectors, but there | 
|---|
| 426 |                 will be no changes made to their components. | 
|---|
| 427 |             @returns The previous length of the vector. | 
|---|
| 428 |         */ | 
|---|
| 429 |         inline Real normalise() | 
|---|
| 430 |         { | 
|---|
| 431 |             Real fLength = Math::Sqrt( x * x + y * y + z * z ); | 
|---|
| 432 |  | 
|---|
| 433 |             // Will also work for zero-sized vectors, but will change nothing | 
|---|
| 434 |             if ( fLength > 1e-08 ) | 
|---|
| 435 |             { | 
|---|
| 436 |                 Real fInvLength = 1.0 / fLength; | 
|---|
| 437 |                 x *= fInvLength; | 
|---|
| 438 |                 y *= fInvLength; | 
|---|
| 439 |                 z *= fInvLength; | 
|---|
| 440 |             } | 
|---|
| 441 |  | 
|---|
| 442 |             return fLength; | 
|---|
| 443 |         } | 
|---|
| 444 |  | 
|---|
| 445 |         /** Calculates the cross-product of 2 vectors, i.e. the vector that | 
|---|
| 446 |             lies perpendicular to them both. | 
|---|
| 447 |             @remarks | 
|---|
| 448 |                 The cross-product is normally used to calculate the normal | 
|---|
| 449 |                 vector of a plane, by calculating the cross-product of 2 | 
|---|
| 450 |                 non-equivalent vectors which lie on the plane (e.g. 2 edges | 
|---|
| 451 |                 of a triangle). | 
|---|
| 452 |             @param | 
|---|
| 453 |                 vec Vector which, together with this one, will be used to | 
|---|
| 454 |                 calculate the cross-product. | 
|---|
| 455 |             @returns | 
|---|
| 456 |                 A vector which is the result of the cross-product. This | 
|---|
| 457 |                 vector will <b>NOT</b> be normalised, to maximise efficiency | 
|---|
| 458 |                 - call Vector3::normalise on the result if you wish this to | 
|---|
| 459 |                 be done. As for which side the resultant vector will be on, the | 
|---|
| 460 |                 returned vector will be on the side from which the arc from 'this' | 
|---|
| 461 |                 to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z) | 
|---|
| 462 |                 = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X. | 
|---|
| 463 |                                 This is because OGRE uses a right-handed coordinate system. | 
|---|
| 464 |             @par | 
|---|
| 465 |                 For a clearer explanation, look a the left and the bottom edges | 
|---|
| 466 |                 of your monitor's screen. Assume that the first vector is the | 
|---|
| 467 |                 left edge and the second vector is the bottom edge, both of | 
|---|
| 468 |                 them starting from the lower-left corner of the screen. The | 
|---|
| 469 |                 resulting vector is going to be perpendicular to both of them | 
|---|
| 470 |                 and will go <i>inside</i> the screen, towards the cathode tube | 
|---|
| 471 |                 (assuming you're using a CRT monitor, of course). | 
|---|
| 472 |         */ | 
|---|
| 473 |         inline Vector3 crossProduct( const Vector3& rkVector ) const | 
|---|
| 474 |         { | 
|---|
| 475 |             return Vector3( | 
|---|
| 476 |                 y * rkVector.z - z * rkVector.y, | 
|---|
| 477 |                 z * rkVector.x - x * rkVector.z, | 
|---|
| 478 |                 x * rkVector.y - y * rkVector.x); | 
|---|
| 479 |         } | 
|---|
| 480 |  | 
|---|
| 481 |         /** Returns a vector at a point half way between this and the passed | 
|---|
| 482 |             in vector. | 
|---|
| 483 |         */ | 
|---|
| 484 |         inline Vector3 midPoint( const Vector3& vec ) const | 
|---|
| 485 |         { | 
|---|
| 486 |             return Vector3( | 
|---|
| 487 |                 ( x + vec.x ) * 0.5, | 
|---|
| 488 |                 ( y + vec.y ) * 0.5, | 
|---|
| 489 |                 ( z + vec.z ) * 0.5 ); | 
|---|
