| 1 | /* | 
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
| 4 |  | 
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
| 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
| 9 | subject to the following restrictions: | 
|---|
| 10 |  | 
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | #include "btQuantizedBvh.h" | 
|---|
| 17 |  | 
|---|
| 18 | #include "LinearMath/btAabbUtil2.h" | 
|---|
| 19 | #include "LinearMath/btIDebugDraw.h" | 
|---|
| 20 | #include "LinearMath/btSerializer.h" | 
|---|
| 21 |  | 
|---|
| 22 | #define RAYAABB2 | 
|---|
| 23 |  | 
|---|
| 24 | btQuantizedBvh::btQuantizedBvh() : | 
|---|
| 25 | m_bulletVersion(BT_BULLET_VERSION), | 
|---|
| 26 | m_useQuantization(false), | 
|---|
| 27 | //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) | 
|---|
| 28 | m_traversalMode(TRAVERSAL_STACKLESS) | 
|---|
| 29 | //m_traversalMode(TRAVERSAL_RECURSIVE) | 
|---|
| 30 | ,m_subtreeHeaderCount(0) //PCK: add this line | 
|---|
| 31 | { | 
|---|
| 32 | m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY); | 
|---|
| 33 | m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY); | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 |  | 
|---|
| 37 |  | 
|---|
| 38 |  | 
|---|
| 39 |  | 
|---|
| 40 | void btQuantizedBvh::buildInternal() | 
|---|
| 41 | { | 
|---|
| 42 | ///assumes that caller filled in the m_quantizedLeafNodes | 
|---|
| 43 | m_useQuantization = true; | 
|---|
| 44 | int numLeafNodes = 0; | 
|---|
| 45 |  | 
|---|
| 46 | if (m_useQuantization) | 
|---|
| 47 | { | 
|---|
| 48 | //now we have an array of leafnodes in m_leafNodes | 
|---|
| 49 | numLeafNodes = m_quantizedLeafNodes.size(); | 
|---|
| 50 |  | 
|---|
| 51 | m_quantizedContiguousNodes.resize(2*numLeafNodes); | 
|---|
| 52 |  | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | m_curNodeIndex = 0; | 
|---|
| 56 |  | 
|---|
| 57 | buildTree(0,numLeafNodes); | 
|---|
| 58 |  | 
|---|
| 59 | ///if the entire tree is small then subtree size, we need to create a header info for the tree | 
|---|
| 60 | if(m_useQuantization && !m_SubtreeHeaders.size()) | 
|---|
| 61 | { | 
|---|
| 62 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 63 | subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); | 
|---|
| 64 | subtree.m_rootNodeIndex = 0; | 
|---|
| 65 | subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | //PCK: update the copy of the size | 
|---|
| 69 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 70 |  | 
|---|
| 71 | //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary | 
|---|
| 72 | m_quantizedLeafNodes.clear(); | 
|---|
| 73 | m_leafNodes.clear(); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 |  | 
|---|
| 77 |  | 
|---|
| 78 | ///just for debugging, to visualize the individual patches/subtrees | 
|---|
| 79 | #ifdef DEBUG_PATCH_COLORS | 
|---|
| 80 | btVector3 color[4]= | 
|---|
| 81 | { | 
|---|
| 82 | btVector3(1,0,0), | 
|---|
| 83 | btVector3(0,1,0), | 
|---|
| 84 | btVector3(0,0,1), | 
|---|
| 85 | btVector3(0,1,1) | 
|---|
| 86 | }; | 
|---|
| 87 | #endif //DEBUG_PATCH_COLORS | 
|---|
| 88 |  | 
|---|
| 89 |  | 
|---|
| 90 |  | 
|---|
| 91 | void    btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) | 
|---|
| 92 | { | 
|---|
| 93 | //enlarge the AABB to avoid division by zero when initializing the quantization values | 
|---|
| 94 | btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); | 
|---|
| 95 | m_bvhAabbMin = bvhAabbMin - clampValue; | 
|---|
| 96 | m_bvhAabbMax = bvhAabbMax + clampValue; | 
|---|
| 97 | btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; | 
|---|
| 98 | m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; | 
|---|
| 99 | m_useQuantization = true; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 |  | 
|---|
| 105 | btQuantizedBvh::~btQuantizedBvh() | 
|---|
| 106 | { | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 110 | int gStackDepth = 0; | 
|---|
| 111 | int gMaxStackDepth = 0; | 
|---|
| 112 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 113 |  | 
|---|
| 114 | void    btQuantizedBvh::buildTree       (int startIndex,int endIndex) | 
|---|
| 115 | { | 
|---|
| 116 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 117 | gStackDepth++; | 
|---|
| 118 | if (gStackDepth > gMaxStackDepth) | 
|---|
| 119 | gMaxStackDepth = gStackDepth; | 
|---|
| 120 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 121 |  | 
|---|
| 122 |  | 
|---|
| 123 | int splitAxis, splitIndex, i; | 
|---|
| 124 | int numIndices =endIndex-startIndex; | 
|---|
| 125 | int curIndex = m_curNodeIndex; | 
|---|
| 126 |  | 
|---|
| 127 | btAssert(numIndices>0); | 
|---|
| 128 |  | 
|---|
| 129 | if (numIndices==1) | 
|---|
| 130 | { | 
|---|
| 131 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 132 | gStackDepth--; | 
|---|
| 133 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 134 |  | 
|---|
| 135 | assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); | 
|---|
| 136 |  | 
|---|
| 137 | m_curNodeIndex++; | 
|---|
| 138 | return; | 
|---|
| 139 | } | 
|---|
| 140 | //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. | 
|---|
| 141 |  | 
|---|
| 142 | splitAxis = calcSplittingAxis(startIndex,endIndex); | 
|---|
| 143 |  | 
|---|
| 144 | splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); | 
|---|
| 145 |  | 
|---|
| 146 | int internalNodeIndex = m_curNodeIndex; | 
|---|
| 147 |  | 
|---|
| 148 | //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. | 
|---|
| 149 | //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values | 
|---|
| 150 | setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization | 
|---|
| 151 | setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization | 
|---|
| 152 |  | 
|---|
| 153 |  | 
|---|
| 154 | for (i=startIndex;i<endIndex;i++) | 
|---|
| 155 | { | 
|---|
| 156 | mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | m_curNodeIndex++; | 
|---|
| 160 |  | 
|---|
| 161 |  | 
|---|
| 162 | //internalNode->m_escapeIndex; | 
|---|
| 163 |  | 
|---|
| 164 | int leftChildNodexIndex = m_curNodeIndex; | 
|---|
| 165 |  | 
|---|
| 166 | //build left child tree | 
|---|
| 167 | buildTree(startIndex,splitIndex); | 
|---|
| 168 |  | 
|---|
| 169 | int rightChildNodexIndex = m_curNodeIndex; | 
|---|
| 170 | //build right child tree | 
|---|
| 171 | buildTree(splitIndex,endIndex); | 
|---|
| 172 |  | 
|---|
| 173 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 174 | gStackDepth--; | 
|---|
| 175 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 176 |  | 
|---|
| 177 | int escapeIndex = m_curNodeIndex - curIndex; | 
|---|
| 178 |  | 
|---|
| 179 | if (m_useQuantization) | 
|---|
| 180 | { | 
|---|
| 181 | //escapeIndex is the number of nodes of this subtree | 
|---|
| 182 | const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); | 
|---|
| 183 | const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; | 
|---|
| 184 | if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 185 | { | 
|---|
| 186 | updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); | 
|---|
| 187 | } | 
|---|
| 188 | } else | 
|---|
| 189 | { | 
|---|
| 190 |  | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); | 
|---|
| 194 |  | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | void    btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) | 
|---|
| 198 | { | 
|---|
