| 1 | /* | 
|---|
| 2 | Bullet Continuous Collision Detection and Physics Library | 
|---|
| 3 | Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/ | 
|---|
| 4 |  | 
|---|
| 5 | This software is provided 'as-is', without any express or implied warranty. | 
|---|
| 6 | In no event will the authors be held liable for any damages arising from the use of this software. | 
|---|
| 7 | Permission is granted to anyone to use this software for any purpose,  | 
|---|
| 8 | including commercial applications, and to alter it and redistribute it freely,  | 
|---|
| 9 | subject to the following restrictions: | 
|---|
| 10 |  | 
|---|
| 11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 
|---|
| 12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 
|---|
| 13 | 3. This notice may not be removed or altered from any source distribution. | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | #include "btQuantizedBvh.h" | 
|---|
| 17 |  | 
|---|
| 18 | #include "LinearMath/btAabbUtil2.h" | 
|---|
| 19 | #include "LinearMath/btIDebugDraw.h" | 
|---|
| 20 |  | 
|---|
| 21 |  | 
|---|
| 22 | btQuantizedBvh::btQuantizedBvh() : m_useQuantization(false),  | 
|---|
| 23 |                                         //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) | 
|---|
| 24 |                                         m_traversalMode(TRAVERSAL_STACKLESS) | 
|---|
| 25 |                                         //m_traversalMode(TRAVERSAL_RECURSIVE) | 
|---|
| 26 |                                         ,m_subtreeHeaderCount(0) //PCK: add this line | 
|---|
| 27 | {  | 
|---|
| 28 |  | 
|---|
| 29 | } | 
|---|
| 30 |  | 
|---|
| 31 |  | 
|---|
| 32 |  | 
|---|
| 33 |  | 
|---|
| 34 |  | 
|---|
| 35 | void btQuantizedBvh::buildInternal() | 
|---|
| 36 | { | 
|---|
| 37 |         ///assumes that caller filled in the m_quantizedLeafNodes | 
|---|
| 38 |         m_useQuantization = true; | 
|---|
| 39 |         int numLeafNodes = 0; | 
|---|
| 40 |          | 
|---|
| 41 |         if (m_useQuantization) | 
|---|
| 42 |         { | 
|---|
| 43 |                 //now we have an array of leafnodes in m_leafNodes | 
|---|
| 44 |                 numLeafNodes = m_quantizedLeafNodes.size(); | 
|---|
| 45 |  | 
|---|
| 46 |                 m_quantizedContiguousNodes.resize(2*numLeafNodes); | 
|---|
| 47 |  | 
|---|
| 48 |         } | 
|---|
| 49 |  | 
|---|
| 50 |         m_curNodeIndex = 0; | 
|---|
| 51 |  | 
|---|
| 52 |         buildTree(0,numLeafNodes); | 
|---|
| 53 |  | 
|---|
| 54 |         ///if the entire tree is small then subtree size, we need to create a header info for the tree | 
|---|
| 55 |         if(m_useQuantization && !m_SubtreeHeaders.size()) | 
|---|
| 56 |         { | 
|---|
| 57 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 58 |                 subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); | 
|---|
| 59 |                 subtree.m_rootNodeIndex = 0; | 
|---|
| 60 |                 subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); | 
|---|
| 61 |         } | 
|---|
| 62 |  | 
|---|
| 63 |         //PCK: update the copy of the size | 
|---|
| 64 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 65 |  | 
|---|
| 66 |         //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary | 
|---|
| 67 |         m_quantizedLeafNodes.clear(); | 
|---|
| 68 |         m_leafNodes.clear(); | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 |  | 
|---|
| 73 | ///just for debugging, to visualize the individual patches/subtrees | 
|---|
| 74 | #ifdef DEBUG_PATCH_COLORS | 
|---|
| 75 | btVector3 color[4]= | 
|---|
| 76 | { | 
|---|
| 77 |         btVector3(255,0,0), | 
|---|
| 78 |         btVector3(0,255,0), | 
|---|
| 79 |         btVector3(0,0,255), | 
|---|
| 80 |         btVector3(0,255,255) | 
|---|
| 81 | }; | 
|---|
| 82 | #endif //DEBUG_PATCH_COLORS | 
|---|
| 83 |  | 
|---|
| 84 |  | 
|---|
| 85 |  | 
|---|
| 86 | void    btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) | 
|---|
| 87 | { | 
|---|
| 88 |         //enlarge the AABB to avoid division by zero when initializing the quantization values | 
|---|
| 89 |         btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); | 
|---|
| 90 |         m_bvhAabbMin = bvhAabbMin - clampValue; | 
|---|
| 91 |         m_bvhAabbMax = bvhAabbMax + clampValue; | 
|---|
| 92 |         btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; | 
|---|
| 93 |         m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; | 
|---|
| 94 |         m_useQuantization = true; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 |  | 
|---|
| 99 |  | 
|---|
| 100 | btQuantizedBvh::~btQuantizedBvh() | 
|---|
| 101 | { | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 105 | int gStackDepth = 0; | 
|---|
| 106 | int gMaxStackDepth = 0; | 
|---|
| 107 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 108 |  | 
|---|
| 109 | void    btQuantizedBvh::buildTree       (int startIndex,int endIndex) | 
|---|
| 110 | { | 
|---|
| 111 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 112 |         gStackDepth++; | 
|---|
| 113 |         if (gStackDepth > gMaxStackDepth) | 
|---|
| 114 |                 gMaxStackDepth = gStackDepth; | 
|---|
| 115 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 116 |  | 
|---|
| 117 |  | 
|---|
| 118 |         int splitAxis, splitIndex, i; | 
|---|
| 119 |         int numIndices =endIndex-startIndex; | 
|---|
| 120 |         int curIndex = m_curNodeIndex; | 
|---|
| 121 |  | 
|---|
| 122 |         assert(numIndices>0); | 
|---|
| 123 |  | 
|---|
| 124 |         if (numIndices==1) | 
|---|
| 125 |         { | 
|---|
| 126 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 127 |                 gStackDepth--; | 
|---|
| 128 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 129 |                  | 
|---|
| 130 |                 assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); | 
|---|
| 131 |  | 
|---|
| 132 |                 m_curNodeIndex++; | 
|---|
| 133 |                 return;  | 
|---|
| 134 |         } | 
|---|
| 135 |         //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. | 
|---|
| 136 |          | 
|---|
| 137 |         splitAxis = calcSplittingAxis(startIndex,endIndex); | 
|---|
| 138 |  | 
|---|
| 139 |         splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); | 
|---|
| 140 |  | 
|---|
| 141 |         int internalNodeIndex = m_curNodeIndex; | 
|---|
| 142 |          | 
|---|
| 143 |         setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin); | 
|---|
| 144 |         setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax); | 
|---|
| 145 |          | 
|---|