| 490 |         } | 
|---|
| 491 |  | 
|---|
| 492 |         /** Returns true if the vector's scalar components are all greater | 
|---|
| 493 |             that the ones of the vector it is compared against. | 
|---|
| 494 |         */ | 
|---|
| 495 |         inline bool operator < ( const Vector3& rhs ) const | 
|---|
| 496 |         { | 
|---|
| 497 |             if( x < rhs.x && y < rhs.y && z < rhs.z ) | 
|---|
| 498 |                 return true; | 
|---|
| 499 |             return false; | 
|---|
| 500 |         } | 
|---|
| 501 |  | 
|---|
| 502 |         /** Returns true if the vector's scalar components are all smaller | 
|---|
| 503 |             that the ones of the vector it is compared against. | 
|---|
| 504 |         */ | 
|---|
| 505 |         inline bool operator > ( const Vector3& rhs ) const | 
|---|
| 506 |         { | 
|---|
| 507 |             if( x > rhs.x && y > rhs.y && z > rhs.z ) | 
|---|
| 508 |                 return true; | 
|---|
| 509 |             return false; | 
|---|
| 510 |         } | 
|---|
| 511 |  | 
|---|
| 512 |         /** Sets this vector's components to the minimum of its own and the | 
|---|
| 513 |             ones of the passed in vector. | 
|---|
| 514 |             @remarks | 
|---|
| 515 |                 'Minimum' in this case means the combination of the lowest | 
|---|
| 516 |                 value of x, y and z from both vectors. Lowest is taken just | 
|---|
| 517 |                 numerically, not magnitude, so -1 < 0. | 
|---|
| 518 |         */ | 
|---|
| 519 |         inline void makeFloor( const Vector3& cmp ) | 
|---|
| 520 |         { | 
|---|
| 521 |             if( cmp.x < x ) x = cmp.x; | 
|---|
| 522 |             if( cmp.y < y ) y = cmp.y; | 
|---|
| 523 |             if( cmp.z < z ) z = cmp.z; | 
|---|
| 524 |         } | 
|---|
| 525 |  | 
|---|
| 526 |         /** Sets this vector's components to the maximum of its own and the | 
|---|
| 527 |             ones of the passed in vector. | 
|---|
| 528 |             @remarks | 
|---|
| 529 |                 'Maximum' in this case means the combination of the highest | 
|---|
| 530 |                 value of x, y and z from both vectors. Highest is taken just | 
|---|
| 531 |                 numerically, not magnitude, so 1 > -3. | 
|---|
| 532 |         */ | 
|---|
| 533 |         inline void makeCeil( const Vector3& cmp ) | 
|---|
| 534 |         { | 
|---|
| 535 |             if( cmp.x > x ) x = cmp.x; | 
|---|
| 536 |             if( cmp.y > y ) y = cmp.y; | 
|---|
| 537 |             if( cmp.z > z ) z = cmp.z; | 
|---|
| 538 |         } | 
|---|
| 539 |  | 
|---|
| 540 |         /** Generates a vector perpendicular to this vector (eg an 'up' vector). | 
|---|
| 541 |             @remarks | 
|---|
| 542 |                 This method will return a vector which is perpendicular to this | 
|---|
| 543 |                 vector. There are an infinite number of possibilities but this | 
|---|
| 544 |                 method will guarantee to generate one of them. If you need more | 
|---|
| 545 |                 control you should use the Quaternion class. | 
|---|
| 546 |         */ | 
|---|
| 547 |         inline Vector3 perpendicular(void) const | 
|---|
| 548 |         { | 
|---|
| 549 |             static const Real fSquareZero = 1e-06 * 1e-06; | 
|---|
| 550 |  | 
|---|
| 551 |             Vector3 perp = this->crossProduct( Vector3::UNIT_X ); | 
|---|
| 552 |  | 
|---|
| 553 |             // Check length | 
|---|
| 554 |             if( perp.squaredLength() < fSquareZero ) | 
|---|
| 555 |             { | 
|---|
| 556 |                 /* This vector is the Y axis multiplied by a scalar, so we have | 
|---|
| 557 |                    to use another axis. | 
|---|
| 558 |                 */ | 
|---|
| 559 |                 perp = this->crossProduct( Vector3::UNIT_Y ); | 
|---|
| 560 |             } | 
|---|
| 561 |                         perp.normalise(); | 
|---|
| 562 |  | 
|---|
| 563 |             return perp; | 
|---|