| 199 | btAssert(m_useQuantization); | 
|---|
| 200 |  | 
|---|
| 201 | btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; | 
|---|
| 202 | int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); | 
|---|
| 203 | int leftSubTreeSizeInBytes =  leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
| 204 |  | 
|---|
| 205 | btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; | 
|---|
| 206 | int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); | 
|---|
| 207 | int rightSubTreeSizeInBytes =  rightSubTreeSize *  static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
| 208 |  | 
|---|
| 209 | if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 210 | { | 
|---|
| 211 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 212 | subtree.setAabbFromQuantizeNode(leftChildNode); | 
|---|
| 213 | subtree.m_rootNodeIndex = leftChildNodexIndex; | 
|---|
| 214 | subtree.m_subtreeSize = leftSubTreeSize; | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 218 | { | 
|---|
| 219 | btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 220 | subtree.setAabbFromQuantizeNode(rightChildNode); | 
|---|
| 221 | subtree.m_rootNodeIndex = rightChildNodexIndex; | 
|---|
| 222 | subtree.m_subtreeSize = rightSubTreeSize; | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | //PCK: update the copy of the size | 
|---|
| 226 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 227 | } | 
|---|
| 228 |  | 
|---|
| 229 |  | 
|---|
| 230 | int     btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) | 
|---|
| 231 | { | 
|---|
| 232 | int i; | 
|---|
| 233 | int splitIndex =startIndex; | 
|---|
| 234 | int numIndices = endIndex - startIndex; | 
|---|
| 235 | btScalar splitValue; | 
|---|
| 236 |  | 
|---|
| 237 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 238 | for (i=startIndex;i<endIndex;i++) | 
|---|
| 239 | { | 
|---|
| 240 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 241 | means+=center; | 
|---|
| 242 | } | 
|---|
| 243 | means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
| 244 |  | 
|---|
| 245 | splitValue = means[splitAxis]; | 
|---|
| 246 |  | 
|---|
| 247 | //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. | 
|---|
| 248 | for (i=startIndex;i<endIndex;i++) | 
|---|
| 249 | { | 
|---|
| 250 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 251 | if (center[splitAxis] > splitValue) | 
|---|
| 252 | { | 
|---|
| 253 | //swap | 
|---|
| 254 | swapLeafNodes(i,splitIndex); | 
|---|
| 255 | splitIndex++; | 
|---|
| 256 | } | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 | //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex | 
|---|
| 260 | //otherwise the tree-building might fail due to stack-overflows in certain cases. | 
|---|
| 261 | //unbalanced1 is unsafe: it can cause stack overflows | 
|---|
| 262 | //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); | 
|---|
| 263 |  | 
|---|
| 264 | //unbalanced2 should work too: always use center (perfect balanced trees) | 
|---|
| 265 | //bool unbalanced2 = true; | 
|---|
| 266 |  | 
|---|
| 267 | //this should be safe too: | 
|---|
| 268 | int rangeBalancedIndices = numIndices/3; | 
|---|
| 269 | bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); | 
|---|
| 270 |  | 
|---|
| 271 | if (unbalanced) | 
|---|
| 272 | { | 
|---|
| 273 | splitIndex = startIndex+ (numIndices>>1); | 
|---|
| 274 | } | 
|---|
| 275 |  | 
|---|
| 276 | bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); | 
|---|
| 277 | (void)unbal; | 
|---|
| 278 | btAssert(!unbal); | 
|---|
| 279 |  | 
|---|
| 280 | return splitIndex; | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 |  | 
|---|
| 284 | int     btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) | 
|---|
| 285 | { | 
|---|
| 286 | int i; | 
|---|
| 287 |  | 
|---|
| 288 | btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 289 | btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 290 | int numIndices = endIndex-startIndex; | 
|---|
| 291 |  | 
|---|
| 292 | for (i=startIndex;i<endIndex;i++) | 
|---|
| 293 | { | 
|---|
| 294 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 295 | means+=center; | 
|---|
| 296 | } | 
|---|
| 297 | means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
| 298 |  | 
|---|
| 299 | for (i=startIndex;i<endIndex;i++) | 
|---|
| 300 | { | 
|---|
| 301 | btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 302 | btVector3 diff2 = center-means; | 
|---|
| 303 | diff2 = diff2 * diff2; | 
|---|
| 304 | variance += diff2; | 
|---|
| 305 | } | 
|---|
| 306 | variance *= (btScalar(1.)/      ((btScalar)numIndices-1)        ); | 
|---|
| 307 |  | 
|---|
| 308 | return variance.maxAxis(); | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 |  | 
|---|
| 312 |  | 
|---|
| 313 | void    btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 314 | { | 
|---|
| 315 | //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) | 
|---|
| 316 |  | 
|---|
| 317 | if (m_useQuantization) | 
|---|
| 318 | { | 
|---|
| 319 | ///quantize query AABB | 
|---|
| 320 | unsigned short int quantizedQueryAabbMin[3]; | 
|---|
| 321 | unsigned short int quantizedQueryAabbMax[3]; | 
|---|
| 322 | quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); | 
|---|
| 323 | quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); | 
|---|
| 324 |  | 
|---|
| 325 | switch (m_traversalMode) | 
|---|
| 326 | { | 
|---|
| 327 | case TRAVERSAL_STACKLESS: | 
|---|
| 328 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); | 
|---|
| 329 | break; | 
|---|
| 330 | case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: | 
|---|
| 331 | walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 332 | break; | 
|---|
| 333 | case TRAVERSAL_RECURSIVE: | 
|---|
| 334 | { | 
|---|
| 335 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; | 
|---|
| 336 | walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 337 | } | 
|---|
| 338 | break; | 
|---|
| 339 | default: | 
|---|
| 340 | //unsupported | 
|---|
| 341 | btAssert(0); | 
|---|
| 342 | } | 
|---|
| 343 | } else | 
|---|
| 344 | { | 
|---|
| 345 | walkStacklessTree(nodeCallback,aabbMin,aabbMax); | 
|---|
| 346 | } | 
|---|
| 347 | } | 
|---|
| 348 |  | 
|---|
| 349 |  | 
|---|
| 350 | int maxIterations = 0; | 
|---|
| 351 |  | 
|---|
| 352 |  | 
|---|
| 353 | void    btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 354 | { | 
|---|
| 355 | btAssert(!m_useQuantization); | 
|---|
| 356 |  | 
|---|
| 357 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; | 
|---|
| 358 | int escapeIndex, curIndex = 0; | 
|---|
| 359 | int walkIterations = 0; | 
|---|
| 360 | bool isLeafNode; | 
|---|
| 361 | //PCK: unsigned instead of bool | 
|---|
| 362 | unsigned aabbOverlap; | 
|---|
| 363 |  | 
|---|
| 364 | while (curIndex < m_curNodeIndex) | 
|---|
| 365 | { | 
|---|
| 366 | //catch bugs in tree data | 
|---|
| 367 | btAssert (walkIterations < m_curNodeIndex); | 
|---|
| 368 |  | 
|---|
| 369 | walkIterations++; | 
|---|
| 370 | aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); | 
|---|
| 371 | isLeafNode = rootNode->m_escapeIndex == -1; | 
|---|
| 372 |  | 
|---|
| 373 | //PCK: unsigned instead of bool | 
|---|
| 374 | if (isLeafNode && (aabbOverlap != 0)) | 
|---|
| 375 | { | 
|---|
| 376 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); | 
|---|
| 377 | } | 
|---|
| 378 |  | 
|---|