| 146 |         for (i=startIndex;i<endIndex;i++) | 
|---|
| 147 |         { | 
|---|
| 148 |                 mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); | 
|---|
| 149 |         } | 
|---|
| 150 |  | 
|---|
| 151 |         m_curNodeIndex++; | 
|---|
| 152 |          | 
|---|
| 153 |  | 
|---|
| 154 |         //internalNode->m_escapeIndex; | 
|---|
| 155 |          | 
|---|
| 156 |         int leftChildNodexIndex = m_curNodeIndex; | 
|---|
| 157 |  | 
|---|
| 158 |         //build left child tree | 
|---|
| 159 |         buildTree(startIndex,splitIndex); | 
|---|
| 160 |  | 
|---|
| 161 |         int rightChildNodexIndex = m_curNodeIndex; | 
|---|
| 162 |         //build right child tree | 
|---|
| 163 |         buildTree(splitIndex,endIndex); | 
|---|
| 164 |  | 
|---|
| 165 | #ifdef DEBUG_TREE_BUILDING | 
|---|
| 166 |         gStackDepth--; | 
|---|
| 167 | #endif //DEBUG_TREE_BUILDING | 
|---|
| 168 |  | 
|---|
| 169 |         int escapeIndex = m_curNodeIndex - curIndex; | 
|---|
| 170 |  | 
|---|
| 171 |         if (m_useQuantization) | 
|---|
| 172 |         { | 
|---|
| 173 |                 //escapeIndex is the number of nodes of this subtree | 
|---|
| 174 |                 const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); | 
|---|
| 175 |                 const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; | 
|---|
| 176 |                 if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 177 |                 { | 
|---|
| 178 |                         updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); | 
|---|
| 179 |                 } | 
|---|
| 180 |         } | 
|---|
| 181 |  | 
|---|
| 182 |         setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); | 
|---|
| 183 |  | 
|---|
| 184 | } | 
|---|
| 185 |  | 
|---|
| 186 | void    btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) | 
|---|
| 187 | { | 
|---|
| 188 |         btAssert(m_useQuantization); | 
|---|
| 189 |  | 
|---|
| 190 |         btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; | 
|---|
| 191 |         int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); | 
|---|
| 192 |         int leftSubTreeSizeInBytes =  leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
| 193 |          | 
|---|
| 194 |         btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; | 
|---|
| 195 |         int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); | 
|---|
| 196 |         int rightSubTreeSizeInBytes =  rightSubTreeSize *  static_cast<int>(sizeof(btQuantizedBvhNode)); | 
|---|
| 197 |  | 
|---|
| 198 |         if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 199 |         { | 
|---|
| 200 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 201 |                 subtree.setAabbFromQuantizeNode(leftChildNode); | 
|---|
| 202 |                 subtree.m_rootNodeIndex = leftChildNodexIndex; | 
|---|
| 203 |                 subtree.m_subtreeSize = leftSubTreeSize; | 
|---|
| 204 |         } | 
|---|
| 205 |  | 
|---|
| 206 |         if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) | 
|---|
| 207 |         { | 
|---|
| 208 |                 btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); | 
|---|
| 209 |                 subtree.setAabbFromQuantizeNode(rightChildNode); | 
|---|
| 210 |                 subtree.m_rootNodeIndex = rightChildNodexIndex; | 
|---|
| 211 |                 subtree.m_subtreeSize = rightSubTreeSize; | 
|---|
| 212 |         } | 
|---|
| 213 |  | 
|---|
| 214 |         //PCK: update the copy of the size | 
|---|
| 215 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 |  | 
|---|
| 219 | int     btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) | 
|---|
| 220 | { | 
|---|
| 221 |         int i; | 
|---|
| 222 |         int splitIndex =startIndex; | 
|---|
| 223 |         int numIndices = endIndex - startIndex; | 
|---|
| 224 |         btScalar splitValue; | 
|---|
| 225 |  | 
|---|
| 226 |         btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 227 |         for (i=startIndex;i<endIndex;i++) | 
|---|
| 228 |         { | 
|---|
| 229 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 230 |                 means+=center; | 
|---|
| 231 |         } | 
|---|
| 232 |         means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
| 233 |          | 
|---|
| 234 |         splitValue = means[splitAxis]; | 
|---|
| 235 |          | 
|---|
| 236 |         //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. | 
|---|
| 237 |         for (i=startIndex;i<endIndex;i++) | 
|---|
| 238 |         { | 
|---|
| 239 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 240 |                 if (center[splitAxis] > splitValue) | 
|---|
| 241 |                 { | 
|---|
| 242 |                         //swap | 
|---|
| 243 |                         swapLeafNodes(i,splitIndex); | 
|---|
| 244 |                         splitIndex++; | 
|---|
| 245 |                 } | 
|---|
| 246 |         } | 
|---|
| 247 |  | 
|---|
| 248 |         //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex | 
|---|
| 249 |         //otherwise the tree-building might fail due to stack-overflows in certain cases. | 
|---|
| 250 |         //unbalanced1 is unsafe: it can cause stack overflows | 
|---|
| 251 |         //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); | 
|---|
| 252 |  | 
|---|
| 253 |         //unbalanced2 should work too: always use center (perfect balanced trees)        | 
|---|
| 254 |         //bool unbalanced2 = true; | 
|---|
| 255 |  | 
|---|
| 256 |         //this should be safe too: | 
|---|
| 257 |         int rangeBalancedIndices = numIndices/3; | 
|---|
| 258 |         bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); | 
|---|
| 259 |          | 
|---|
| 260 |         if (unbalanced) | 
|---|
| 261 |         { | 
|---|
| 262 |                 splitIndex = startIndex+ (numIndices>>1); | 
|---|
| 263 |         } | 
|---|
| 264 |  | 
|---|
| 265 |         bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); | 
|---|
| 266 |         (void)unbal; | 
|---|
| 267 |         btAssert(!unbal); | 
|---|
| 268 |  | 
|---|
| 269 |         return splitIndex; | 
|---|
| 270 | } | 
|---|
| 271 |  | 
|---|
| 272 |  | 
|---|
| 273 | int     btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) | 
|---|
| 274 | { | 
|---|
| 275 |         int i; | 
|---|
| 276 |  | 
|---|
| 277 |         btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 278 |         btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); | 
|---|
| 279 |         int numIndices = endIndex-startIndex; | 
|---|
| 280 |  | 
|---|
| 281 |         for (i=startIndex;i<endIndex;i++) | 
|---|
| 282 |         { | 