| 564 |         } | 
|---|
| 565 |         /** Generates a new random vector which deviates from this vector by a | 
|---|
| 566 |             given angle in a random direction. | 
|---|
| 567 |             @remarks | 
|---|
| 568 |                 This method assumes that the random number generator has already | 
|---|
| 569 |                 been seeded appropriately. | 
|---|
| 570 |             @param | 
|---|
| 571 |                 angle The angle at which to deviate | 
|---|
| 572 |             @param | 
|---|
| 573 |                 up Any vector perpendicular to this one (which could generated | 
|---|
| 574 |                 by cross-product of this vector and any other non-colinear | 
|---|
| 575 |                 vector). If you choose not to provide this the function will | 
|---|
| 576 |                 derive one on it's own, however if you provide one yourself the | 
|---|
| 577 |                 function will be faster (this allows you to reuse up vectors if | 
|---|
| 578 |                 you call this method more than once) | 
|---|
| 579 |             @returns | 
|---|
| 580 |                 A random vector which deviates from this vector by angle. This | 
|---|
| 581 |                 vector will not be normalised, normalise it if you wish | 
|---|
| 582 |                 afterwards. | 
|---|
| 583 |         */ | 
|---|
| 584 |         inline Vector3 randomDeviant( | 
|---|
| 585 |             const Radian& angle, | 
|---|
| 586 |             const Vector3& up = Vector3::ZERO ) const | 
|---|
| 587 |         { | 
|---|
| 588 |             Vector3 newUp; | 
|---|
| 589 |  | 
|---|
| 590 |             if (up == Vector3::ZERO) | 
|---|
| 591 |             { | 
|---|
| 592 |                 // Generate an up vector | 
|---|
| 593 |                 newUp = this->perpendicular(); | 
|---|
| 594 |             } | 
|---|
| 595 |             else | 
|---|
| 596 |             { | 
|---|
| 597 |                 newUp = up; | 
|---|
| 598 |             } | 
|---|
| 599 |  | 
|---|
| 600 |             // Rotate up vector by random amount around this | 
|---|
| 601 |             Quaternion q; | 
|---|
| 602 |             q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this ); | 
|---|
| 603 |             newUp = q * newUp; | 
|---|
| 604 |  | 
|---|
| 605 |             // Finally rotate this by given angle around randomised up | 
|---|
| 606 |             q.FromAngleAxis( angle, newUp ); | 
|---|
| 607 |             return q * (*this); | 
|---|
| 608 |         } | 
|---|
| 609 |  | 
|---|
| 610 |                 /** Gets the angle between 2 vectors. | 
|---|
| 611 |                 @remarks | 
|---|
| 612 |                         Vectors do not have to be unit-length but must represent directions. | 
|---|
| 613 |                 */ | 
|---|
| 614 |                 inline Radian angleBetween(const Vector3& dest) | 
|---|
| 615 |                 { | 
|---|
| 616 |                         Real lenProduct = length() * dest.length(); | 
|---|
| 617 |  | 
|---|
| 618 |                         // Divide by zero check | 
|---|
| 619 |                         if(lenProduct < 1e-6f) | 
|---|
| 620 |                                 lenProduct = 1e-6f; | 
|---|
| 621 |  | 
|---|
| 622 |                         Real f = dotProduct(dest) / lenProduct; | 
|---|
| 623 |  | 
|---|
| 624 |                         f = Math::Clamp(f, (Real)-1.0, (Real)1.0); | 
|---|
| 625 |                         return Math::ACos(f); | 
|---|
| 626 |  | 
|---|
| 627 |                 } | 
|---|
| 628 |         /** Gets the shortest arc quaternion to rotate this vector to the destination | 
|---|
| 629 |             vector. | 
|---|
| 630 |         @remarks | 
|---|
| 631 |             If you call this with a dest vector that is close to the inverse | 
|---|
| 632 |             of this vector, we will rotate 180 degrees around the 'fallbackAxis' | 
|---|
| 633 |                         (if specified, or a generated axis if not) since in this case | 
|---|