| 379 | //PCK: unsigned instead of bool | 
|---|
| 380 | if ((aabbOverlap != 0) || isLeafNode) | 
|---|
| 381 | { | 
|---|
| 382 | rootNode++; | 
|---|
| 383 | curIndex++; | 
|---|
| 384 | } else | 
|---|
| 385 | { | 
|---|
| 386 | escapeIndex = rootNode->m_escapeIndex; | 
|---|
| 387 | rootNode += escapeIndex; | 
|---|
| 388 | curIndex += escapeIndex; | 
|---|
| 389 | } | 
|---|
| 390 | } | 
|---|
| 391 | if (maxIterations < walkIterations) | 
|---|
| 392 | maxIterations = walkIterations; | 
|---|
| 393 |  | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | /* | 
|---|
| 397 | ///this was the original recursive traversal, before we optimized towards stackless traversal | 
|---|
| 398 | void    btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 399 | { | 
|---|
| 400 | bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); | 
|---|
| 401 | if (aabbOverlap) | 
|---|
| 402 | { | 
|---|
| 403 | isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); | 
|---|
| 404 | if (isLeafNode) | 
|---|
| 405 | { | 
|---|
| 406 | nodeCallback->processNode(rootNode); | 
|---|
| 407 | } else | 
|---|
| 408 | { | 
|---|
| 409 | walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); | 
|---|
| 410 | walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); | 
|---|
| 411 | } | 
|---|
| 412 | } | 
|---|
| 413 |  | 
|---|
| 414 | } | 
|---|
| 415 | */ | 
|---|
| 416 |  | 
|---|
| 417 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
| 418 | { | 
|---|
| 419 | btAssert(m_useQuantization); | 
|---|
| 420 |  | 
|---|
| 421 | bool isLeafNode; | 
|---|
| 422 | //PCK: unsigned instead of bool | 
|---|
| 423 | unsigned aabbOverlap; | 
|---|
| 424 |  | 
|---|
| 425 | //PCK: unsigned instead of bool | 
|---|
| 426 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); | 
|---|
| 427 | isLeafNode = currentNode->isLeafNode(); | 
|---|
| 428 |  | 
|---|
| 429 | //PCK: unsigned instead of bool | 
|---|
| 430 | if (aabbOverlap != 0) | 
|---|
| 431 | { | 
|---|
| 432 | if (isLeafNode) | 
|---|
| 433 | { | 
|---|
| 434 | nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); | 
|---|
| 435 | } else | 
|---|
| 436 | { | 
|---|
| 437 | //process left and right children | 
|---|
| 438 | const btQuantizedBvhNode* leftChildNode = currentNode+1; | 
|---|
| 439 | walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 440 |  | 
|---|
| 441 | const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); | 
|---|
| 442 | walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 443 | } | 
|---|
| 444 | } | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 |  | 
|---|
| 448 |  | 
|---|
| 449 | void    btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const | 
|---|
| 450 | { | 
|---|
| 451 | btAssert(!m_useQuantization); | 
|---|
| 452 |  | 
|---|
| 453 | const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; | 
|---|
| 454 | int escapeIndex, curIndex = 0; | 
|---|
| 455 | int walkIterations = 0; | 
|---|
| 456 | bool isLeafNode; | 
|---|
| 457 | //PCK: unsigned instead of bool | 
|---|
| 458 | unsigned aabbOverlap=0; | 
|---|
| 459 | unsigned rayBoxOverlap=0; | 
|---|
| 460 | btScalar lambda_max = 1.0; | 
|---|
| 461 |  | 
|---|
| 462 | /* Quick pruning by quantized box */ | 
|---|
| 463 | btVector3 rayAabbMin = raySource; | 
|---|
| 464 | btVector3 rayAabbMax = raySource; | 
|---|
| 465 | rayAabbMin.setMin(rayTarget); | 
|---|
| 466 | rayAabbMax.setMax(rayTarget); | 
|---|
| 467 |  | 
|---|
| 468 | /* Add box cast extents to bounding box */ | 
|---|
| 469 | rayAabbMin += aabbMin; | 
|---|
| 470 | rayAabbMax += aabbMax; | 
|---|
| 471 |  | 
|---|
| 472 | #ifdef RAYAABB2 | 
|---|
| 473 | btVector3 rayDir = (rayTarget-raySource); | 
|---|
| 474 | rayDir.normalize (); | 
|---|
| 475 | lambda_max = rayDir.dot(rayTarget-raySource); | 
|---|
| 476 | ///what about division by zero? --> just set rayDirection[i] to 1.0 | 
|---|
| 477 | btVector3 rayDirectionInverse; | 
|---|
| 478 | rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0]; | 
|---|
| 479 | rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1]; | 
|---|
| 480 | rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2]; | 
|---|
| 481 | unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; | 
|---|
| 482 | #endif | 
|---|
| 483 |  | 
|---|
| 484 | btVector3 bounds[2]; | 
|---|
| 485 |  | 
|---|
| 486 | while (curIndex < m_curNodeIndex) | 
|---|
| 487 | { | 
|---|
| 488 | btScalar param = 1.0; | 
|---|
| 489 | //catch bugs in tree data | 
|---|
| 490 | btAssert (walkIterations < m_curNodeIndex); | 
|---|
| 491 |  | 
|---|
| 492 | walkIterations++; | 
|---|
| 493 |  | 
|---|
| 494 | bounds[0] = rootNode->m_aabbMinOrg; | 
|---|
| 495 | bounds[1] = rootNode->m_aabbMaxOrg; | 
|---|
| 496 | /* Add box cast extents */ | 
|---|
| 497 | bounds[0] -= aabbMax; | 
|---|
| 498 | bounds[1] -= aabbMin; | 
|---|
| 499 |  | 
|---|
| 500 | aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); | 
|---|
| 501 | //perhaps profile if it is worth doing the aabbOverlap test first | 
|---|
| 502 |  | 
|---|
| 503 | #ifdef RAYAABB2 | 
|---|
| 504 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method | 
|---|
| 505 | ///thanks Joerg/hiker for the reproduction case! | 
|---|
| 506 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 | 
|---|
| 507 | rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; | 
|---|
| 508 |  | 
|---|
| 509 | #else | 
|---|
| 510 | btVector3 normal; | 
|---|
| 511 | rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal); | 
|---|
| 512 | #endif | 
|---|
| 513 |  | 
|---|
| 514 | isLeafNode = rootNode->m_escapeIndex == -1; | 
|---|
| 515 |  | 
|---|
| 516 | //PCK: unsigned instead of bool | 
|---|
| 517 | if (isLeafNode && (rayBoxOverlap != 0)) | 
|---|
| 518 | { | 
|---|
| 519 | nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | //PCK: unsigned instead of bool | 
|---|
| 523 | if ((rayBoxOverlap != 0) || isLeafNode) | 
|---|
| 524 | { | 
|---|
| 525 | rootNode++; | 
|---|
| 526 | curIndex++; | 
|---|
| 527 | } else | 
|---|
| 528 | { | 
|---|
| 529 | escapeIndex = rootNode->m_escapeIndex; | 
|---|
| 530 | rootNode += escapeIndex; | 
|---|
| 531 | curIndex += escapeIndex; | 
|---|
| 532 | } | 
|---|
| 533 | } | 
|---|
| 534 | if (maxIterations < walkIterations) | 
|---|
| 535 | maxIterations = walkIterations; | 
|---|
| 536 |  | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 |  | 
|---|
| 540 |  | 
|---|
| 541 | void    btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const | 
|---|
| 542 | { | 
|---|
| 543 | btAssert(m_useQuantization); | 
|---|
| 544 |  | 
|---|
| 545 | int curIndex = startNodeIndex; | 
|---|
| 546 | int walkIterations = 0; | 
|---|
| 547 | int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
| 548 | (void)subTreeSize; | 
|---|
| 549 |  | 
|---|
| 550 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
| 551 | int escapeIndex; | 
|---|
| 552 |  | 
|---|
| 553 | bool isLeafNode; | 
|---|
| 554 | //PCK: unsigned instead of bool | 
|---|
| 555 | unsigned boxBoxOverlap = 0; | 
|---|
| 556 | unsigned rayBoxOverlap = 0; | 
|---|
| 557 |  | 
|---|
| 558 | btScalar lambda_max = 1.0; | 
|---|
| 559 |  | 
|---|
| 560 | #ifdef RAYAABB2 | 
|---|
| 561 | btVector3 rayDirection = (rayTarget-raySource); | 
|---|
| 562 | rayDirection.normalize (); | 
|---|
| 563 | lambda_max = rayDirection.dot(rayTarget-raySource); | 
|---|
