| 1 | /* | 
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
| 4 |  | 
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
| 7 | Permission is granted to anyone to use this software for any purpose, | 
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely, | 
|---|
| 9 | subject to the following restrictions: | 
|---|
| 10 |  | 
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
| 14 | */ | 
|---|
| 15 | /* | 
|---|
| 16 | 2007-09-09 | 
|---|
| 17 | Refactored by Francisco Le?n | 
|---|
| 18 | email: projectileman@yahoo.com | 
|---|
| 19 | http://gimpact.sf.net | 
|---|
| 20 | */ | 
|---|
| 21 |  | 
|---|
| 22 | #include "btGeneric6DofConstraint.h" | 
|---|
| 23 | #include "BulletDynamics/Dynamics/btRigidBody.h" | 
|---|
| 24 | #include "LinearMath/btTransformUtil.h" | 
|---|
| 25 | #include <new> | 
|---|
| 26 |  | 
|---|
| 27 |  | 
|---|
| 28 | #define D6_USE_OBSOLETE_METHOD false | 
|---|
| 29 | //----------------------------------------------------------------------------- | 
|---|
| 30 |  | 
|---|
| 31 | btGeneric6DofConstraint::btGeneric6DofConstraint() | 
|---|
| 32 | :btTypedConstraint(D6_CONSTRAINT_TYPE), | 
|---|
| 33 | m_useLinearReferenceFrameA(true), | 
|---|
| 34 | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) | 
|---|
| 35 | { | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 | //----------------------------------------------------------------------------- | 
|---|
| 39 |  | 
|---|
| 40 | btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA) | 
|---|
| 41 | : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB) | 
|---|
| 42 | , m_frameInA(frameInA) | 
|---|
| 43 | , m_frameInB(frameInB), | 
|---|
| 44 | m_useLinearReferenceFrameA(useLinearReferenceFrameA), | 
|---|
| 45 | m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD) | 
|---|
| 46 | { | 
|---|
| 47 |  | 
|---|
| 48 | } | 
|---|
| 49 | //----------------------------------------------------------------------------- | 
|---|
| 50 |  | 
|---|
| 51 |  | 
|---|
| 52 | #define GENERIC_D6_DISABLE_WARMSTARTING 1 | 
|---|
| 53 |  | 
|---|
| 54 | //----------------------------------------------------------------------------- | 
|---|
| 55 |  | 
|---|
| 56 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index); | 
|---|
| 57 | btScalar btGetMatrixElem(const btMatrix3x3& mat, int index) | 
|---|
| 58 | { | 
|---|
| 59 | int i = index%3; | 
|---|
| 60 | int j = index/3; | 
|---|
| 61 | return mat[i][j]; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | //----------------------------------------------------------------------------- | 
|---|
| 65 |  | 
|---|
| 66 | ///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html | 
|---|
| 67 | bool    matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz); | 
|---|
| 68 | bool    matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz) | 
|---|
| 69 | { | 
|---|
| 70 | //      // rot =  cy*cz          -cy*sz           sy | 
|---|
| 71 | //      //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | 
|---|
| 72 | //      //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | 
|---|
| 73 | // | 
|---|
| 74 |  | 
|---|
| 75 | btScalar fi = btGetMatrixElem(mat,2); | 
|---|
| 76 | if (fi < btScalar(1.0f)) | 
|---|
| 77 | { | 
|---|
| 78 | if (fi > btScalar(-1.0f)) | 
|---|
| 79 | { | 
|---|
| 80 | xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8)); | 
|---|
| 81 | xyz[1] = btAsin(btGetMatrixElem(mat,2)); | 
|---|
| 82 | xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0)); | 
|---|
| 83 | return true; | 
|---|
| 84 | } | 
|---|
| 85 | else | 
|---|
| 86 | { | 
|---|
| 87 | // WARNING.  Not unique.  XA - ZA = -atan2(r10,r11) | 
|---|
| 88 | xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | 
|---|
| 89 | xyz[1] = -SIMD_HALF_PI; | 
|---|
| 90 | xyz[2] = btScalar(0.0); | 
|---|
| 91 | return false; | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 | else | 
|---|
| 95 | { | 
|---|
| 96 | // WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11) | 
|---|
| 97 | xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4)); | 
|---|
| 98 | xyz[1] = SIMD_HALF_PI; | 
|---|
| 99 | xyz[2] = 0.0; | 
|---|
| 100 | } | 
|---|
| 101 | return false; | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | //////////////////////////// btRotationalLimitMotor //////////////////////////////////// | 
|---|
| 105 |  | 
|---|
| 106 | int btRotationalLimitMotor::testLimitValue(btScalar test_value) | 
