Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/ode/ode-0.9/ode/src/scrapbook.cpp @ 216

Last change on this file since 216 was 216, checked in by mathiask, 16 years ago

[Physik] add ode-0.9

File size: 15.3 KB
Line 
1
2/*
3
4this is code that was once useful but has now been obseleted.
5
6this file should not be compiled as part of ODE!
7
8*/
9
10//***************************************************************************
11// intersect a line segment with a plane
12
13extern "C" int dClipLineToBox (const dVector3 p1, const dVector3 p2,
14                               const dVector3 p, const dMatrix3 R,
15                               const dVector3 side)
16{
17  // compute the start and end of the line (p1 and p2) relative to the box.
18  // we will do all subsequent computations in this box-relative coordinate
19  // system. we have to do a translation and rotation for each point.
20  dVector3 tmp,s,e;
21  tmp[0] = p1[0] - p[0];
22  tmp[1] = p1[1] - p[1];
23  tmp[2] = p1[2] - p[2];
24  dMULTIPLY1_331 (s,R,tmp);
25  tmp[0] = p2[0] - p[0];
26  tmp[1] = p2[1] - p[1];
27  tmp[2] = p2[2] - p[2];
28  dMULTIPLY1_331 (e,R,tmp);
29
30  // compute the vector 'v' from the start point to the end point
31  dVector3 v;
32  v[0] = e[0] - s[0];
33  v[1] = e[1] - s[1];
34  v[2] = e[2] - s[2];
35
36  // a point on the line is defined by the parameter 't'. t=0 corresponds
37  // to the start of the line, t=1 corresponds to the end of the line.
38  // we will clip the line to the box by finding the range of t where a
39  // point on the line is inside the box. the currently known bounds for
40  // t and tlo..thi.
41  dReal tlo=0,thi=1;
42
43  // clip in the X/Y/Z direction
44  for (int i=0; i<3; i++) {
45    // first adjust s,e for the current t range. this is redundant for the
46    // first iteration, but never mind.
47    e[i] = s[i] + thi*v[i];
48    s[i] = s[i] + tlo*v[i];
49    // compute where t intersects the positive and negative sides.
50    dReal tp = ( side[i] - s[i])/v[i];  // @@@ handle case where denom=0
51    dReal tm = (-side[i] - s[i])/v[i];
52    // handle 9 intersection cases
53    if (s[i] <= -side[i]) {
54      tlo = tm;
55      if (e[i] <= -side[i]) return 0;
56      else if (e[i] >= side[i]) thi = tp;
57    }
58    else if (s[i] <= side[i]) {
59      if (e[i] <= -side[i]) thi = tm;
60      else if (e[i] >= side[i]) thi = tp;
61    }
62    else {
63      tlo = tp;
64      if (e[i] <= -side[i]) thi = tm;
65      else if (e[i] >= side[i]) return 0;
66    }
67  }
68
69  //... @@@ AT HERE @@@
70
71  return 1;
72}
73
74
75//***************************************************************************
76// a nice try at C-B collision. unfortunately it doesn't work. the logic
77// for testing for line-box intersection is correct, but unfortunately the
78// closest-point distance estimates are often too large. as a result contact
79// points are placed incorrectly.
80
81
82int dCollideCB (const dxGeom *o1, const dxGeom *o2, int flags,
83                dContactGeom *contact, int skip)
84{
85  int i;
86
87  dIASSERT (skip >= (int)sizeof(dContactGeom));
88  dIASSERT (o1->_class->num == dCCylinderClass);
89  dIASSERT (o2->_class->num == dBoxClass);
90  contact->g1 = const_cast<dxGeom*> (o1);
91  contact->g2 = const_cast<dxGeom*> (o2);
92  dxCCylinder *cyl = (dxCCylinder*) CLASSDATA(o1);
93  dxBox *box = (dxBox*) CLASSDATA(o2);
94
95  // get p1,p2 = cylinder axis endpoints, get radius
96  dVector3 p1,p2;
97  dReal clen = cyl->lz * REAL(0.5);
98  p1[0] = o1->pos[0] + clen * o1->R[2];
99  p1[1] = o1->pos[1] + clen * o1->R[6];
100  p1[2] = o1->pos[2] + clen * o1->R[10];
101  p2[0] = o1->pos[0] - clen * o1->R[2];
102  p2[1] = o1->pos[1] - clen * o1->R[6];
103  p2[2] = o1->pos[2] - clen * o1->R[10];
104  dReal radius = cyl->radius;
105
106  // copy out box center, rotation matrix, and side array
107  dReal *c = o2->pos;
108  dReal *R = o2->R;
109  dReal *side = box->side;
110
111  // compute the start and end of the line (p1 and p2) relative to the box.
112  // we will do all subsequent computations in this box-relative coordinate
113  // system. we have to do a translation and rotation for each point.