|---|
| 283 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 284 |                 means+=center; | 
|---|
| 285 |         } | 
|---|
| 286 |         means *= (btScalar(1.)/(btScalar)numIndices); | 
|---|
| 287 |                  | 
|---|
| 288 |         for (i=startIndex;i<endIndex;i++) | 
|---|
| 289 |         { | 
|---|
| 290 |                 btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i)); | 
|---|
| 291 |                 btVector3 diff2 = center-means; | 
|---|
| 292 |                 diff2 = diff2 * diff2; | 
|---|
| 293 |                 variance += diff2; | 
|---|
| 294 |         } | 
|---|
| 295 |         variance *= (btScalar(1.)/      ((btScalar)numIndices-1)        ); | 
|---|
| 296 |          | 
|---|
| 297 |         return variance.maxAxis(); | 
|---|
| 298 | } | 
|---|
| 299 |  | 
|---|
| 300 |  | 
|---|
| 301 |  | 
|---|
| 302 | void    btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 303 | { | 
|---|
| 304 |         //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) | 
|---|
| 305 |  | 
|---|
| 306 |         if (m_useQuantization) | 
|---|
| 307 |         { | 
|---|
| 308 |                 ///quantize query AABB | 
|---|
| 309 |                 unsigned short int quantizedQueryAabbMin[3]; | 
|---|
| 310 |                 unsigned short int quantizedQueryAabbMax[3]; | 
|---|
| 311 |                 quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); | 
|---|
| 312 |                 quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); | 
|---|
| 313 |  | 
|---|
| 314 |                 switch (m_traversalMode) | 
|---|
| 315 |                 { | 
|---|
| 316 |                 case TRAVERSAL_STACKLESS: | 
|---|
| 317 |                                 walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); | 
|---|
| 318 |                         break; | 
|---|
| 319 |                 case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: | 
|---|
| 320 |                                 walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 321 |                         break; | 
|---|
| 322 |                 case TRAVERSAL_RECURSIVE: | 
|---|
| 323 |                         { | 
|---|
| 324 |                                 const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; | 
|---|
| 325 |                                 walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 326 |                         } | 
|---|
| 327 |                         break; | 
|---|
| 328 |                 default: | 
|---|
| 329 |                         //unsupported | 
|---|
| 330 |                         btAssert(0); | 
|---|
| 331 |                 } | 
|---|
| 332 |         } else | 
|---|
| 333 |         { | 
|---|
| 334 |                 walkStacklessTree(nodeCallback,aabbMin,aabbMax); | 
|---|
| 335 |         } | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 |  | 
|---|
| 339 | int maxIterations = 0; | 
|---|
| 340 |  | 
|---|
| 341 | void    btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 342 | { | 
|---|
| 343 |         btAssert(!m_useQuantization); | 
|---|
| 344 |  | 
|---|
| 345 |         const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0]; | 
|---|
| 346 |         int escapeIndex, curIndex = 0; | 
|---|
| 347 |         int walkIterations = 0; | 
|---|
| 348 |         bool isLeafNode; | 
|---|
| 349 |         //PCK: unsigned instead of bool | 
|---|
| 350 |         unsigned aabbOverlap; | 
|---|
| 351 |  | 
|---|
| 352 |         while (curIndex < m_curNodeIndex) | 
|---|
| 353 |         { | 
|---|
| 354 |                 //catch bugs in tree data | 
|---|
| 355 |                 assert (walkIterations < m_curNodeIndex); | 
|---|
| 356 |  | 
|---|
| 357 |                 walkIterations++; | 
|---|
| 358 |                 aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); | 
|---|
| 359 |                 isLeafNode = rootNode->m_escapeIndex == -1; | 
|---|
| 360 |                  | 
|---|
| 361 |                 //PCK: unsigned instead of bool | 
|---|
| 362 |                 if (isLeafNode && (aabbOverlap != 0)) | 
|---|
| 363 |                 { | 
|---|
| 364 |                         nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); | 
|---|
| 365 |                 }  | 
|---|
| 366 |                  | 
|---|
| 367 |                 //PCK: unsigned instead of bool | 
|---|
| 368 |                 if ((aabbOverlap != 0) || isLeafNode) | 
|---|
| 369 |                 { | 
|---|
| 370 |                         rootNode++; | 
|---|
| 371 |                         curIndex++; | 
|---|
| 372 |                 } else | 
|---|
| 373 |                 { | 
|---|
| 374 |                         escapeIndex = rootNode->m_escapeIndex; | 
|---|
| 375 |                         rootNode += escapeIndex; | 
|---|
| 376 |                         curIndex += escapeIndex; | 
|---|
| 377 |                 } | 
|---|
| 378 |         } | 
|---|
| 379 |         if (maxIterations < walkIterations) | 
|---|
| 380 |                 maxIterations = walkIterations; | 
|---|
| 381 |  | 
|---|
| 382 | } | 
|---|
| 383 |  | 
|---|
| 384 | /* | 
|---|
| 385 | ///this was the original recursive traversal, before we optimized towards stackless traversal | 
|---|
| 386 | void    btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 387 | { | 
|---|
| 388 |         bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); | 
|---|
| 389 |         if (aabbOverlap) | 
|---|
| 390 |         { | 
|---|
| 391 |                 isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); | 
|---|
| 392 |                 if (isLeafNode) | 
|---|
| 393 |                 { | 
|---|
| 394 |                         nodeCallback->processNode(rootNode); | 
|---|
| 395 |                 } else | 
|---|
| 396 |                 { | 
|---|
| 397 |                         walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); | 
|---|
| 398 |                         walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); | 
|---|
| 399 |                 } | 
|---|
| 400 |         } | 
|---|
| 401 |  | 
|---|
| 402 | } | 
|---|
| 403 | */ | 
|---|
| 404 |  | 
|---|
| 405 | void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
| 406 | { | 
|---|
| 407 |         btAssert(m_useQuantization); | 
|---|
| 408 |          | 
|---|
| 409 |         bool isLeafNode; | 
|---|
| 410 |         //PCK: unsigned instead of bool | 
|---|
| 411 |         unsigned aabbOverlap; | 
|---|
| 412 |  | 
|---|
| 413 |         //PCK: unsigned instead of bool | 
|---|
| 414 |         aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); | 
|---|
| 415 |         isLeafNode = currentNode->isLeafNode(); | 