|---|
| 107 | { | 
|---|
| 108 | if(m_loLimit>m_hiLimit) | 
|---|
| 109 | { | 
|---|
| 110 | m_currentLimit = 0;//Free from violation | 
|---|
| 111 | return 0; | 
|---|
| 112 | } | 
|---|
| 113 |  | 
|---|
| 114 | if (test_value < m_loLimit) | 
|---|
| 115 | { | 
|---|
| 116 | m_currentLimit = 1;//low limit violation | 
|---|
| 117 | m_currentLimitError =  test_value - m_loLimit; | 
|---|
| 118 | return 1; | 
|---|
| 119 | } | 
|---|
| 120 | else if (test_value> m_hiLimit) | 
|---|
| 121 | { | 
|---|
| 122 | m_currentLimit = 2;//High limit violation | 
|---|
| 123 | m_currentLimitError = test_value - m_hiLimit; | 
|---|
| 124 | return 2; | 
|---|
| 125 | }; | 
|---|
| 126 |  | 
|---|
| 127 | m_currentLimit = 0;//Free from violation | 
|---|
| 128 | return 0; | 
|---|
| 129 |  | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | //----------------------------------------------------------------------------- | 
|---|
| 133 |  | 
|---|
| 134 | btScalar btRotationalLimitMotor::solveAngularLimits( | 
|---|
| 135 | btScalar timeStep,btVector3& axis,btScalar jacDiagABInv, | 
|---|
| 136 | btRigidBody * body0, btSolverBody& bodyA, btRigidBody * body1, btSolverBody& bodyB) | 
|---|
| 137 | { | 
|---|
| 138 | if (needApplyTorques()==false) return 0.0f; | 
|---|
| 139 |  | 
|---|
| 140 | btScalar target_velocity = m_targetVelocity; | 
|---|
| 141 | btScalar maxMotorForce = m_maxMotorForce; | 
|---|
| 142 |  | 
|---|
| 143 | //current error correction | 
|---|
| 144 | if (m_currentLimit!=0) | 
|---|
| 145 | { | 
|---|
| 146 | target_velocity = -m_ERP*m_currentLimitError/(timeStep); | 
|---|
| 147 | maxMotorForce = m_maxLimitForce; | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | maxMotorForce *= timeStep; | 
|---|
| 151 |  | 
|---|
| 152 | // current velocity difference | 
|---|
| 153 |  | 
|---|
| 154 | btVector3 angVelA; | 
|---|
| 155 | bodyA.getAngularVelocity(angVelA); | 
|---|
| 156 | btVector3 angVelB; | 
|---|
| 157 | bodyB.getAngularVelocity(angVelB); | 
|---|
| 158 |  | 
|---|
| 159 | btVector3 vel_diff; | 
|---|
| 160 | vel_diff = angVelA-angVelB; | 
|---|
| 161 |  | 
|---|
| 162 |  | 
|---|
| 163 |  | 
|---|
| 164 | btScalar rel_vel = axis.dot(vel_diff); | 
|---|
| 165 |  | 
|---|
| 166 | // correction velocity | 
|---|
| 167 | btScalar motor_relvel = m_limitSoftness*(target_velocity  - m_damping*rel_vel); | 
|---|
| 168 |  | 
|---|
| 169 |  | 
|---|
| 170 | if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON  ) | 
|---|
| 171 | { | 
|---|
| 172 | return 0.0f;//no need for applying force | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 |  | 
|---|
| 176 | // correction impulse | 
|---|
| 177 | btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv; | 
|---|
| 178 |  | 
|---|
| 179 | // clip correction impulse | 
|---|
| 180 | btScalar clippedMotorImpulse; | 
|---|
| 181 |  | 
|---|
| 182 | ///@todo: should clip against accumulated impulse | 
|---|
| 183 | if (unclippedMotorImpulse>0.0f) | 
|---|
| 184 | { | 
|---|
| 185 | clippedMotorImpulse =  unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse; | 
|---|
| 186 | } | 
|---|
| 187 | else | 
|---|
| 188 | { | 
|---|
| 189 | clippedMotorImpulse =  unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse; | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 |  | 
|---|
| 193 | // sort with accumulated impulses | 
|---|
| 194 | btScalar        lo = btScalar(-1e30); | 
|---|
| 195 | btScalar        hi = btScalar(1e30); | 
|---|
| 196 |  | 
|---|
| 197 | btScalar oldaccumImpulse = m_accumulatedImpulse; | 
|---|
| 198 | btScalar sum = oldaccumImpulse + clippedMotorImpulse; | 
|---|
| 199 | m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | 
|---|
| 200 |  | 
|---|
| 201 | clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse; | 
|---|
| 202 |  | 
|---|
| 203 | btVector3 motorImp = clippedMotorImpulse * axis; | 
|---|
| 204 |  | 
|---|
| 205 | //body0->applyTorqueImpulse(motorImp); | 
|---|
| 206 | //body1->applyTorqueImpulse(-motorImp); | 
|---|
| 207 |  | 
|---|
| 208 | bodyA.applyImpulse(btVector3(0,0,0), body0->getInvInertiaTensorWorld()*axis,clippedMotorImpulse); | 
|---|
| 209 | bodyB.applyImpulse(btVector3(0,0,0), body1->getInvInertiaTensorWorld()*axis,-clippedMotorImpulse); | 
|---|
| 210 |  | 
|---|
| 211 |  | 
|---|
| 212 | return clippedMotorImpulse; | 
|---|
| 213 |  | 
|---|
| 214 |  | 
|---|