| 564 | ///what about division by zero? --> just set rayDirection[i] to 1.0 | 
|---|
| 565 | rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0]; | 
|---|
| 566 | rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[1]; | 
|---|
| 567 | rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[2]; | 
|---|
| 568 | unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; | 
|---|
| 569 | #endif | 
|---|
| 570 |  | 
|---|
| 571 | /* Quick pruning by quantized box */ | 
|---|
| 572 | btVector3 rayAabbMin = raySource; | 
|---|
| 573 | btVector3 rayAabbMax = raySource; | 
|---|
| 574 | rayAabbMin.setMin(rayTarget); | 
|---|
| 575 | rayAabbMax.setMax(rayTarget); | 
|---|
| 576 |  | 
|---|
| 577 | /* Add box cast extents to bounding box */ | 
|---|
| 578 | rayAabbMin += aabbMin; | 
|---|
| 579 | rayAabbMax += aabbMax; | 
|---|
| 580 |  | 
|---|
| 581 | unsigned short int quantizedQueryAabbMin[3]; | 
|---|
| 582 | unsigned short int quantizedQueryAabbMax[3]; | 
|---|
| 583 | quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); | 
|---|
| 584 | quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); | 
|---|
| 585 |  | 
|---|
| 586 | while (curIndex < endNodeIndex) | 
|---|
| 587 | { | 
|---|
| 588 |  | 
|---|
| 589 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
| 590 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
| 591 | //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
| 592 | static int drawPatch = 0; | 
|---|
| 593 | //need some global access to a debugDrawer | 
|---|
| 594 | extern btIDebugDraw* debugDrawerPtr; | 
|---|
| 595 | if (curIndex==drawPatch) | 
|---|
| 596 | { | 
|---|
| 597 | btVector3 aabbMin,aabbMax; | 
|---|
| 598 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 599 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 600 | btVector3       color(1,0,0); | 
|---|
| 601 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
| 602 | } | 
|---|
| 603 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
| 604 |  | 
|---|
| 605 | //catch bugs in tree data | 
|---|
| 606 | btAssert (walkIterations < subTreeSize); | 
|---|
| 607 |  | 
|---|
| 608 | walkIterations++; | 
|---|
| 609 | //PCK: unsigned instead of bool | 
|---|
| 610 | // only interested if this is closer than any previous hit | 
|---|
| 611 | btScalar param = 1.0; | 
|---|
| 612 | rayBoxOverlap = 0; | 
|---|
| 613 | boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
| 614 | isLeafNode = rootNode->isLeafNode(); | 
|---|
| 615 | if (boxBoxOverlap) | 
|---|
| 616 | { | 
|---|
| 617 | btVector3 bounds[2]; | 
|---|
| 618 | bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 619 | bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 620 | /* Add box cast extents */ | 
|---|
| 621 | bounds[0] -= aabbMax; | 
|---|
| 622 | bounds[1] -= aabbMin; | 
|---|
| 623 | btVector3 normal; | 
|---|
| 624 | #if 0 | 
|---|
| 625 | bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); | 
|---|
| 626 | bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
| 627 | if (ra2 != ra) | 
|---|
| 628 | { | 
|---|
| 629 | printf("functions don't match\n"); | 
|---|
| 630 | } | 
|---|
| 631 | #endif | 
|---|
| 632 | #ifdef RAYAABB2 | 
|---|
| 633 | ///careful with this check: need to check division by zero (above) and fix the unQuantize method | 
|---|
| 634 | ///thanks Joerg/hiker for the reproduction case! | 
|---|
| 635 | ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 | 
|---|
| 636 |  | 
|---|
| 637 | //BT_PROFILE("btRayAabb2"); | 
|---|
| 638 | rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); | 
|---|
| 639 |  | 
|---|
| 640 | #else | 
|---|
| 641 | rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
| 642 | #endif | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | if (isLeafNode && rayBoxOverlap) | 
|---|
| 646 | { | 
|---|
| 647 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | //PCK: unsigned instead of bool | 
|---|
| 651 | if ((rayBoxOverlap != 0) || isLeafNode) | 
|---|
| 652 | { | 
|---|
| 653 | rootNode++; | 
|---|
| 654 | curIndex++; | 
|---|
| 655 | } else | 
|---|
| 656 | { | 
|---|
| 657 | escapeIndex = rootNode->getEscapeIndex(); | 
|---|
| 658 | rootNode += escapeIndex; | 
|---|
| 659 | curIndex += escapeIndex; | 
|---|
| 660 | } | 
|---|
| 661 | } | 
|---|
| 662 | if (maxIterations < walkIterations) | 
|---|
| 663 | maxIterations = walkIterations; | 
|---|
| 664 |  | 
|---|
| 665 | } | 
|---|
| 666 |  | 
|---|
| 667 | void    btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const | 
|---|
| 668 | { | 
|---|
| 669 | btAssert(m_useQuantization); | 
|---|
| 670 |  | 
|---|
| 671 | int curIndex = startNodeIndex; | 
|---|
| 672 | int walkIterations = 0; | 
|---|
| 673 | int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
| 674 | (void)subTreeSize; | 
|---|
| 675 |  | 
|---|
| 676 | const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
| 677 | int escapeIndex; | 
|---|
| 678 |  | 
|---|
| 679 | bool isLeafNode; | 
|---|
| 680 | //PCK: unsigned instead of bool | 
|---|
| 681 | unsigned aabbOverlap; | 
|---|
| 682 |  | 
|---|
| 683 | while (curIndex < endNodeIndex) | 
|---|
| 684 | { | 
|---|
| 685 |  | 
|---|
| 686 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
| 687 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
| 688 | //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
| 689 | static int drawPatch = 0; | 
|---|
| 690 | //need some global access to a debugDrawer | 
|---|
| 691 | extern btIDebugDraw* debugDrawerPtr; | 
|---|
| 692 | if (curIndex==drawPatch) | 
|---|
| 693 | { | 
|---|
| 694 | btVector3 aabbMin,aabbMax; | 
|---|
| 695 | aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 696 | aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 697 | btVector3       color(1,0,0); | 
|---|
| 698 | debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
| 699 | } | 
|---|
| 700 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
| 701 |  | 
|---|
| 702 | //catch bugs in tree data | 
|---|
| 703 | btAssert (walkIterations < subTreeSize); | 
|---|
| 704 |  | 
|---|
| 705 | walkIterations++; | 
|---|
| 706 | //PCK: unsigned instead of bool | 
|---|
| 707 | aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
| 708 | isLeafNode = rootNode->isLeafNode(); | 
|---|
| 709 |  | 
|---|
| 710 | if (isLeafNode && aabbOverlap) | 
|---|
| 711 | { | 
|---|
| 712 | nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | //PCK: unsigned instead of bool | 
|---|
| 716 | if ((aabbOverlap != 0) || isLeafNode) | 
|---|
| 717 | { | 
|---|
| 718 | rootNode++; | 
|---|
| 719 | curIndex++; | 
|---|
| 720 | } else | 
|---|
| 721 | { | 
|---|
| 722 | escapeIndex = rootNode->getEscapeIndex(); | 
|---|
| 723 | rootNode += escapeIndex; | 
|---|
| 724 | curIndex += escapeIndex; | 
|---|
| 725 | } | 
|---|
| 726 | } | 
|---|
| 727 | if (maxIterations < walkIterations) | 
|---|
| 728 | maxIterations = walkIterations; | 
|---|
| 729 |  | 
|---|
| 730 | } | 
|---|
| 731 |  | 
|---|
| 732 | //This traversal can be called from Playstation 3 SPU | 
|---|
| 733 | void    btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
| 734 | { | 
|---|
| 735 | btAssert(m_useQuantization); | 
|---|
| 736 |  | 
|---|
| 737 | int i; | 
|---|
| 738 |  | 
|---|
| 739 |  | 
|---|
| 740 | for (i=0;i<this->m_SubtreeHeaders.size();i++) | 
|---|
| 741 | { | 
|---|
| 742 | const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; | 