|---|
| 416 |                  | 
|---|
| 417 |         //PCK: unsigned instead of bool | 
|---|
| 418 |         if (aabbOverlap != 0) | 
|---|
| 419 |         { | 
|---|
| 420 |                 if (isLeafNode) | 
|---|
| 421 |                 { | 
|---|
| 422 |                         nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); | 
|---|
| 423 |                 } else | 
|---|
| 424 |                 { | 
|---|
| 425 |                         //process left and right children | 
|---|
| 426 |                         const btQuantizedBvhNode* leftChildNode = currentNode+1; | 
|---|
| 427 |                         walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 428 |  | 
|---|
| 429 |                         const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); | 
|---|
| 430 |                         walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); | 
|---|
| 431 |                 } | 
|---|
| 432 |         }                | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 |  | 
|---|
| 436 |  | 
|---|
| 437 |  | 
|---|
| 438 |  | 
|---|
| 439 | void    btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const | 
|---|
| 440 | { | 
|---|
| 441 |         btAssert(m_useQuantization); | 
|---|
| 442 |          | 
|---|
| 443 |         int curIndex = startNodeIndex; | 
|---|
| 444 |         int walkIterations = 0; | 
|---|
| 445 |         int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
| 446 |         (void)subTreeSize; | 
|---|
| 447 |  | 
|---|
| 448 |         const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
| 449 |         int escapeIndex; | 
|---|
| 450 |          | 
|---|
| 451 |         bool isLeafNode; | 
|---|
| 452 |         //PCK: unsigned instead of bool | 
|---|
| 453 |         unsigned boxBoxOverlap = 0; | 
|---|
| 454 |         unsigned rayBoxOverlap = 0; | 
|---|
| 455 |  | 
|---|
| 456 |         btScalar lambda_max = 1.0; | 
|---|
| 457 | #define RAYAABB2 | 
|---|
| 458 | #ifdef RAYAABB2 | 
|---|
| 459 |         btVector3 rayFrom = raySource; | 
|---|
| 460 |         btVector3 rayDirection = (rayTarget-raySource); | 
|---|
| 461 |         rayDirection.normalize (); | 
|---|
| 462 |         lambda_max = rayDirection.dot(rayTarget-raySource); | 
|---|
| 463 |         ///what about division by zero? --> just set rayDirection[i] to 1.0 | 
|---|
| 464 |         rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[0]; | 
|---|
| 465 |         rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[1]; | 
|---|
| 466 |         rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDirection[2]; | 
|---|
| 467 |         unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; | 
|---|
| 468 | #endif | 
|---|
| 469 |  | 
|---|
| 470 |         /* Quick pruning by quantized box */ | 
|---|
| 471 |         btVector3 rayAabbMin = raySource; | 
|---|
| 472 |         btVector3 rayAabbMax = raySource; | 
|---|
| 473 |         rayAabbMin.setMin(rayTarget); | 
|---|
| 474 |         rayAabbMax.setMax(rayTarget); | 
|---|
| 475 |  | 
|---|
| 476 |         /* Add box cast extents to bounding box */ | 
|---|
| 477 |         rayAabbMin += aabbMin; | 
|---|
| 478 |         rayAabbMax += aabbMax; | 
|---|
| 479 |  | 
|---|
| 480 |         unsigned short int quantizedQueryAabbMin[3]; | 
|---|
| 481 |         unsigned short int quantizedQueryAabbMax[3]; | 
|---|
| 482 |         quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); | 
|---|
| 483 |         quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); | 
|---|
| 484 |  | 
|---|
| 485 |         while (curIndex < endNodeIndex) | 
|---|
| 486 |         { | 
|---|
| 487 |  | 
|---|
| 488 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
| 489 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
| 490 |                 //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
| 491 |                 static int drawPatch = 0; | 
|---|
| 492 |                 //need some global access to a debugDrawer | 
|---|
| 493 |                 extern btIDebugDraw* debugDrawerPtr; | 
|---|
| 494 |                 if (curIndex==drawPatch) | 
|---|
| 495 |                 { | 
|---|
| 496 |                         btVector3 aabbMin,aabbMax; | 
|---|
| 497 |                         aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 498 |                         aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 499 |                         btVector3       color(1,0,0); | 
|---|
| 500 |                         debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
| 501 |                 } | 
|---|
| 502 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
| 503 |  | 
|---|
| 504 |                 //catch bugs in tree data | 
|---|
| 505 |                 assert (walkIterations < subTreeSize); | 
|---|
| 506 |  | 
|---|
| 507 |                 walkIterations++; | 
|---|
| 508 |                 //PCK: unsigned instead of bool | 
|---|
| 509 |                 // only interested if this is closer than any previous hit | 
|---|
| 510 |                 btScalar param = 1.0; | 
|---|
| 511 |                 rayBoxOverlap = 0; | 
|---|
| 512 |                 boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
| 513 |                 isLeafNode = rootNode->isLeafNode(); | 
|---|
| 514 |                 if (boxBoxOverlap) | 
|---|
| 515 |                 { | 
|---|
| 516 |                         btVector3 bounds[2]; | 
|---|
| 517 |                         bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 518 |                         bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 519 |                         /* Add box cast extents */ | 
|---|
| 520 |                         bounds[0] += aabbMin; | 
|---|
| 521 |                         bounds[1] += aabbMax; | 
|---|
| 522 |                         btVector3 normal; | 
|---|
| 523 | #if 0 | 
|---|
| 524 |                         bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); | 
|---|
| 525 |                         bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
| 526 |                         if (ra2 != ra) | 
|---|
| 527 |                         { | 
|---|
| 528 |                                 printf("functions don't match\n"); | 
|---|
| 529 |                         } | 
|---|
| 530 | #endif | 
|---|
| 531 | #ifdef RAYAABB2 | 
|---|
| 532 |                         ///careful with this check: need to check division by zero (above) and fix the unQuantize method | 
|---|
| 533 |                         ///thanks Joerg/hiker for the reproduction case! | 
|---|
| 534 |                         ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 | 
|---|
| 535 |  | 