| 215 | } | 
|---|
| 216 |  | 
|---|
| 217 | //////////////////////////// End btRotationalLimitMotor //////////////////////////////////// | 
|---|
| 218 |  | 
|---|
| 219 |  | 
|---|
| 220 |  | 
|---|
| 221 |  | 
|---|
| 222 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// | 
|---|
| 223 |  | 
|---|
| 224 |  | 
|---|
| 225 | int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value) | 
|---|
| 226 | { | 
|---|
| 227 | btScalar loLimit = m_lowerLimit[limitIndex]; | 
|---|
| 228 | btScalar hiLimit = m_upperLimit[limitIndex]; | 
|---|
| 229 | if(loLimit > hiLimit) | 
|---|
| 230 | { | 
|---|
| 231 | m_currentLimit[limitIndex] = 0;//Free from violation | 
|---|
| 232 | m_currentLimitError[limitIndex] = btScalar(0.f); | 
|---|
| 233 | return 0; | 
|---|
| 234 | } | 
|---|
| 235 |  | 
|---|
| 236 | if (test_value < loLimit) | 
|---|
| 237 | { | 
|---|
| 238 | m_currentLimit[limitIndex] = 2;//low limit violation | 
|---|
| 239 | m_currentLimitError[limitIndex] =  test_value - loLimit; | 
|---|
| 240 | return 2; | 
|---|
| 241 | } | 
|---|
| 242 | else if (test_value> hiLimit) | 
|---|
| 243 | { | 
|---|
| 244 | m_currentLimit[limitIndex] = 1;//High limit violation | 
|---|
| 245 | m_currentLimitError[limitIndex] = test_value - hiLimit; | 
|---|
| 246 | return 1; | 
|---|
| 247 | }; | 
|---|
| 248 |  | 
|---|
| 249 | m_currentLimit[limitIndex] = 0;//Free from violation | 
|---|
| 250 | m_currentLimitError[limitIndex] = btScalar(0.f); | 
|---|
| 251 | return 0; | 
|---|
| 252 | } // btTranslationalLimitMotor::testLimitValue() | 
|---|
| 253 |  | 
|---|
| 254 | //----------------------------------------------------------------------------- | 
|---|
| 255 |  | 
|---|
| 256 | btScalar btTranslationalLimitMotor::solveLinearAxis( | 
|---|
| 257 | btScalar timeStep, | 
|---|
| 258 | btScalar jacDiagABInv, | 
|---|
| 259 | btRigidBody& body1,btSolverBody& bodyA,const btVector3 &pointInA, | 
|---|
| 260 | btRigidBody& body2,btSolverBody& bodyB,const btVector3 &pointInB, | 
|---|
| 261 | int limit_index, | 
|---|
| 262 | const btVector3 & axis_normal_on_a, | 
|---|
| 263 | const btVector3 & anchorPos) | 
|---|
| 264 | { | 
|---|
| 265 |  | 
|---|
| 266 | ///find relative velocity | 
|---|
| 267 | //    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition(); | 
|---|
| 268 | //    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition(); | 
|---|
| 269 | btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition(); | 
|---|
| 270 | btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition(); | 
|---|
| 271 |  | 
|---|
| 272 | btVector3 vel1; | 
|---|
| 273 | bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1); | 
|---|
| 274 | btVector3 vel2; | 
|---|
| 275 | bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2); | 
|---|
| 276 | btVector3 vel = vel1 - vel2; | 
|---|
| 277 |  | 
|---|
| 278 | btScalar rel_vel = axis_normal_on_a.dot(vel); | 
|---|
| 279 |  | 
|---|
| 280 |  | 
|---|
| 281 |  | 
|---|
| 282 | /// apply displacement correction | 
|---|
| 283 |  | 
|---|
| 284 | //positional error (zeroth order error) | 
|---|
| 285 | btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a); | 
|---|
| 286 | btScalar        lo = btScalar(-1e30); | 
|---|
| 287 | btScalar        hi = btScalar(1e30); | 
|---|
| 288 |  | 
|---|
| 289 | btScalar minLimit = m_lowerLimit[limit_index]; | 
|---|
| 290 | btScalar maxLimit = m_upperLimit[limit_index]; | 
|---|
| 291 |  | 
|---|
| 292 | //handle the limits | 
|---|
| 293 | if (minLimit < maxLimit) | 
|---|
| 294 | { | 
|---|
| 295 | { | 
|---|
| 296 | if (depth > maxLimit) | 
|---|
| 297 | { | 
|---|
| 298 | depth -= maxLimit; | 
|---|
| 299 | lo = btScalar(0.); | 
|---|
| 300 |  | 
|---|
| 301 | } | 
|---|
| 302 | else | 
|---|
| 303 | { | 
|---|
| 304 | if (depth < minLimit) | 
|---|
| 305 | { | 
|---|
| 306 | depth -= minLimit; | 
|---|
| 307 | hi = btScalar(0.); | 
|---|
| 308 | } | 
|---|
| 309 | else | 
|---|
| 310 | { | 
|---|
| 311 | return 0.0f; | 
|---|
| 312 | } | 
|---|
| 313 | } | 
|---|
| 314 | } | 
|---|
| 315 | } | 
|---|
| 316 |  | 
|---|
| 317 | btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv; | 
|---|
| 318 |  | 
|---|
| 319 |  | 
|---|
| 320 |  | 
|---|
| 321 |  | 
|---|
| 322 | btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index]; | 
|---|
| 323 | btScalar sum = oldNormalImpulse + normalImpulse; | 
|---|