|---|
| 743 |  | 
|---|
| 744 | //PCK: unsigned instead of bool | 
|---|
| 745 | unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); | 
|---|
| 746 | if (overlap != 0) | 
|---|
| 747 | { | 
|---|
| 748 | walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, | 
|---|
| 749 | subtree.m_rootNodeIndex, | 
|---|
| 750 | subtree.m_rootNodeIndex+subtree.m_subtreeSize); | 
|---|
| 751 | } | 
|---|
| 752 | } | 
|---|
| 753 | } | 
|---|
| 754 |  | 
|---|
| 755 |  | 
|---|
| 756 | void    btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const | 
|---|
| 757 | { | 
|---|
| 758 | reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0)); | 
|---|
| 759 | } | 
|---|
| 760 |  | 
|---|
| 761 |  | 
|---|
| 762 | void    btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 763 | { | 
|---|
| 764 | //always use stackless | 
|---|
| 765 |  | 
|---|
| 766 | if (m_useQuantization) | 
|---|
| 767 | { | 
|---|
| 768 | walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); | 
|---|
| 769 | } | 
|---|
| 770 | else | 
|---|
| 771 | { | 
|---|
| 772 | walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); | 
|---|
| 773 | } | 
|---|
| 774 | /* | 
|---|
| 775 | { | 
|---|
| 776 | //recursive traversal | 
|---|
| 777 | btVector3 qaabbMin = raySource; | 
|---|
| 778 | btVector3 qaabbMax = raySource; | 
|---|
| 779 | qaabbMin.setMin(rayTarget); | 
|---|
| 780 | qaabbMax.setMax(rayTarget); | 
|---|
| 781 | qaabbMin += aabbMin; | 
|---|
| 782 | qaabbMax += aabbMax; | 
|---|
| 783 | reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); | 
|---|
| 784 | } | 
|---|
| 785 | */ | 
|---|
| 786 |  | 
|---|
| 787 | } | 
|---|
| 788 |  | 
|---|
| 789 |  | 
|---|
| 790 | void    btQuantizedBvh::swapLeafNodes(int i,int splitIndex) | 
|---|
| 791 | { | 
|---|
| 792 | if (m_useQuantization) | 
|---|
| 793 | { | 
|---|
| 794 | btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; | 
|---|
| 795 | m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; | 
|---|
| 796 | m_quantizedLeafNodes[splitIndex] = tmp; | 
|---|
| 797 | } else | 
|---|
| 798 | { | 
|---|
| 799 | btOptimizedBvhNode tmp = m_leafNodes[i]; | 
|---|
| 800 | m_leafNodes[i] = m_leafNodes[splitIndex]; | 
|---|
| 801 | m_leafNodes[splitIndex] = tmp; | 
|---|
| 802 | } | 
|---|
| 803 | } | 
|---|
| 804 |  | 
|---|
| 805 | void    btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) | 
|---|
| 806 | { | 
|---|
| 807 | if (m_useQuantization) | 
|---|
| 808 | { | 
|---|
| 809 | m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; | 
|---|
| 810 | } else | 
|---|
| 811 | { | 
|---|
| 812 | m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; | 
|---|
| 813 | } | 
|---|
| 814 | } | 
|---|
| 815 |  | 
|---|
| 816 | //PCK: include | 
|---|
| 817 | #include <new> | 
|---|
| 818 |  | 
|---|
| 819 | #if 0 | 
|---|
| 820 | //PCK: consts | 
|---|
| 821 | static const unsigned BVH_ALIGNMENT = 16; | 
|---|
| 822 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; | 
|---|
| 823 |  | 
|---|
| 824 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; | 
|---|
| 825 | #endif | 
|---|
| 826 |  | 
|---|
| 827 |  | 
|---|
| 828 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() | 
|---|
| 829 | { | 
|---|
| 830 | // I changed this to 0 since the extra padding is not needed or used. | 
|---|
| 831 | return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; | 
|---|
| 832 | } | 
|---|
| 833 |  | 
|---|
| 834 | unsigned btQuantizedBvh::calculateSerializeBufferSize() const | 
|---|
| 835 | { | 
|---|
| 836 | unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); | 
|---|
| 837 | baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
| 838 | if (m_useQuantization) | 
|---|
| 839 | { | 
|---|
| 840 | return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); | 
|---|
| 841 | } | 
|---|
| 842 | return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); | 
|---|
| 843 | } | 
|---|
| 844 |  | 
|---|
| 845 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const | 
|---|
| 846 | { | 
|---|
| 847 | btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); | 
|---|
| 848 | m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 849 |  | 
|---|
| 850 | /*      if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
| 851 | { | 
|---|
| 852 | ///check alignedment for buffer? | 
|---|
| 853 | btAssert(0); | 
|---|
| 854 | return false; | 
|---|
| 855 | } | 
|---|
| 856 | */ | 
|---|
| 857 |  | 
|---|
| 858 | btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; | 
|---|
| 859 |  | 
|---|
| 860 | // construct the class so the virtual function table, etc will be set up | 
|---|
| 861 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
| 862 | new (targetBvh) btQuantizedBvh; | 
|---|
| 863 |  | 
|---|
| 864 | if (i_swapEndian) | 
|---|
| 865 | { | 
|---|
| 866 | targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); | 
|---|
| 867 |  | 
|---|
| 868 |  | 
|---|
| 869 | btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); | 
|---|
| 870 | btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); | 
|---|
| 871 | btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); | 
|---|
| 872 |  | 
|---|
| 873 | targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); | 
|---|
| 874 | targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); | 
|---|
| 875 | } | 
|---|
| 876 | else | 
|---|
| 877 | { | 
|---|
| 878 | targetBvh->m_curNodeIndex = m_curNodeIndex; | 
|---|
| 879 | targetBvh->m_bvhAabbMin = m_bvhAabbMin; | 
|---|
| 880 | targetBvh->m_bvhAabbMax = m_bvhAabbMax; | 
|---|
| 881 | targetBvh->m_bvhQuantization = m_bvhQuantization; | 
|---|
| 882 | targetBvh->m_traversalMode = m_traversalMode; | 
|---|
| 883 | targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; | 
|---|
| 884 | } | 
|---|
| 885 |  | 
|---|
| 886 | targetBvh->m_useQuantization = m_useQuantization; | 
|---|
| 887 |  | 
|---|
| 888 | unsigned char *nodeData = (unsigned char *)targetBvh; | 
|---|
| 889 | nodeData += sizeof(btQuantizedBvh); | 
|---|
| 890 |  | 
|---|
| 891 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 892 | nodeData += sizeToAdd; | 
|---|
| 893 |  | 
|---|
| 894 | int nodeCount = m_curNodeIndex; | 
|---|
| 895 |  | 
|---|
| 896 | if (m_useQuantization) | 
|---|
| 897 | { | 
|---|
| 898 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 899 |  | 
|---|
| 900 | if (i_swapEndian) | 
|---|
| 901 | { | 
|---|
| 902 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 903 | { | 
|---|
| 904 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
| 905 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
| 906 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
| 907 |  | 
|---|
| 908 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
| 909 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
| 910 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
| 911 |  | 
|---|
| 912 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
| 913 | } | 
|---|
| 914 | } | 
|---|
| 915 | else | 
|---|
| 916 | { | 
|---|
| 917 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 918 | { | 
|---|
| 919 |  | 
|---|
| 920 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; | 
|---|
| 921 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; | 
|---|
| 922 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; | 
|---|
| 923 |  | 
|---|