114  dVector3 tmp3,s,e;
115  tmp3[0] = p1[0] - c[0];
116  tmp3[1] = p1[1] - c[1];
117  tmp3[2] = p1[2] - c[2];
118  dMULTIPLY1_331 (s,R,tmp3);
119  tmp3[0] = p2[0] - c[0];
120  tmp3[1] = p2[1] - c[1];
121  tmp3[2] = p2[2] - c[2];
122  dMULTIPLY1_331 (e,R,tmp3);
123
124  // compute the vector 'v' from the start point to the end point
125  dVector3 v;
126  v[0] = e[0] - s[0];
127  v[1] = e[1] - s[1];
128  v[2] = e[2] - s[2];
129
130  // compute the half-sides of the box
131  dReal S0 = side[0] * REAL(0.5);
132  dReal S1 = side[1] * REAL(0.5);
133  dReal S2 = side[2] * REAL(0.5);
134
135  // compute the size of the bounding box around the line segment
136  dReal B0 = dFabs (v[0]);
137  dReal B1 = dFabs (v[1]);
138  dReal B2 = dFabs (v[2]);
139
140  // for all 6 separation axes, measure the penetration depth. if any depth is
141  // less than 0 then the objects don't penetrate at all so we can just
142  // return 0. find the axis with the smallest depth, and record its normal.
143
144  // note: normalR is set to point to a column of R if that is the smallest
145  // depth normal so far. otherwise normalR is 0 and normalC is set to a
146  // vector relative to the box. invert_normal is 1 if the sign of the normal
147  // should be flipped.
148
149  dReal depth,trial_depth,tmp,length;
150  const dReal *normalR=0;
151  dVector3 normalC;
152  int invert_normal = 0;
153  int code = 0;         // 0=no contact, 1-3=face contact, 4-6=edge contact
154
155  depth = dInfinity;
156
157  // look at face-normal axes
158
159#undef TEST
160#define TEST(center,depth_expr,norm,contact_code) \
161  tmp = (center); \
162  trial_depth = radius + REAL(0.5) * ((depth_expr) - dFabs(tmp)); \
163  if (trial_depth < 0) return 0; \
164  if (trial_depth < depth) { \
165    depth = trial_depth; \
166    normalR = (norm); \
167    invert_normal = (tmp < 0); \
168    code = contact_code; \
169  }
170
171  TEST (s[0]+e[0], side[0] + B0, R+0, 1);
172  TEST (s[1]+e[1], side[1] + B1, R+1, 2);
173  TEST (s[2]+e[2], side[2] + B2, R+2, 3);
174
175  // look at v x box-edge axes
176
177#undef TEST
178#define TEST(box_radius,line_offset,nx,ny,nz,contact_code) \
179  tmp = (line_offset); \
180  trial_depth = (box_radius) - dFabs(tmp); \
181  length = dSqrt ((nx)*(nx) + (ny)*(ny) + (nz)*(nz)); \
182  if (length > 0) { \
183    length = dRecip(length); \
184    trial_depth = trial_depth * length + radius; \
185    if (trial_depth < 0) return 0; \
186    if (trial_depth < depth) { \
187      depth = trial_depth; \
188      normalR = 0; \
189      normalC[0] = (nx)*length; \
190      normalC[1] = (ny)*length; \
191      normalC[2] = (nz)*length; \
192      invert_normal = (tmp < 0); \
193      code = contact_code; \
194    } \
195  }
196
197  TEST (B2*S1+B1*S2,v[1]*s[2]-v[2]*s[1], 0,-v[2],v[1], 4);
198  TEST (B2*S0+B0*S2,v[2]*s[0]-v[0]*s[2], v[2],0,-v[0], 5);
199  TEST (B1*S0+B0*S1,v[0]*s[1]-v[1]*s[0], -v[1],v[0],0, 6);
200
201#undef TEST
202
203  // if we get to this point, the box and ccylinder interpenetrate.
204  // compute the normal in global coordinates.
205  dReal *normal = contact[0].normal;
206  if (normalR) {
207    normal[0] = normalR[0];
208    normal[1] = normalR[4];
209    normal[2] = normalR[8];
210  }
211  else {
212    dMULTIPLY0_331 (normal,R,normalC);
213  }
214  if (invert_normal) {
215    normal[0] = -normal[0];
216    normal[1] = -normal[1];
217    normal[2] = -normal[2];
218  }
219
220  // set the depth
221  contact[0].depth = depth;
222
223  if (code == 0) {
224    return 0;           // should never get here
225  }
226  else if (code >= 4) {
227    // handle edge contacts
228    // find an endpoint q1 on the intersecting edge of the box
229    dVector3 q1;
230    dReal sign[3];
231    for (i=0; i<3; i++) q1[i] = c[i];
232    sign[0] = (dDOT14(normal,R+0) > 0) ? REAL(1.0) : REAL(-1.0);
233    for (i=0; i<3; i++) q1[i] += sign[0] * S0 * R[i*4];
234    sign[1] = (dDOT14(normal,R+1) > 0) ? REAL(1.0) : REAL(-1.0);
235    for (i=0; i<3; i++) q1[i] += sign[1] * S1 * R[i*4+1];
236    sign[2] = (dDOT14(normal,R+2) > 0) ? REAL(1.0) : REAL(-1.0);
237    for (i=0; i<3; i++) q1[i] += sign[2] * S2 * R[i*4+2];
238
239    // find the other endpoint q2 of the intersecting edge
240    dVector3 q2;
241    for (i=0; i<3; i++)
242      q2[i] = q1[i] - R[code-4 + i*4] * (sign[code-4] * side[code-4]);
243
244    // determine the closest point between the box edge and the line segment
245    dVector3 cp1,cp2;
246    dClosestLineSegmentPoints (q1,q2, p1,p2, cp1,cp2);
247    for (i=0; i<3; i++) contact[0].pos[i] = cp1[i] - REAL(0.5)*normal[i]*depth;
248    return 1;
249  }
250  else {
251    // handle face contacts.