| 324 | m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum; | 
|---|
| 325 | normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse; | 
|---|
| 326 |  | 
|---|
| 327 | btVector3 impulse_vector = axis_normal_on_a * normalImpulse; | 
|---|
| 328 | //body1.applyImpulse( impulse_vector, rel_pos1); | 
|---|
| 329 | //body2.applyImpulse(-impulse_vector, rel_pos2); | 
|---|
| 330 |  | 
|---|
| 331 | btVector3 ftorqueAxis1 = rel_pos1.cross(axis_normal_on_a); | 
|---|
| 332 | btVector3 ftorqueAxis2 = rel_pos2.cross(axis_normal_on_a); | 
|---|
| 333 | bodyA.applyImpulse(axis_normal_on_a*body1.getInvMass(), body1.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse); | 
|---|
| 334 | bodyB.applyImpulse(axis_normal_on_a*body2.getInvMass(), body2.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse); | 
|---|
| 335 |  | 
|---|
| 336 |  | 
|---|
| 337 |  | 
|---|
| 338 |  | 
|---|
| 339 | return normalImpulse; | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | //////////////////////////// btTranslationalLimitMotor //////////////////////////////////// | 
|---|
| 343 |  | 
|---|
| 344 | void btGeneric6DofConstraint::calculateAngleInfo() | 
|---|
| 345 | { | 
|---|
| 346 | btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis(); | 
|---|
| 347 | matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); | 
|---|
| 348 | // in euler angle mode we do not actually constrain the angular velocity | 
|---|
| 349 | // along the axes axis[0] and axis[2] (although we do use axis[1]) : | 
|---|
| 350 | // | 
|---|
| 351 | //    to get                    constrain w2-w1 along           ...not | 
|---|
| 352 | //    ------                    ---------------------           ------ | 
|---|
| 353 | //    d(angle[0])/dt = 0        ax[1] x ax[2]                   ax[0] | 
|---|
| 354 | //    d(angle[1])/dt = 0        ax[1] | 
|---|
| 355 | //    d(angle[2])/dt = 0        ax[0] x ax[1]                   ax[2] | 
|---|
| 356 | // | 
|---|
| 357 | // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0. | 
|---|
| 358 | // to prove the result for angle[0], write the expression for angle[0] from | 
|---|
| 359 | // GetInfo1 then take the derivative. to prove this for angle[2] it is | 
|---|
| 360 | // easier to take the euler rate expression for d(angle[2])/dt with respect | 
|---|
| 361 | // to the components of w and set that to 0. | 
|---|
| 362 | btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0); | 
|---|
| 363 | btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2); | 
|---|
| 364 |  | 
|---|
| 365 | m_calculatedAxis[1] = axis2.cross(axis0); | 
|---|
| 366 | m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2); | 
|---|
| 367 | m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]); | 
|---|
| 368 |  | 
|---|
| 369 | m_calculatedAxis[0].normalize(); | 
|---|
| 370 | m_calculatedAxis[1].normalize(); | 
|---|
| 371 | m_calculatedAxis[2].normalize(); | 
|---|
| 372 |  | 
|---|
| 373 | } | 
|---|
| 374 |  | 
|---|
| 375 | //----------------------------------------------------------------------------- | 
|---|
| 376 |  | 
|---|
| 377 | void btGeneric6DofConstraint::calculateTransforms() | 
|---|
| 378 | { | 
|---|
| 379 | m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA; | 
|---|
| 380 | m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB; | 
|---|
| 381 | calculateLinearInfo(); | 
|---|
| 382 | calculateAngleInfo(); | 
|---|
| 383 | } | 
|---|
| 384 |  | 
|---|
| 385 | //----------------------------------------------------------------------------- | 
|---|
| 386 |  | 
|---|
| 387 | void btGeneric6DofConstraint::buildLinearJacobian( | 
|---|
| 388 | btJacobianEntry & jacLinear,const btVector3 & normalWorld, | 
|---|
| 389 | const btVector3 & pivotAInW,const btVector3 & pivotBInW) | 
|---|
| 390 | { | 
|---|
| 391 | new (&jacLinear) btJacobianEntry( | 
|---|
| 392 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 393 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 394 | pivotAInW - m_rbA.getCenterOfMassPosition(), | 
|---|
| 395 | pivotBInW - m_rbB.getCenterOfMassPosition(), | 
|---|
| 396 | normalWorld, | 
|---|
| 397 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
| 398 | m_rbA.getInvMass(), | 
|---|
| 399 | m_rbB.getInvInertiaDiagLocal(), | 
|---|
| 400 | m_rbB.getInvMass()); | 
|---|
| 401 | } | 
|---|
| 402 |  | 
|---|
| 403 | //----------------------------------------------------------------------------- | 
|---|