| 634 |                         ANY axis of rotation is valid. | 
|---|
| 635 |         */ | 
|---|
| 636 |         Quaternion getRotationTo(const Vector3& dest, | 
|---|
| 637 |                         const Vector3& fallbackAxis = Vector3::ZERO) const | 
|---|
| 638 |         { | 
|---|
| 639 |             // Based on Stan Melax's article in Game Programming Gems | 
|---|
| 640 |             Quaternion q; | 
|---|
| 641 |             // Copy, since cannot modify local | 
|---|
| 642 |             Vector3 v0 = *this; | 
|---|
| 643 |             Vector3 v1 = dest; | 
|---|
| 644 |             v0.normalise(); | 
|---|
| 645 |             v1.normalise(); | 
|---|
| 646 |  | 
|---|
| 647 |             Real d = v0.dotProduct(v1); | 
|---|
| 648 |             // If dot == 1, vectors are the same | 
|---|
| 649 |             if (d >= 1.0f) | 
|---|
| 650 |             { | 
|---|
| 651 |                 return Quaternion::IDENTITY; | 
|---|
| 652 |             } | 
|---|
| 653 |                         if (d < (1e-6f - 1.0f)) | 
|---|
| 654 |                         { | 
|---|
| 655 |                                 if (fallbackAxis != Vector3::ZERO) | 
|---|
| 656 |                                 { | 
|---|
| 657 |                                         // rotate 180 degrees about the fallback axis | 
|---|
| 658 |                                         q.FromAngleAxis(Radian(Math::PI), fallbackAxis); | 
|---|
| 659 |                                 } | 
|---|
| 660 |                                 else | 
|---|
| 661 |                                 { | 
|---|
| 662 |                                         // Generate an axis | 
|---|
| 663 |                                         Vector3 axis = Vector3::UNIT_X.crossProduct(*this); | 
|---|
| 664 |                                         if (axis.isZeroLength()) // pick another if colinear | 
|---|
| 665 |                                                 axis = Vector3::UNIT_Y.crossProduct(*this); | 
|---|
| 666 |                                         axis.normalise(); | 
|---|
| 667 |                                         q.FromAngleAxis(Radian(Math::PI), axis); | 
|---|
| 668 |                                 } | 
|---|
| 669 |                         } | 
|---|
| 670 |                         else | 
|---|
| 671 |                         { | 
|---|
| 672 |                 Real s = Math::Sqrt( (1+d)*2 ); | 
|---|
| 673 |                     Real invs = 1 / s; | 
|---|
| 674 |  | 
|---|
| 675 |                                 Vector3 c = v0.crossProduct(v1); | 
|---|
| 676 |  | 
|---|
| 677 |                 q.x = c.x * invs; | 
|---|
| 678 |                     q.y = c.y * invs; | 
|---|
| 679 |                 q.z = c.z * invs; | 
|---|
| 680 |                 q.w = s * 0.5; | 
|---|
| 681 |                                 q.normalise(); | 
|---|
| 682 |                         } | 
|---|
| 683 |             return q; | 
|---|
| 684 |         } | 
|---|
| 685 |  | 
|---|
| 686 |         /** Returns true if this vector is zero length. */ | 
|---|
| 687 |         inline bool isZeroLength(void) const | 
|---|
| 688 |         { | 
|---|
| 689 |             Real sqlen = (x * x) + (y * y) + (z * z); | 
|---|
| 690 |             return (sqlen < (1e-06 * 1e-06)); | 
|---|
| 691 |  | 
|---|
| 692 |         } | 
|---|
| 693 |  | 
|---|
| 694 |         /** As normalise, except that this vector is unaffected and the | 
|---|
| 695 |             normalised vector is returned as a copy. */ | 
|---|
| 696 |         inline Vector3 normalisedCopy(void) const | 
|---|
| 697 |         { | 
|---|
| 698 |             Vector3 ret = *this; | 
|---|
| 699 |             ret.normalise(); | 
|---|
| 700 |             return ret; | 
|---|
| 701 |         } | 
|---|
| 702 |  | 
|---|
| 703 |         /** Calculates a reflection vector to the plane with the given normal . | 
|---|
| 704 |         @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not. | 
|---|
| 705 |         */ | 
|---|
| 706 |         inline Vector3 reflect(const Vector3& normal) const | 