| 924 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; | 
|---|
| 925 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; | 
|---|
| 926 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; | 
|---|
| 927 |  | 
|---|
| 928 | targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; | 
|---|
| 929 |  | 
|---|
| 930 |  | 
|---|
| 931 | } | 
|---|
| 932 | } | 
|---|
| 933 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
| 934 |  | 
|---|
| 935 | // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 936 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 937 | // so the memory (which is not freed) is left alone | 
|---|
| 938 | targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 939 | } | 
|---|
| 940 | else | 
|---|
| 941 | { | 
|---|
| 942 | targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 943 |  | 
|---|
| 944 | if (i_swapEndian) | 
|---|
| 945 | { | 
|---|
| 946 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 947 | { | 
|---|
| 948 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
| 949 | btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
| 950 |  | 
|---|
| 951 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
| 952 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
| 953 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
| 954 | } | 
|---|
| 955 | } | 
|---|
| 956 | else | 
|---|
| 957 | { | 
|---|
| 958 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 959 | { | 
|---|
| 960 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; | 
|---|
| 961 | targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; | 
|---|
| 962 |  | 
|---|
| 963 | targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; | 
|---|
| 964 | targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; | 
|---|
| 965 | targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; | 
|---|
| 966 | } | 
|---|
| 967 | } | 
|---|
| 968 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
| 969 |  | 
|---|
| 970 | // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 971 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 972 | // so the memory (which is not freed) is left alone | 
|---|
| 973 | targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 974 | } | 
|---|
| 975 |  | 
|---|
| 976 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 977 | nodeData += sizeToAdd; | 
|---|
| 978 |  | 
|---|
| 979 | // Now serialize the subtree headers | 
|---|
| 980 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); | 
|---|
| 981 | if (i_swapEndian) | 
|---|
| 982 | { | 
|---|
| 983 | for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
| 984 | { | 
|---|
| 985 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 986 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 987 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 988 |  | 
|---|
| 989 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 990 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 991 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 992 |  | 
|---|
| 993 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
| 994 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
| 995 | } | 
|---|
| 996 | } | 
|---|
| 997 | else | 
|---|
| 998 | { | 
|---|
| 999 | for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
| 1000 | { | 
|---|
| 1001 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 1002 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 1003 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 1004 |  | 
|---|
| 1005 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 1006 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 1007 | targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 1008 |  | 
|---|
| 1009 | targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); | 
|---|
| 1010 | targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); | 
|---|
| 1011 |  | 
|---|
| 1012 | // need to clear padding in destination buffer | 
|---|
| 1013 | targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; | 
|---|
| 1014 | targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; | 
|---|
| 1015 | targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; | 
|---|
| 1016 | } | 
|---|
| 1017 | } | 
|---|
| 1018 | nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
| 1019 |  | 
|---|
| 1020 | // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 1021 | // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 1022 | // so the memory (which is not freed) is left alone | 
|---|
| 1023 | targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 1024 |  | 
|---|
| 1025 | // this wipes the virtual function table pointer at the start of the buffer for the class | 
|---|
| 1026 | *((void**)o_alignedDataBuffer) = NULL; | 
|---|
| 1027 |  | 
|---|
| 1028 | return true; | 
|---|
| 1029 | } | 
|---|
| 1030 |  | 
|---|
| 1031 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) | 
|---|
| 1032 | { | 
|---|
| 1033 |  | 
|---|
| 1034 | if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
| 1035 | { | 
|---|
| 1036 | return NULL; | 
|---|
| 1037 | } | 
|---|
| 1038 | btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; | 
|---|
| 1039 |  | 
|---|
| 1040 | if (i_swapEndian) | 
|---|
| 1041 | { | 
|---|
| 1042 | bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); | 
|---|
| 1043 |  | 
|---|
| 1044 | btUnSwapVector3Endian(bvh->m_bvhAabbMin); | 
|---|
| 1045 | btUnSwapVector3Endian(bvh->m_bvhAabbMax); | 
|---|
| 1046 | btUnSwapVector3Endian(bvh->m_bvhQuantization); | 
|---|
| 1047 |  | 
|---|
| 1048 | bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); | 
|---|
| 1049 | bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); | 
|---|
| 1050 | } | 
|---|
| 1051 |  | 
|---|
| 1052 | unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); | 
|---|
| 1053 | btAssert(calculatedBufSize <= i_dataBufferSize); | 
|---|
| 1054 |  | 
|---|
| 1055 | if (calculatedBufSize > i_dataBufferSize) | 
|---|
| 1056 | { | 
|---|
| 1057 | return NULL; | 
|---|
| 1058 | } | 
|---|
| 1059 |  | 
|---|
| 1060 | unsigned char *nodeData = (unsigned char *)bvh; | 
|---|
| 1061 | nodeData += sizeof(btQuantizedBvh); | 
|---|
| 1062 |  | 
|---|
| 1063 | unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 1064 | nodeData += sizeToAdd; | 
|---|
| 1065 |  | 
|---|
| 1066 | int nodeCount = bvh->m_curNodeIndex; | 
|---|
| 1067 |  | 
|---|
| 1068 | // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor | 
|---|
| 1069 | // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
| 1070 | new (bvh) btQuantizedBvh(*bvh, false); | 
|---|
| 1071 |  | 
|---|
| 1072 | if (bvh->m_useQuantization) | 
|---|
| 1073 | { | 
|---|
| 1074 | bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 1075 |  | 
|---|
| 1076 | if (i_swapEndian) | 
|---|
| 1077 | { | 
|---|
| 1078 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 1079 | { | 
|---|
| 1080 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
| 1081 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
| 1082 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
| 1083 |  | 
|---|
| 1084 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
| 1085 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
| 1086 | bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
| 1087 |  | 
|---|
| 1088 | bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
| 1089 | } | 
|---|