| 404 |  | 
|---|
| 405 | void btGeneric6DofConstraint::buildAngularJacobian( | 
|---|
| 406 | btJacobianEntry & jacAngular,const btVector3 & jointAxisW) | 
|---|
| 407 | { | 
|---|
| 408 | new (&jacAngular)      btJacobianEntry(jointAxisW, | 
|---|
| 409 | m_rbA.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 410 | m_rbB.getCenterOfMassTransform().getBasis().transpose(), | 
|---|
| 411 | m_rbA.getInvInertiaDiagLocal(), | 
|---|
| 412 | m_rbB.getInvInertiaDiagLocal()); | 
|---|
| 413 |  | 
|---|
| 414 | } | 
|---|
| 415 |  | 
|---|
| 416 | //----------------------------------------------------------------------------- | 
|---|
| 417 |  | 
|---|
| 418 | bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index) | 
|---|
| 419 | { | 
|---|
| 420 | btScalar angle = m_calculatedAxisAngleDiff[axis_index]; | 
|---|
| 421 | //test limits | 
|---|
| 422 | m_angularLimits[axis_index].testLimitValue(angle); | 
|---|
| 423 | return m_angularLimits[axis_index].needApplyTorques(); | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|
| 426 | //----------------------------------------------------------------------------- | 
|---|
| 427 |  | 
|---|
| 428 | void btGeneric6DofConstraint::buildJacobian() | 
|---|
| 429 | { | 
|---|
| 430 | if (m_useSolveConstraintObsolete) | 
|---|
| 431 | { | 
|---|
| 432 |  | 
|---|
| 433 | // Clear accumulated impulses for the next simulation step | 
|---|
| 434 | m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); | 
|---|
| 435 | int i; | 
|---|
| 436 | for(i = 0; i < 3; i++) | 
|---|
| 437 | { | 
|---|
| 438 | m_angularLimits[i].m_accumulatedImpulse = btScalar(0.); | 
|---|
| 439 | } | 
|---|
| 440 | //calculates transform | 
|---|
| 441 | calculateTransforms(); | 
|---|
| 442 |  | 
|---|
| 443 | //  const btVector3& pivotAInW = m_calculatedTransformA.getOrigin(); | 
|---|
| 444 | //  const btVector3& pivotBInW = m_calculatedTransformB.getOrigin(); | 
|---|
| 445 | calcAnchorPos(); | 
|---|
| 446 | btVector3 pivotAInW = m_AnchorPos; | 
|---|
| 447 | btVector3 pivotBInW = m_AnchorPos; | 
|---|
| 448 |  | 
|---|
| 449 | // not used here | 
|---|
| 450 | //    btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); | 
|---|
| 451 | //    btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); | 
|---|
| 452 |  | 
|---|
| 453 | btVector3 normalWorld; | 
|---|
| 454 | //linear part | 
|---|
| 455 | for (i=0;i<3;i++) | 
|---|
| 456 | { | 
|---|
| 457 | if (m_linearLimits.isLimited(i)) | 
|---|
| 458 | { | 
|---|
| 459 | if (m_useLinearReferenceFrameA) | 
|---|
| 460 | normalWorld = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
| 461 | else | 
|---|
| 462 | normalWorld = m_calculatedTransformB.getBasis().getColumn(i); | 
|---|
| 463 |  | 
|---|
| 464 | buildLinearJacobian( | 
|---|
| 465 | m_jacLinear[i],normalWorld , | 
|---|
| 466 | pivotAInW,pivotBInW); | 
|---|
| 467 |  | 
|---|
| 468 | } | 
|---|
| 469 | } | 
|---|
| 470 |  | 
|---|
| 471 | // angular part | 
|---|
| 472 | for (i=0;i<3;i++) | 
|---|
| 473 | { | 
|---|
| 474 | //calculates error angle | 
|---|
| 475 | if (testAngularLimitMotor(i)) | 
|---|
| 476 | { | 
|---|
| 477 | normalWorld = this->getAxis(i); | 
|---|
| 478 | // Create angular atom | 
|---|
| 479 | buildAngularJacobian(m_jacAng[i],normalWorld); | 
|---|
| 480 | } | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | } | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | //----------------------------------------------------------------------------- | 
|---|
| 487 |  | 
|---|
| 488 | void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info) | 
|---|
| 489 | { | 
|---|
| 490 | if (m_useSolveConstraintObsolete) | 
|---|
| 491 | { | 
|---|
| 492 | info->m_numConstraintRows = 0; | 
|---|
| 493 | info->nub = 0; | 
|---|
| 494 | } else | 
|---|
| 495 | { | 
|---|
| 496 | //prepare constraint | 
|---|
| 497 | calculateTransforms(); | 
|---|
| 498 | info->m_numConstraintRows = 0; | 
|---|
| 499 | info->nub = 6; | 
|---|
| 500 | int i; | 
|---|
| 501 | //test linear limits | 
|---|
| 502 | for(i = 0; i < 3; i++) | 
|---|
| 503 | { | 
|---|
| 504 | if(m_linearLimits.needApplyForce(i)) | 
|---|
| 505 | { | 
|---|
| 506 | info->m_numConstraintRows++; | 
|---|
| 507 | info->nub--; | 
|---|
| 508 | } | 
|---|
| 509 | } | 
|---|
| 510 | //test angular limits | 
|---|
| 511 | for (i=0;i<3 ;i++ ) | 
|---|
| 512 | { | 
|---|
| 513 | if(testAngularLimitMotor(i)) | 
|---|