|---|
| 707 |         { | 
|---|
| 708 |             return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) ); | 
|---|
| 709 |         } | 
|---|
| 710 |  | 
|---|
| 711 |                 /** Returns whether this vector is within a positional tolerance | 
|---|
| 712 |                         of another vector. | 
|---|
| 713 |                 @param rhs The vector to compare with | 
|---|
| 714 |                 @param tolerance The amount that each element of the vector may vary by | 
|---|
| 715 |                         and still be considered equal | 
|---|
| 716 |                 */ | 
|---|
| 717 |                 inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const | 
|---|
| 718 |                 { | 
|---|
| 719 |                         return Math::RealEqual(x, rhs.x, tolerance) && | 
|---|
| 720 |                                 Math::RealEqual(y, rhs.y, tolerance) && | 
|---|
| 721 |                                 Math::RealEqual(z, rhs.z, tolerance); | 
|---|
| 722 |  | 
|---|
| 723 |                 } | 
|---|
| 724 |  | 
|---|
| 725 |                 /** Returns whether this vector is within a positional tolerance | 
|---|
| 726 |                         of another vector, also take scale of the vectors into account. | 
|---|
| 727 |                 @param rhs The vector to compare with | 
|---|
| 728 |                 @param tolerance The amount (related to the scale of vectors) that distance | 
|---|
| 729 |             of the vector may vary by and still be considered close | 
|---|
| 730 |                 */ | 
|---|
| 731 |                 inline bool positionCloses(const Vector3& rhs, Real tolerance = 1e-03f) const | 
|---|
| 732 |                 { | 
|---|
| 733 |                         return squaredDistance(rhs) <= | 
|---|
| 734 |                 (squaredLength() + rhs.squaredLength()) * tolerance; | 
|---|
| 735 |                 } | 
|---|
| 736 |  | 
|---|
| 737 |                 /** Returns whether this vector is within a directional tolerance | 
|---|
| 738 |                         of another vector. | 
|---|
| 739 |                 @param rhs The vector to compare with | 
|---|
| 740 |                 @param tolerance The maximum angle by which the vectors may vary and | 
|---|
| 741 |                         still be considered equal | 
|---|
| 742 |                 @note Both vectors should be normalised. | 
|---|
| 743 |                 */ | 
|---|
| 744 |                 inline bool directionEquals(const Vector3& rhs, | 
|---|
| 745 |                         const Radian& tolerance) const | 
|---|
| 746 |                 { | 
|---|
| 747 |                         Real dot = dotProduct(rhs); | 
|---|
| 748 |                         Radian angle = Math::ACos(dot); | 
|---|
| 749 |  | 
|---|
| 750 |                         return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians(); | 
|---|
| 751 |  | 
|---|
| 752 |                 } | 
|---|
| 753 |  | 
|---|
| 754 |         // special points | 
|---|
| 755 |         static const Vector3 ZERO; | 
|---|
| 756 |         static const Vector3 UNIT_X; | 
|---|
| 757 |         static const Vector3 UNIT_Y; | 
|---|
| 758 |         static const Vector3 UNIT_Z; | 
|---|
| 759 |         static const Vector3 NEGATIVE_UNIT_X; | 
|---|
| 760 |         static const Vector3 NEGATIVE_UNIT_Y; | 
|---|
| 761 |         static const Vector3 NEGATIVE_UNIT_Z; | 
|---|
| 762 |         static const Vector3 UNIT_SCALE; | 
|---|
| 763 |  | 
|---|
| 764 |         /** Function for writing to a stream. | 
|---|
| 765 |         */ | 
|---|
| 766 |         inline _OgreExport friend std::ostream& operator << | 
|---|
| 767 |             ( std::ostream& o, const Vector3& v ) | 
|---|
| 768 |         { | 
|---|
| 769 |             o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")"; | 
|---|
| 770 |             return o; | 
|---|
| 771 |         } | 
|---|
| 772 |     }; | 
|---|
| 773 |  | 
|---|
| 774 | } | 
|---|
| 775 | #endif | 
|---|