|---|
| 536 |                         rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); | 
|---|
| 537 | #else | 
|---|
| 538 |                         rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); | 
|---|
| 539 | #endif | 
|---|
| 540 |                 } | 
|---|
| 541 |                  | 
|---|
| 542 |                 if (isLeafNode && rayBoxOverlap) | 
|---|
| 543 |                 { | 
|---|
| 544 |                         nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
| 545 |                 } | 
|---|
| 546 |                  | 
|---|
| 547 |                 //PCK: unsigned instead of bool | 
|---|
| 548 |                 if ((rayBoxOverlap != 0) || isLeafNode) | 
|---|
| 549 |                 { | 
|---|
| 550 |                         rootNode++; | 
|---|
| 551 |                         curIndex++; | 
|---|
| 552 |                 } else | 
|---|
| 553 |                 { | 
|---|
| 554 |                         escapeIndex = rootNode->getEscapeIndex(); | 
|---|
| 555 |                         rootNode += escapeIndex; | 
|---|
| 556 |                         curIndex += escapeIndex; | 
|---|
| 557 |                 } | 
|---|
| 558 |         } | 
|---|
| 559 |         if (maxIterations < walkIterations) | 
|---|
| 560 |                 maxIterations = walkIterations; | 
|---|
| 561 |  | 
|---|
| 562 | } | 
|---|
| 563 |  | 
|---|
| 564 | void    btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const | 
|---|
| 565 | { | 
|---|
| 566 |         btAssert(m_useQuantization); | 
|---|
| 567 |          | 
|---|
| 568 |         int curIndex = startNodeIndex; | 
|---|
| 569 |         int walkIterations = 0; | 
|---|
| 570 |         int subTreeSize = endNodeIndex - startNodeIndex; | 
|---|
| 571 |         (void)subTreeSize; | 
|---|
| 572 |  | 
|---|
| 573 |         const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; | 
|---|
| 574 |         int escapeIndex; | 
|---|
| 575 |          | 
|---|
| 576 |         bool isLeafNode; | 
|---|
| 577 |         //PCK: unsigned instead of bool | 
|---|
| 578 |         unsigned aabbOverlap; | 
|---|
| 579 |  | 
|---|
| 580 |         while (curIndex < endNodeIndex) | 
|---|
| 581 |         { | 
|---|
| 582 |  | 
|---|
| 583 | //#define VISUALLY_ANALYZE_BVH 1 | 
|---|
| 584 | #ifdef VISUALLY_ANALYZE_BVH | 
|---|
| 585 |                 //some code snippet to debugDraw aabb, to visually analyze bvh structure | 
|---|
| 586 |                 static int drawPatch = 0; | 
|---|
| 587 |                 //need some global access to a debugDrawer | 
|---|
| 588 |                 extern btIDebugDraw* debugDrawerPtr; | 
|---|
| 589 |                 if (curIndex==drawPatch) | 
|---|
| 590 |                 { | 
|---|
| 591 |                         btVector3 aabbMin,aabbMax; | 
|---|
| 592 |                         aabbMin = unQuantize(rootNode->m_quantizedAabbMin); | 
|---|
| 593 |                         aabbMax = unQuantize(rootNode->m_quantizedAabbMax); | 
|---|
| 594 |                         btVector3       color(1,0,0); | 
|---|
| 595 |                         debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); | 
|---|
| 596 |                 } | 
|---|
| 597 | #endif//VISUALLY_ANALYZE_BVH | 
|---|
| 598 |  | 
|---|
| 599 |                 //catch bugs in tree data | 
|---|
| 600 |                 assert (walkIterations < subTreeSize); | 
|---|
| 601 |  | 
|---|
| 602 |                 walkIterations++; | 
|---|
| 603 |                 //PCK: unsigned instead of bool | 
|---|
| 604 |                 aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); | 
|---|
| 605 |                 isLeafNode = rootNode->isLeafNode(); | 
|---|
| 606 |                  | 
|---|
| 607 |                 if (isLeafNode && aabbOverlap) | 
|---|
| 608 |                 { | 
|---|
| 609 |                         nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); | 
|---|
| 610 |                 }  | 
|---|
| 611 |                  | 
|---|
| 612 |                 //PCK: unsigned instead of bool | 
|---|
| 613 |                 if ((aabbOverlap != 0) || isLeafNode) | 
|---|
| 614 |                 { | 
|---|
| 615 |                         rootNode++; | 
|---|
| 616 |                         curIndex++; | 
|---|
| 617 |                 } else | 
|---|
| 618 |                 { | 
|---|
| 619 |                         escapeIndex = rootNode->getEscapeIndex(); | 
|---|
| 620 |                         rootNode += escapeIndex; | 
|---|
| 621 |                         curIndex += escapeIndex; | 
|---|
| 622 |                 } | 
|---|
| 623 |         } | 
|---|
| 624 |         if (maxIterations < walkIterations) | 
|---|
| 625 |                 maxIterations = walkIterations; | 
|---|
| 626 |  | 
|---|
| 627 | } | 
|---|
| 628 |  | 
|---|
| 629 | //This traversal can be called from Playstation 3 SPU | 
|---|
| 630 | void    btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const | 
|---|
| 631 | { | 
|---|
| 632 |         btAssert(m_useQuantization); | 
|---|
| 633 |  | 
|---|
| 634 |         int i; | 
|---|
| 635 |  | 
|---|
| 636 |  | 
|---|
| 637 |         for (i=0;i<this->m_SubtreeHeaders.size();i++) | 
|---|
| 638 |         { | 
|---|
| 639 |                 const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; | 
|---|
| 640 |  | 
|---|
| 641 |                 //PCK: unsigned instead of bool | 
|---|
| 642 |                 unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); | 
|---|
| 643 |                 if (overlap != 0) | 
|---|
| 644 |                 { | 
|---|
| 645 |                         walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, | 
|---|
| 646 |                                 subtree.m_rootNodeIndex, | 
|---|
| 647 |                                 subtree.m_rootNodeIndex+subtree.m_subtreeSize); | 
|---|
| 648 |                 } | 
|---|
| 649 |         } | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 |  | 
|---|
| 653 | void    btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const | 
|---|
| 654 | { | 
|---|
| 655 |         bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; | 
|---|
| 656 |         if (fast_path) | 
|---|
| 657 |         { | 
|---|
| 658 |                 walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, btVector3(0, 0, 0), btVector3(0, 0, 0), 0, m_curNodeIndex); | 
|---|
| 659 |         } else { | 
|---|
| 660 |                 /* Otherwise fallback to AABB overlap test */ | 
|---|
| 661 |                 btVector3 aabbMin = raySource; | 
|---|
| 662 |                 btVector3 aabbMax = raySource; | 
|---|
| 663 |                 aabbMin.setMin(rayTarget); | 
|---|
| 664 |                 aabbMax.setMax(rayTarget); | 