| 514 | { | 
|---|
| 515 | info->m_numConstraintRows++; | 
|---|
| 516 | info->nub--; | 
|---|
| 517 | } | 
|---|
| 518 | } | 
|---|
| 519 | } | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | //----------------------------------------------------------------------------- | 
|---|
| 523 |  | 
|---|
| 524 | void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info) | 
|---|
| 525 | { | 
|---|
| 526 | btAssert(!m_useSolveConstraintObsolete); | 
|---|
| 527 | int row = setLinearLimits(info); | 
|---|
| 528 | setAngularLimits(info, row); | 
|---|
| 529 | } | 
|---|
| 530 |  | 
|---|
| 531 | //----------------------------------------------------------------------------- | 
|---|
| 532 |  | 
|---|
| 533 | int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info) | 
|---|
| 534 | { | 
|---|
| 535 | btGeneric6DofConstraint * d6constraint = this; | 
|---|
| 536 | int row = 0; | 
|---|
| 537 | //solve linear limits | 
|---|
| 538 | btRotationalLimitMotor limot; | 
|---|
| 539 | for (int i=0;i<3 ;i++ ) | 
|---|
| 540 | { | 
|---|
| 541 | if(m_linearLimits.needApplyForce(i)) | 
|---|
| 542 | { // re-use rotational motor code | 
|---|
| 543 | limot.m_bounce = btScalar(0.f); | 
|---|
| 544 | limot.m_currentLimit = m_linearLimits.m_currentLimit[i]; | 
|---|
| 545 | limot.m_currentLimitError  = m_linearLimits.m_currentLimitError[i]; | 
|---|
| 546 | limot.m_damping  = m_linearLimits.m_damping; | 
|---|
| 547 | limot.m_enableMotor  = m_linearLimits.m_enableMotor[i]; | 
|---|
| 548 | limot.m_ERP  = m_linearLimits.m_restitution; | 
|---|
| 549 | limot.m_hiLimit  = m_linearLimits.m_upperLimit[i]; | 
|---|
| 550 | limot.m_limitSoftness  = m_linearLimits.m_limitSoftness; | 
|---|
| 551 | limot.m_loLimit  = m_linearLimits.m_lowerLimit[i]; | 
|---|
| 552 | limot.m_maxLimitForce  = btScalar(0.f); | 
|---|
| 553 | limot.m_maxMotorForce  = m_linearLimits.m_maxMotorForce[i]; | 
|---|
| 554 | limot.m_targetVelocity  = m_linearLimits.m_targetVelocity[i]; | 
|---|
| 555 | btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
| 556 | row += get_limit_motor_info2(&limot, &m_rbA, &m_rbB, info, row, axis, 0); | 
|---|
| 557 | } | 
|---|
| 558 | } | 
|---|
| 559 | return row; | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | //----------------------------------------------------------------------------- | 
|---|
| 563 |  | 
|---|
| 564 | int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset) | 
|---|
| 565 | { | 
|---|
| 566 | btGeneric6DofConstraint * d6constraint = this; | 
|---|
| 567 | int row = row_offset; | 
|---|
| 568 | //solve angular limits | 
|---|
| 569 | for (int i=0;i<3 ;i++ ) | 
|---|
| 570 | { | 
|---|
| 571 | if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques()) | 
|---|
| 572 | { | 
|---|
| 573 | btVector3 axis = d6constraint->getAxis(i); | 
|---|
| 574 | row += get_limit_motor_info2( | 
|---|
| 575 | d6constraint->getRotationalLimitMotor(i), | 
|---|
| 576 | &m_rbA, | 
|---|
| 577 | &m_rbB, | 
|---|
| 578 | info,row,axis,1); | 
|---|
| 579 | } | 
|---|
| 580 | } | 
|---|
| 581 |  | 
|---|
| 582 | return row; | 
|---|
| 583 | } | 
|---|
| 584 |  | 
|---|
| 585 | //----------------------------------------------------------------------------- | 
|---|
| 586 |  | 
|---|
| 587 | void btGeneric6DofConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar  timeStep) | 
|---|
| 588 | { | 
|---|
| 589 | if (m_useSolveConstraintObsolete) | 
|---|
| 590 | { | 
|---|
| 591 |  | 
|---|
| 592 |  | 
|---|
| 593 | m_timeStep = timeStep; | 
|---|
| 594 |  | 
|---|
| 595 | //calculateTransforms(); | 
|---|
| 596 |  | 
|---|
| 597 | int i; | 
|---|
| 598 |  | 
|---|
| 599 | // linear | 
|---|
| 600 |  | 
|---|
| 601 | btVector3 pointInA = m_calculatedTransformA.getOrigin(); | 
|---|
| 602 | btVector3 pointInB = m_calculatedTransformB.getOrigin(); | 
|---|
| 603 |  | 
|---|
| 604 | btScalar jacDiagABInv; | 
|---|
| 605 | btVector3 linear_axis; | 
|---|
| 606 | for (i=0;i<3;i++) | 
|---|
| 607 | { | 
|---|
| 608 | if (m_linearLimits.isLimited(i)) | 
|---|
| 609 | { | 
|---|
| 610 | jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal(); | 
|---|
| 611 |  | 
|---|
| 612 | if (m_useLinearReferenceFrameA) | 
|---|
| 613 | linear_axis = m_calculatedTransformA.getBasis().getColumn(i); | 
|---|
| 614 | else | 
|---|
| 615 | linear_axis = m_calculatedTransformB.getBasis().getColumn(i); | 
|---|
| 616 |  | 
|---|