| 1090 | } | 
|---|
| 1091 | nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
| 1092 | } | 
|---|
| 1093 | else | 
|---|
| 1094 | { | 
|---|
| 1095 | bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 1096 |  | 
|---|
| 1097 | if (i_swapEndian) | 
|---|
| 1098 | { | 
|---|
| 1099 | for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 1100 | { | 
|---|
| 1101 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
| 1102 | btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
| 1103 |  | 
|---|
| 1104 | bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
| 1105 | bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
| 1106 | bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
| 1107 | } | 
|---|
| 1108 | } | 
|---|
| 1109 | nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
| 1110 | } | 
|---|
| 1111 |  | 
|---|
| 1112 | sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 1113 | nodeData += sizeToAdd; | 
|---|
| 1114 |  | 
|---|
| 1115 | // Now serialize the subtree headers | 
|---|
| 1116 | bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); | 
|---|
| 1117 | if (i_swapEndian) | 
|---|
| 1118 | { | 
|---|
| 1119 | for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) | 
|---|
| 1120 | { | 
|---|
| 1121 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 1122 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 1123 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 1124 |  | 
|---|
| 1125 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 1126 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 1127 | bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 1128 |  | 
|---|
| 1129 | bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
| 1130 | bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
| 1131 | } | 
|---|
| 1132 | } | 
|---|
| 1133 |  | 
|---|
| 1134 | return bvh; | 
|---|
| 1135 | } | 
|---|
| 1136 |  | 
|---|
| 1137 | // Constructor that prevents btVector3's default constructor from being called | 
|---|
| 1138 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : | 
|---|
| 1139 | m_bvhAabbMin(self.m_bvhAabbMin), | 
|---|
| 1140 | m_bvhAabbMax(self.m_bvhAabbMax), | 
|---|
| 1141 | m_bvhQuantization(self.m_bvhQuantization), | 
|---|
| 1142 | m_bulletVersion(BT_BULLET_VERSION) | 
|---|
| 1143 | { | 
|---|
| 1144 |  | 
|---|
| 1145 | } | 
|---|
| 1146 |  | 
|---|
| 1147 | void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData) | 
|---|
| 1148 | { | 
|---|
| 1149 | m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax); | 
|---|
| 1150 | m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin); | 
|---|
| 1151 | m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization); | 
|---|
| 1152 |  | 
|---|
| 1153 | m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex; | 
|---|
| 1154 | m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0; | 
|---|
| 1155 |  | 
|---|
| 1156 | { | 
|---|
| 1157 | int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes; | 
|---|
| 1158 | m_contiguousNodes.resize(numElem); | 
|---|
| 1159 |  | 
|---|
| 1160 | if (numElem) | 
|---|
| 1161 | { | 
|---|
| 1162 | btOptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr; | 
|---|
| 1163 |  | 
|---|
| 1164 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1165 | { | 
|---|
| 1166 | m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg); | 
|---|
| 1167 | m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg); | 
|---|
| 1168 | m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; | 
|---|
| 1169 | m_contiguousNodes[i].m_subPart = memPtr->m_subPart; | 
|---|
| 1170 | m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; | 
|---|
| 1171 | } | 
|---|
| 1172 | } | 
|---|
| 1173 | } | 
|---|
| 1174 |  | 
|---|
| 1175 | { | 
|---|
| 1176 | int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes; | 
|---|
| 1177 | m_quantizedContiguousNodes.resize(numElem); | 
|---|
| 1178 |  | 
|---|
| 1179 | if (numElem) | 
|---|
| 1180 | { | 
|---|
| 1181 | btQuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr; | 
|---|
| 1182 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1183 | { | 
|---|
| 1184 | m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; | 
|---|
| 1185 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; | 
|---|
| 1186 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
| 1187 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
| 1188 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
| 1189 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
| 1190 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
| 1191 | } | 
|---|
| 1192 | } | 
|---|
| 1193 | } | 
|---|
| 1194 |  | 
|---|
| 1195 | m_traversalMode = btTraversalMode(quantizedBvhFloatData.m_traversalMode); | 
|---|
| 1196 |  | 
|---|
| 1197 | { | 
|---|
| 1198 | int numElem = quantizedBvhFloatData.m_numSubtreeHeaders; | 
|---|
| 1199 | m_SubtreeHeaders.resize(numElem); | 
|---|
| 1200 | if (numElem) | 
|---|
| 1201 | { | 
|---|
| 1202 | btBvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr; | 
|---|
| 1203 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1204 | { | 
|---|
| 1205 | m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; | 
|---|
| 1206 | m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
| 1207 | m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
| 1208 | m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
| 1209 | m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
| 1210 | m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
| 1211 | m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; | 
|---|
| 1212 | m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; | 
|---|
| 1213 | } | 
|---|
| 1214 | } | 
|---|
| 1215 | } | 
|---|
| 1216 | } | 
|---|
| 1217 |  | 
|---|
| 1218 | void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData) | 
|---|
| 1219 | { | 
|---|
| 1220 | m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax); | 
|---|
| 1221 | m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin); | 
|---|
| 1222 | m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization); | 
|---|
| 1223 |  | 
|---|
| 1224 | m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex; | 
|---|
| 1225 | m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0; | 
|---|
| 1226 |  | 
|---|
| 1227 | { | 
|---|
| 1228 | int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes; | 
|---|
| 1229 | m_contiguousNodes.resize(numElem); | 
|---|
| 1230 |  | 
|---|
| 1231 | if (numElem) | 
|---|
| 1232 | { | 
|---|
| 1233 | btOptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr; | 
|---|
| 1234 |  | 
|---|
| 1235 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1236 | { | 
|---|
| 1237 | m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg); | 
|---|
| 1238 | m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg); | 
|---|
| 1239 | m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; | 
|---|
| 1240 | m_contiguousNodes[i].m_subPart = memPtr->m_subPart; | 
|---|
| 1241 | m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; | 
|---|
| 1242 | } | 
|---|
| 1243 | } | 
|---|
| 1244 | } | 
|---|
| 1245 |  | 
|---|
| 1246 | { | 
|---|
| 1247 | int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes; | 
|---|
| 1248 | m_quantizedContiguousNodes.resize(numElem); | 
|---|
| 1249 |  | 
|---|
| 1250 | if (numElem) | 
|---|
| 1251 | { | 