|---|
| 665 |                 reportAabbOverlappingNodex(nodeCallback,aabbMin,aabbMax); | 
|---|
| 666 |         } | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 |  | 
|---|
| 670 | void    btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const | 
|---|
| 671 | { | 
|---|
| 672 |         bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; | 
|---|
| 673 |         if (fast_path) | 
|---|
| 674 |         { | 
|---|
| 675 |                 walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); | 
|---|
| 676 |         } else { | 
|---|
| 677 |                 /* Slow path: | 
|---|
| 678 |                    Construct the bounding box for the entire box cast and send that down the tree */ | 
|---|
| 679 |                 btVector3 qaabbMin = raySource; | 
|---|
| 680 |                 btVector3 qaabbMax = raySource; | 
|---|
| 681 |                 qaabbMin.setMin(rayTarget); | 
|---|
| 682 |                 qaabbMax.setMax(rayTarget); | 
|---|
| 683 |                 qaabbMin += aabbMin; | 
|---|
| 684 |                 qaabbMax += aabbMax; | 
|---|
| 685 |                 reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); | 
|---|
| 686 |         } | 
|---|
| 687 | } | 
|---|
| 688 |  | 
|---|
| 689 |  | 
|---|
| 690 | void    btQuantizedBvh::swapLeafNodes(int i,int splitIndex) | 
|---|
| 691 | { | 
|---|
| 692 |         if (m_useQuantization) | 
|---|
| 693 |         { | 
|---|
| 694 |                         btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; | 
|---|
| 695 |                         m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; | 
|---|
| 696 |                         m_quantizedLeafNodes[splitIndex] = tmp; | 
|---|
| 697 |         } else | 
|---|
| 698 |         { | 
|---|
| 699 |                         btOptimizedBvhNode tmp = m_leafNodes[i]; | 
|---|
| 700 |                         m_leafNodes[i] = m_leafNodes[splitIndex]; | 
|---|
| 701 |                         m_leafNodes[splitIndex] = tmp; | 
|---|
| 702 |         } | 
|---|
| 703 | } | 
|---|
| 704 |  | 
|---|
| 705 | void    btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) | 
|---|
| 706 | { | 
|---|
| 707 |         if (m_useQuantization) | 
|---|
| 708 |         { | 
|---|
| 709 |                 m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; | 
|---|
| 710 |         } else | 
|---|
| 711 |         { | 
|---|
| 712 |                 m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; | 
|---|
| 713 |         } | 
|---|
| 714 | } | 
|---|
| 715 |  | 
|---|
| 716 | //PCK: include | 
|---|
| 717 | #include <new> | 
|---|
| 718 |  | 
|---|
| 719 | //PCK: consts | 
|---|
| 720 | static const unsigned BVH_ALIGNMENT = 16; | 
|---|
| 721 | static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; | 
|---|
| 722 |  | 
|---|
| 723 | static const unsigned BVH_ALIGNMENT_BLOCKS = 2; | 
|---|
| 724 |  | 
|---|
| 725 |  | 
|---|
| 726 |  | 
|---|
| 727 | unsigned int btQuantizedBvh::getAlignmentSerializationPadding() | 
|---|
| 728 | { | 
|---|
| 729 |         // I changed this to 0 since the extra padding is not needed or used. | 
|---|
| 730 |         return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; | 
|---|
| 731 | } | 
|---|
| 732 |  | 
|---|
| 733 | unsigned btQuantizedBvh::calculateSerializeBufferSize() | 
|---|
| 734 | { | 
|---|
| 735 |         unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding(); | 
|---|
| 736 |         baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
| 737 |         if (m_useQuantization) | 
|---|
| 738 |         { | 
|---|
| 739 |                 return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); | 
|---|
| 740 |         } | 
|---|
| 741 |         return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); | 
|---|
| 742 | } | 
|---|
| 743 |  | 
|---|
| 744 | bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) | 
|---|
| 745 | { | 
|---|
| 746 |         assert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); | 
|---|
| 747 |         m_subtreeHeaderCount = m_SubtreeHeaders.size(); | 
|---|
| 748 |  | 
|---|
| 749 | /*      if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
| 750 |         { | 
|---|
| 751 |                 ///check alignedment for buffer? | 
|---|
| 752 |                 btAssert(0); | 
|---|
| 753 |                 return false; | 
|---|
| 754 |         } | 
|---|
| 755 | */ | 
|---|
| 756 |  | 
|---|
| 757 |         btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer; | 
|---|
| 758 |  | 
|---|
| 759 |         // construct the class so the virtual function table, etc will be set up | 
|---|
| 760 |         // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
| 761 |         new (targetBvh) btQuantizedBvh; | 
|---|
| 762 |  | 
|---|
| 763 |         if (i_swapEndian) | 
|---|
| 764 |         { | 
|---|
| 765 |                 targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex)); | 
|---|
| 766 |  | 
|---|
| 767 |  | 
|---|
| 768 |                 btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); | 
|---|
| 769 |                 btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); | 
|---|
| 770 |                 btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); | 
|---|
| 771 |  | 
|---|
| 772 |                 targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); | 
|---|
| 773 |                 targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount)); | 
|---|
| 774 |         } | 
|---|
| 775 |         else | 
|---|
| 776 |         { | 
|---|
| 777 |                 targetBvh->m_curNodeIndex = m_curNodeIndex; | 
|---|
| 778 |                 targetBvh->m_bvhAabbMin = m_bvhAabbMin; | 
|---|
| 779 |                 targetBvh->m_bvhAabbMax = m_bvhAabbMax; | 
|---|
| 780 |                 targetBvh->m_bvhQuantization = m_bvhQuantization; | 
|---|
| 781 |                 targetBvh->m_traversalMode = m_traversalMode; | 
|---|
| 782 |                 targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; | 
|---|
| 783 |         } | 
|---|
| 784 |  | 
|---|
| 785 |         targetBvh->m_useQuantization = m_useQuantization; | 
|---|
| 786 |  | 
|---|
| 787 |         unsigned char *nodeData = (unsigned char *)targetBvh; | 
|---|
| 788 |         nodeData += sizeof(btQuantizedBvh); | 
|---|
| 789 |          | 
|---|
| 790 |         unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 791 |         nodeData += sizeToAdd; | 
|---|
| 792 |          | 
|---|
| 793 |         int nodeCount = m_curNodeIndex; | 
|---|
| 794 |  | 
|---|
| 795 |         if (m_useQuantization) | 
|---|
| 796 |         { | 
|---|
| 797 |                 targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 798 |  | 