| 617 | m_linearLimits.solveLinearAxis( | 
|---|
| 618 | m_timeStep, | 
|---|
| 619 | jacDiagABInv, | 
|---|
| 620 | m_rbA,bodyA,pointInA, | 
|---|
| 621 | m_rbB,bodyB,pointInB, | 
|---|
| 622 | i,linear_axis, m_AnchorPos); | 
|---|
| 623 |  | 
|---|
| 624 | } | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 | // angular | 
|---|
| 628 | btVector3 angular_axis; | 
|---|
| 629 | btScalar angularJacDiagABInv; | 
|---|
| 630 | for (i=0;i<3;i++) | 
|---|
| 631 | { | 
|---|
| 632 | if (m_angularLimits[i].needApplyTorques()) | 
|---|
| 633 | { | 
|---|
| 634 |  | 
|---|
| 635 | // get axis | 
|---|
| 636 | angular_axis = getAxis(i); | 
|---|
| 637 |  | 
|---|
| 638 | angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal(); | 
|---|
| 639 |  | 
|---|
| 640 | m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,bodyA,&m_rbB,bodyB); | 
|---|
| 641 | } | 
|---|
| 642 | } | 
|---|
| 643 | } | 
|---|
| 644 | } | 
|---|
| 645 |  | 
|---|
| 646 | //----------------------------------------------------------------------------- | 
|---|
| 647 |  | 
|---|
| 648 | void    btGeneric6DofConstraint::updateRHS(btScalar     timeStep) | 
|---|
| 649 | { | 
|---|
| 650 | (void)timeStep; | 
|---|
| 651 |  | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | //----------------------------------------------------------------------------- | 
|---|
| 655 |  | 
|---|
| 656 | btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const | 
|---|
| 657 | { | 
|---|
| 658 | return m_calculatedAxis[axis_index]; | 
|---|
| 659 | } | 
|---|
| 660 |  | 
|---|
| 661 | //----------------------------------------------------------------------------- | 
|---|
| 662 |  | 
|---|
| 663 | btScalar btGeneric6DofConstraint::getAngle(int axis_index) const | 
|---|
| 664 | { | 
|---|
| 665 | return m_calculatedAxisAngleDiff[axis_index]; | 
|---|
| 666 | } | 
|---|
| 667 |  | 
|---|
| 668 | //----------------------------------------------------------------------------- | 
|---|
| 669 |  | 
|---|
| 670 | void btGeneric6DofConstraint::calcAnchorPos(void) | 
|---|
| 671 | { | 
|---|
| 672 | btScalar imA = m_rbA.getInvMass(); | 
|---|
| 673 | btScalar imB = m_rbB.getInvMass(); | 
|---|
| 674 | btScalar weight; | 
|---|
| 675 | if(imB == btScalar(0.0)) | 
|---|
| 676 | { | 
|---|
| 677 | weight = btScalar(1.0); | 
|---|
| 678 | } | 
|---|
| 679 | else | 
|---|
| 680 | { | 
|---|
| 681 | weight = imA / (imA + imB); | 
|---|
| 682 | } | 
|---|
| 683 | const btVector3& pA = m_calculatedTransformA.getOrigin(); | 
|---|
| 684 | const btVector3& pB = m_calculatedTransformB.getOrigin(); | 
|---|
| 685 | m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight); | 
|---|
| 686 | return; | 
|---|
| 687 | } // btGeneric6DofConstraint::calcAnchorPos() | 
|---|
| 688 |  | 
|---|
| 689 | //----------------------------------------------------------------------------- | 
|---|
| 690 |  | 
|---|
| 691 | void btGeneric6DofConstraint::calculateLinearInfo() | 
|---|
| 692 | { | 
|---|
| 693 | m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin(); | 
|---|
| 694 | m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff; | 
|---|
| 695 | for(int i = 0; i < 3; i++) | 
|---|
| 696 | { | 
|---|
| 697 | m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]); | 
|---|
| 698 | } | 
|---|
| 699 | } // btGeneric6DofConstraint::calculateLinearInfo() | 
|---|
| 700 |  | 
|---|
| 701 | //----------------------------------------------------------------------------- | 
|---|
| 702 |  | 
|---|
| 703 | int btGeneric6DofConstraint::get_limit_motor_info2( | 
|---|
| 704 | btRotationalLimitMotor * limot, | 
|---|
| 705 | btRigidBody * body0, btRigidBody * body1, | 
|---|
| 706 | btConstraintInfo2 *info, int row, btVector3& ax1, int rotational) | 
|---|
| 707 | { | 
|---|
| 708 | int srow = row * info->rowskip; | 
|---|
| 709 | int powered = limot->m_enableMotor; | 
|---|
| 710 | int limit = limot->m_currentLimit; | 
|---|
| 711 | if (powered || limit) | 
|---|
| 712 | {   // if the joint is powered, or has joint limits, add in the extra row | 
|---|
| 713 | btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis; | 
|---|
| 714 | btScalar *J2 = rotational ? info->m_J2angularAxis : 0; | 
|---|
| 715 | J1[srow+0] = ax1[0]; | 
|---|
| 716 | J1[srow+1] = ax1[1]; | 
|---|
| 717 | J1[srow+2] = ax1[2]; | 
|---|
| 718 | if(rotational) | 
|---|
| 719 | { | 
|---|
| 720 | J2[srow+0] = -ax1[0]; | 
|---|