|---|
| 1252 | btQuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr; | 
|---|
| 1253 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1254 | { | 
|---|
| 1255 | m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; | 
|---|
| 1256 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; | 
|---|
| 1257 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
| 1258 | m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
| 1259 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
| 1260 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
| 1261 | m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
| 1262 | } | 
|---|
| 1263 | } | 
|---|
| 1264 | } | 
|---|
| 1265 |  | 
|---|
| 1266 | m_traversalMode = btTraversalMode(quantizedBvhDoubleData.m_traversalMode); | 
|---|
| 1267 |  | 
|---|
| 1268 | { | 
|---|
| 1269 | int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders; | 
|---|
| 1270 | m_SubtreeHeaders.resize(numElem); | 
|---|
| 1271 | if (numElem) | 
|---|
| 1272 | { | 
|---|
| 1273 | btBvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr; | 
|---|
| 1274 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1275 | { | 
|---|
| 1276 | m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; | 
|---|
| 1277 | m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; | 
|---|
| 1278 | m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; | 
|---|
| 1279 | m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; | 
|---|
| 1280 | m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; | 
|---|
| 1281 | m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; | 
|---|
| 1282 | m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; | 
|---|
| 1283 | m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; | 
|---|
| 1284 | } | 
|---|
| 1285 | } | 
|---|
| 1286 | } | 
|---|
| 1287 |  | 
|---|
| 1288 | } | 
|---|
| 1289 |  | 
|---|
| 1290 |  | 
|---|
| 1291 |  | 
|---|
| 1292 | ///fills the dataBuffer and returns the struct name (and 0 on failure) | 
|---|
| 1293 | const char*     btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const | 
|---|
| 1294 | { | 
|---|
| 1295 | btQuantizedBvhData* quantizedData = (btQuantizedBvhData*)dataBuffer; | 
|---|
| 1296 |  | 
|---|
| 1297 | m_bvhAabbMax.serialize(quantizedData->m_bvhAabbMax); | 
|---|
| 1298 | m_bvhAabbMin.serialize(quantizedData->m_bvhAabbMin); | 
|---|
| 1299 | m_bvhQuantization.serialize(quantizedData->m_bvhQuantization); | 
|---|
| 1300 |  | 
|---|
| 1301 | quantizedData->m_curNodeIndex = m_curNodeIndex; | 
|---|
| 1302 | quantizedData->m_useQuantization = m_useQuantization; | 
|---|
| 1303 |  | 
|---|
| 1304 | quantizedData->m_numContiguousLeafNodes = m_contiguousNodes.size(); | 
|---|
| 1305 | quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*) (m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0); | 
|---|
| 1306 | if (quantizedData->m_contiguousNodesPtr) | 
|---|
| 1307 | { | 
|---|
| 1308 | int sz = sizeof(btOptimizedBvhNodeData); | 
|---|
| 1309 | int numElem = m_contiguousNodes.size(); | 
|---|
| 1310 | btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
| 1311 | btOptimizedBvhNodeData* memPtr = (btOptimizedBvhNodeData*)chunk->m_oldPtr; | 
|---|
| 1312 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1313 | { | 
|---|
| 1314 | m_contiguousNodes[i].m_aabbMaxOrg.serialize(memPtr->m_aabbMaxOrg); | 
|---|
| 1315 | m_contiguousNodes[i].m_aabbMinOrg.serialize(memPtr->m_aabbMinOrg); | 
|---|
| 1316 | memPtr->m_escapeIndex = m_contiguousNodes[i].m_escapeIndex; | 
|---|
| 1317 | memPtr->m_subPart = m_contiguousNodes[i].m_subPart; | 
|---|
| 1318 | memPtr->m_triangleIndex = m_contiguousNodes[i].m_triangleIndex; | 
|---|
| 1319 | } | 
|---|
| 1320 | serializer->finalizeChunk(chunk,"btOptimizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_contiguousNodes[0]); | 
|---|
| 1321 | } | 
|---|
| 1322 |  | 
|---|
| 1323 | quantizedData->m_numQuantizedContiguousNodes = m_quantizedContiguousNodes.size(); | 
|---|
| 1324 | //      printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes); | 
|---|
| 1325 | quantizedData->m_quantizedContiguousNodesPtr =(btQuantizedBvhNodeData*) (m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0); | 
|---|
| 1326 | if (quantizedData->m_quantizedContiguousNodesPtr) | 
|---|
| 1327 | { | 
|---|
| 1328 | int sz = sizeof(btQuantizedBvhNodeData); | 
|---|
| 1329 | int numElem = m_quantizedContiguousNodes.size(); | 
|---|
| 1330 | btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
| 1331 | btQuantizedBvhNodeData* memPtr = (btQuantizedBvhNodeData*)chunk->m_oldPtr; | 
|---|
| 1332 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1333 | { | 
|---|
| 1334 | memPtr->m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex; | 
|---|
| 1335 | memPtr->m_quantizedAabbMax[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[0]; | 
|---|
| 1336 | memPtr->m_quantizedAabbMax[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[1]; | 
|---|
| 1337 | memPtr->m_quantizedAabbMax[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[2]; | 
|---|
| 1338 | memPtr->m_quantizedAabbMin[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[0]; | 
|---|
| 1339 | memPtr->m_quantizedAabbMin[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[1]; | 
|---|
| 1340 | memPtr->m_quantizedAabbMin[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[2]; | 
|---|
| 1341 | } | 
|---|
| 1342 | serializer->finalizeChunk(chunk,"btQuantizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_quantizedContiguousNodes[0]); | 
|---|
| 1343 | } | 
|---|
| 1344 |  | 
|---|
| 1345 | quantizedData->m_traversalMode = int(m_traversalMode); | 
|---|
| 1346 | quantizedData->m_numSubtreeHeaders = m_SubtreeHeaders.size(); | 
|---|
| 1347 |  | 
|---|
| 1348 | quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*) (m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0); | 
|---|
| 1349 | if (quantizedData->m_subTreeInfoPtr) | 
|---|
| 1350 | { | 
|---|
| 1351 | int sz = sizeof(btBvhSubtreeInfoData); | 
|---|
| 1352 | int numElem = m_SubtreeHeaders.size(); | 
|---|
| 1353 | btChunk* chunk = serializer->allocate(sz,numElem); | 
|---|
| 1354 | btBvhSubtreeInfoData* memPtr = (btBvhSubtreeInfoData*)chunk->m_oldPtr; | 
|---|
| 1355 | for (int i=0;i<numElem;i++,memPtr++) | 
|---|
| 1356 | { | 
|---|
| 1357 | memPtr->m_quantizedAabbMax[0] = m_SubtreeHeaders[i].m_quantizedAabbMax[0]; | 
|---|
| 1358 | memPtr->m_quantizedAabbMax[1] = m_SubtreeHeaders[i].m_quantizedAabbMax[1]; | 
|---|
| 1359 | memPtr->m_quantizedAabbMax[2] = m_SubtreeHeaders[i].m_quantizedAabbMax[2]; | 
|---|
| 1360 | memPtr->m_quantizedAabbMin[0] = m_SubtreeHeaders[i].m_quantizedAabbMin[0]; | 
|---|
| 1361 | memPtr->m_quantizedAabbMin[1] = m_SubtreeHeaders[i].m_quantizedAabbMin[1]; | 
|---|
| 1362 | memPtr->m_quantizedAabbMin[2] = m_SubtreeHeaders[i].m_quantizedAabbMin[2]; | 
|---|
| 1363 |  | 
|---|
| 1364 | memPtr->m_rootNodeIndex = m_SubtreeHeaders[i].m_rootNodeIndex; | 
|---|
| 1365 | memPtr->m_subtreeSize = m_SubtreeHeaders[i].m_subtreeSize; | 
|---|
| 1366 | } | 
|---|
| 1367 | serializer->finalizeChunk(chunk,"btBvhSubtreeInfoData",BT_ARRAY_CODE,(void*)&m_SubtreeHeaders[0]); | 
|---|
| 1368 | } | 
|---|
| 1369 | return btQuantizedBvhDataName; | 
|---|
| 1370 | } | 
|---|
| 1371 |  | 
|---|
| 1372 |  | 
|---|
| 1373 |  | 
|---|
| 1374 |  | 
|---|
| 1375 |  | 
|---|