|---|
| 799 |                 if (i_swapEndian) | 
|---|
| 800 |                 { | 
|---|
| 801 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 802 |                         { | 
|---|
| 803 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
| 804 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
| 805 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
| 806 |  | 
|---|
| 807 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
| 808 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
| 809 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
| 810 |  | 
|---|
| 811 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
| 812 |                         } | 
|---|
| 813 |                 } | 
|---|
| 814 |                 else | 
|---|
| 815 |                 { | 
|---|
| 816 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 817 |                         { | 
|---|
| 818 |          | 
|---|
| 819 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; | 
|---|
| 820 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; | 
|---|
| 821 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; | 
|---|
| 822 |  | 
|---|
| 823 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; | 
|---|
| 824 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; | 
|---|
| 825 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; | 
|---|
| 826 |  | 
|---|
| 827 |                                 targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; | 
|---|
| 828 |  | 
|---|
| 829 |  | 
|---|
| 830 |                         } | 
|---|
| 831 |                 } | 
|---|
| 832 |                 nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
| 833 |  | 
|---|
| 834 |                 // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 835 |                 // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 836 |                 // so the memory (which is not freed) is left alone | 
|---|
| 837 |                 targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 838 |         } | 
|---|
| 839 |         else | 
|---|
| 840 |         { | 
|---|
| 841 |                 targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 842 |  | 
|---|
| 843 |                 if (i_swapEndian) | 
|---|
| 844 |                 { | 
|---|
| 845 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 846 |                         { | 
|---|
| 847 |                                 btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
| 848 |                                 btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
| 849 |  | 
|---|
| 850 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
| 851 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
| 852 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
| 853 |                         } | 
|---|
| 854 |                 } | 
|---|
| 855 |                 else | 
|---|
| 856 |                 { | 
|---|
| 857 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 858 |                         { | 
|---|
| 859 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; | 
|---|
| 860 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; | 
|---|
| 861 |  | 
|---|
| 862 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; | 
|---|
| 863 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; | 
|---|
| 864 |                                 targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; | 
|---|
| 865 |                         } | 
|---|
| 866 |                 } | 
|---|
| 867 |                 nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
| 868 |  | 
|---|
| 869 |                 // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 870 |                 // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 871 |                 // so the memory (which is not freed) is left alone | 
|---|
| 872 |                 targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 873 |         } | 
|---|
| 874 |  | 
|---|
| 875 |         sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 876 |         nodeData += sizeToAdd; | 
|---|
| 877 |  | 
|---|
| 878 |         // Now serialize the subtree headers | 
|---|
| 879 |         targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); | 
|---|
| 880 |         if (i_swapEndian) | 
|---|
| 881 |         { | 
|---|
| 882 |                 for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
| 883 |                 { | 
|---|
| 884 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 885 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 886 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 887 |  | 
|---|
| 888 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 889 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 890 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 891 |  | 
|---|
| 892 |                         targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
| 893 |                         targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
| 894 |                 } | 
|---|
| 895 |         } | 
|---|
| 896 |         else | 
|---|
| 897 |         { | 
|---|
| 898 |                 for (int i = 0; i < m_subtreeHeaderCount; i++) | 
|---|
| 899 |                 { | 
|---|
| 900 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 901 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 902 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 903 |  | 
|---|
| 904 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 905 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 906 |                         targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 907 |  | 
|---|
| 908 |                         targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); | 
|---|
| 909 |                         targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); | 
|---|
| 910 |  | 
|---|
| 911 |                         // need to clear padding in destination buffer | 
|---|
| 912 |                         targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; | 
|---|
| 913 |                         targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; | 
|---|
| 914 |                         targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; | 
|---|
| 915 |                 } | 
|---|
| 916 |         } | 
|---|
| 917 |         nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; | 
|---|
| 918 |  | 
|---|
| 919 |         // this clears the pointer in the member variable it doesn't really do anything to the data | 
|---|
| 920 |         // it does call the destructor on the contained objects, but they are all classes with no destructor defined | 