| 721 | J2[srow+1] = -ax1[1]; | 
|---|
| 722 | J2[srow+2] = -ax1[2]; | 
|---|
| 723 | } | 
|---|
| 724 | if((!rotational) && limit) | 
|---|
| 725 | { | 
|---|
| 726 | btVector3 ltd;  // Linear Torque Decoupling vector | 
|---|
| 727 | btVector3 c = m_calculatedTransformB.getOrigin() - body0->getCenterOfMassPosition(); | 
|---|
| 728 | ltd = c.cross(ax1); | 
|---|
| 729 | info->m_J1angularAxis[srow+0] = ltd[0]; | 
|---|
| 730 | info->m_J1angularAxis[srow+1] = ltd[1]; | 
|---|
| 731 | info->m_J1angularAxis[srow+2] = ltd[2]; | 
|---|
| 732 |  | 
|---|
| 733 | c = m_calculatedTransformB.getOrigin() - body1->getCenterOfMassPosition(); | 
|---|
| 734 | ltd = -c.cross(ax1); | 
|---|
| 735 | info->m_J2angularAxis[srow+0] = ltd[0]; | 
|---|
| 736 | info->m_J2angularAxis[srow+1] = ltd[1]; | 
|---|
| 737 | info->m_J2angularAxis[srow+2] = ltd[2]; | 
|---|
| 738 | } | 
|---|
| 739 | // if we're limited low and high simultaneously, the joint motor is | 
|---|
| 740 | // ineffective | 
|---|
| 741 | if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = 0; | 
|---|
| 742 | info->m_constraintError[srow] = btScalar(0.f); | 
|---|
| 743 | if (powered) | 
|---|
| 744 | { | 
|---|
| 745 | info->cfm[srow] = 0.0f; | 
|---|
| 746 | if(!limit) | 
|---|
| 747 | { | 
|---|
| 748 | info->m_constraintError[srow] += limot->m_targetVelocity; | 
|---|
| 749 | info->m_lowerLimit[srow] = -limot->m_maxMotorForce; | 
|---|
| 750 | info->m_upperLimit[srow] = limot->m_maxMotorForce; | 
|---|
| 751 | } | 
|---|
| 752 | } | 
|---|
| 753 | if(limit) | 
|---|
| 754 | { | 
|---|
| 755 | btScalar k = info->fps * limot->m_ERP; | 
|---|
| 756 | if(!rotational) | 
|---|
| 757 | { | 
|---|
| 758 | info->m_constraintError[srow] += k * limot->m_currentLimitError; | 
|---|
| 759 | } | 
|---|
| 760 | else | 
|---|
| 761 | { | 
|---|
| 762 | info->m_constraintError[srow] += -k * limot->m_currentLimitError; | 
|---|
| 763 | } | 
|---|
| 764 | info->cfm[srow] = 0.0f; | 
|---|
| 765 | if (limot->m_loLimit == limot->m_hiLimit) | 
|---|
| 766 | {   // limited low and high simultaneously | 
|---|
| 767 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 768 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 769 | } | 
|---|
| 770 | else | 
|---|
| 771 | { | 
|---|
| 772 | if (limit == 1) | 
|---|
| 773 | { | 
|---|
| 774 | info->m_lowerLimit[srow] = 0; | 
|---|
| 775 | info->m_upperLimit[srow] = SIMD_INFINITY; | 
|---|
| 776 | } | 
|---|
| 777 | else | 
|---|
| 778 | { | 
|---|
| 779 | info->m_lowerLimit[srow] = -SIMD_INFINITY; | 
|---|
| 780 | info->m_upperLimit[srow] = 0; | 
|---|
| 781 | } | 
|---|
| 782 | // deal with bounce | 
|---|
| 783 | if (limot->m_bounce > 0) | 
|---|
| 784 | { | 
|---|
| 785 | // calculate joint velocity | 
|---|
| 786 | btScalar vel; | 
|---|
| 787 | if (rotational) | 
|---|
| 788 | { | 
|---|
| 789 | vel = body0->getAngularVelocity().dot(ax1); | 
|---|
| 790 | if (body1) | 
|---|
| 791 | vel -= body1->getAngularVelocity().dot(ax1); | 
|---|
| 792 | } | 
|---|
| 793 | else | 
|---|
| 794 | { | 
|---|
| 795 | vel = body0->getLinearVelocity().dot(ax1); | 
|---|
| 796 | if (body1) | 
|---|
| 797 | vel -= body1->getLinearVelocity().dot(ax1); | 
|---|
| 798 | } | 
|---|
| 799 | // only apply bounce if the velocity is incoming, and if the | 
|---|
| 800 | // resulting c[] exceeds what we already have. | 
|---|
| 801 | if (limit == 1) | 
|---|
| 802 | { | 
|---|
| 803 | if (vel < 0) | 
|---|
| 804 | { | 
|---|
| 805 | btScalar newc = -limot->m_bounce* vel; | 
|---|
| 806 | if (newc > info->m_constraintError[srow]) | 
|---|
| 807 | info->m_constraintError[srow] = newc; | 
|---|
| 808 | } | 
|---|
| 809 | } | 
|---|
| 810 | else | 
|---|
| 811 | { | 
|---|
| 812 | if (vel > 0) | 
|---|
| 813 | { | 
|---|
| 814 | btScalar newc = -limot->m_bounce * vel; | 
|---|
| 815 | if (newc < info->m_constraintError[srow]) | 
|---|
| 816 | info->m_constraintError[srow] = newc; | 
|---|
| 817 | } | 
|---|
| 818 | } | 
|---|
| 819 | } | 
|---|
| 820 | } | 
|---|
| 821 | } | 
|---|
| 822 | return 1; | 
|---|
| 823 | } | 
|---|
| 824 | else return 0; | 
|---|
| 825 | } | 
|---|
| 826 |  | 
|---|
| 827 | //----------------------------------------------------------------------------- | 
|---|
| 828 | //----------------------------------------------------------------------------- | 
|---|
| 829 | //----------------------------------------------------------------------------- | 
|---|