|---|
| 921 |         // so the memory (which is not freed) is left alone | 
|---|
| 922 |         targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); | 
|---|
| 923 |  | 
|---|
| 924 |         // this wipes the virtual function table pointer at the start of the buffer for the class | 
|---|
| 925 |         *((void**)o_alignedDataBuffer) = NULL; | 
|---|
| 926 |  | 
|---|
| 927 |         return true; | 
|---|
| 928 | } | 
|---|
| 929 |  | 
|---|
| 930 | btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) | 
|---|
| 931 | { | 
|---|
| 932 |  | 
|---|
| 933 |         if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) | 
|---|
| 934 |         { | 
|---|
| 935 |                 return NULL; | 
|---|
| 936 |         } | 
|---|
| 937 |         btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer; | 
|---|
| 938 |  | 
|---|
| 939 |         if (i_swapEndian) | 
|---|
| 940 |         { | 
|---|
| 941 |                 bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex)); | 
|---|
| 942 |  | 
|---|
| 943 |                 btUnSwapVector3Endian(bvh->m_bvhAabbMin); | 
|---|
| 944 |                 btUnSwapVector3Endian(bvh->m_bvhAabbMax); | 
|---|
| 945 |                 btUnSwapVector3Endian(bvh->m_bvhQuantization); | 
|---|
| 946 |  | 
|---|
| 947 |                 bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); | 
|---|
| 948 |                 bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount)); | 
|---|
| 949 |         } | 
|---|
| 950 |  | 
|---|
| 951 |         unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); | 
|---|
| 952 |         btAssert(calculatedBufSize <= i_dataBufferSize); | 
|---|
| 953 |  | 
|---|
| 954 |         if (calculatedBufSize > i_dataBufferSize) | 
|---|
| 955 |         { | 
|---|
| 956 |                 return NULL; | 
|---|
| 957 |         } | 
|---|
| 958 |  | 
|---|
| 959 |         unsigned char *nodeData = (unsigned char *)bvh; | 
|---|
| 960 |         nodeData += sizeof(btQuantizedBvh); | 
|---|
| 961 |          | 
|---|
| 962 |         unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 963 |         nodeData += sizeToAdd; | 
|---|
| 964 |          | 
|---|
| 965 |         int nodeCount = bvh->m_curNodeIndex; | 
|---|
| 966 |  | 
|---|
| 967 |         // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor | 
|---|
| 968 |         // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor | 
|---|
| 969 |         new (bvh) btQuantizedBvh(*bvh, false); | 
|---|
| 970 |  | 
|---|
| 971 |         if (bvh->m_useQuantization) | 
|---|
| 972 |         { | 
|---|
| 973 |                 bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 974 |  | 
|---|
| 975 |                 if (i_swapEndian) | 
|---|
| 976 |                 { | 
|---|
| 977 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 978 |                         { | 
|---|
| 979 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); | 
|---|
| 980 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); | 
|---|
| 981 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); | 
|---|
| 982 |  | 
|---|
| 983 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); | 
|---|
| 984 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); | 
|---|
| 985 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); | 
|---|
| 986 |  | 
|---|
| 987 |                                 bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); | 
|---|
| 988 |                         } | 
|---|
| 989 |                 } | 
|---|
| 990 |                 nodeData += sizeof(btQuantizedBvhNode) * nodeCount; | 
|---|
| 991 |         } | 
|---|
| 992 |         else | 
|---|
| 993 |         { | 
|---|
| 994 |                 bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); | 
|---|
| 995 |  | 
|---|
| 996 |                 if (i_swapEndian) | 
|---|
| 997 |                 { | 
|---|
| 998 |                         for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) | 
|---|
| 999 |                         { | 
|---|
| 1000 |                                 btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); | 
|---|
| 1001 |                                 btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); | 
|---|
| 1002 |                                  | 
|---|
| 1003 |                                 bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); | 
|---|
| 1004 |                                 bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); | 
|---|
| 1005 |                                 bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); | 
|---|
| 1006 |                         } | 
|---|
| 1007 |                 } | 
|---|
| 1008 |                 nodeData += sizeof(btOptimizedBvhNode) * nodeCount; | 
|---|
| 1009 |         } | 
|---|
| 1010 |  | 
|---|
| 1011 |         sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; | 
|---|
| 1012 |         nodeData += sizeToAdd; | 
|---|
| 1013 |  | 
|---|
| 1014 |         // Now serialize the subtree headers | 
|---|
| 1015 |         bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); | 
|---|
| 1016 |         if (i_swapEndian) | 
|---|
| 1017 |         { | 
|---|
| 1018 |                 for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) | 
|---|
| 1019 |                 { | 
|---|
| 1020 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); | 
|---|
| 1021 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); | 
|---|
| 1022 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); | 
|---|
| 1023 |  | 
|---|
| 1024 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); | 
|---|
| 1025 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); | 
|---|
| 1026 |                         bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); | 
|---|
| 1027 |  | 
|---|
| 1028 |                         bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); | 
|---|
| 1029 |                         bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); | 
|---|
| 1030 |                 } | 
|---|
| 1031 |         } | 
|---|
| 1032 |  | 
|---|
| 1033 |         return bvh; | 
|---|
| 1034 | } | 
|---|
| 1035 |  | 
|---|
| 1036 | // Constructor that prevents btVector3's default constructor from being called | 
|---|
| 1037 | btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) : | 
|---|
| 1038 | m_bvhAabbMin(self.m_bvhAabbMin), | 
|---|
| 1039 | m_bvhAabbMax(self.m_bvhAabbMax), | 
|---|
| 1040 | m_bvhQuantization(self.m_bvhQuantization) | 
|---|
| 1041 | { | 
|---|
| 1042 |  | 
|---|
| 1043 |  | 
|---|
| 1044 | } | 
|---|
| 1045 |  | 
|---|
| 1046 |  | 
|---|
| 1047 |  | 
|---|