252    // @@@ temporary: make deepest vertex on the line the contact point.
253    // @@@ this kind of works, but we sometimes need two contact points for
254    // @@@ stability.
255
256    // compute 'v' in global coordinates
257    dVector3 gv;
258    for (i=0; i<3; i++) gv[i] = p2[i] - p1[i];
259
260    if (dDOT (normal,gv) > 0) {
261      for (i=0; i<3; i++)
262        contact[0].pos[i] = p1[i] + (depth*REAL(0.5)-radius)*normal[i];
263    }
264    else {
265      for (i=0; i<3; i++)
266        contact[0].pos[i] = p2[i] + (depth*REAL(0.5)-radius)*normal[i];
267    }
268    return 1;
269  }
270}
271
272//***************************************************************************
273// this function works, it's just not being used for anything at the moment:
274
275// given a box (R,side), `R' is the rotation matrix for the box, and `side'
276// is a vector of x/y/z side lengths, return the size of the interval of the
277// box projected along the given axis. if the axis has unit length then the
278// return value will be the actual diameter, otherwise the result will be
279// scaled by the axis length.
280
281static inline dReal boxDiameter (const dMatrix3 R, const dVector3 side,
282                                 const dVector3 axis)
283{
284  dVector3 q;
285  dMULTIPLY1_331 (q,R,axis);    // transform axis to body-relative
286  return dFabs(q[0])*side[0] + dFabs(q[1])*side[1] + dFabs(q[2])*side[2];
287}
288
289//***************************************************************************
290// the old capped cylinder to capped cylinder collision code. this fails to
291// detect cap-to-cap contact points when the cylinder axis are aligned, but
292// other that that it is pretty robust.
293
294// this returns at most one contact point when the two cylinder's axes are not
295// aligned, and at most two (for stability) when they are aligned.
296// the algorithm minimizes the distance between two "sample spheres" that are
297// positioned along the cylinder axes according to:
298//    sphere1 = pos1 + alpha1 * axis1
299//    sphere2 = pos2 + alpha2 * axis2
300// alpha1 and alpha2 are limited to +/- half the length of the cylinders.
301// the algorithm works by finding a solution that has both alphas free, or
302// a solution that has one or both alphas fixed to the ends of the cylinder.
303
304int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2,
305                                int flags, dContactGeom *contact, int skip)
306{
307  int i;
308  const dReal tolerance = REAL(1e-5);
309
310  dIASSERT (skip >= (int)sizeof(dContactGeom));
311  dIASSERT (o1->type == dCCylinderClass);
312  dIASSERT (o2->type == dCCylinderClass);
313  dxCCylinder *cyl1 = (dxCCylinder*) o1;
314  dxCCylinder *cyl2 = (dxCCylinder*) o2;
315
316  contact->g1 = o1;
317  contact->g2 = o2;
318
319  // copy out some variables, for convenience
320  dReal lz1 = cyl1->lz * REAL(0.5);
321  dReal lz2 = cyl2->lz * REAL(0.5);
322  dReal *pos1 = o1->pos;
323  dReal *pos2 = o2->pos;
324  dReal axis1[3],axis2[3];
325  axis1[0] = o1->R[2];
326  axis1[1] = o1->R[6];
327  axis1[2] = o1->R[10];
328  axis2[0] = o2->R[2];
329  axis2[1] = o2->R[6];
330  axis2[2] = o2->R[10];
331
332  dReal alpha1,alpha2,sphere1[3],sphere2[3];
333  int fix1 = 0;         // 0 if alpha1 is free, +/-1 to fix at +/- lz1
334  int fix2 = 0;         // 0 if alpha2 is free, +/-1 to fix at +/- lz2
335
336  for (int count=0; count<9; count++) {
337    // find a trial solution by fixing or not fixing the alphas
338    if (fix1) {
339      if (fix2) {
340        // alpha1 and alpha2 are fixed, so the solution is easy
341        if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1;
342        if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2;
343        for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
344        for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
345      }
346      else {
347        // fix alpha1 but let alpha2 be free
348        if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1;
349        for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
350        alpha2 = (axis2[0]*(sphere1[0]-pos2[0]) +
351                  axis2[1]*(sphere1[1]-pos2[1]) +
352                  axis2[2]*(sphere1[2]-pos2[2]));
353        for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
354      }
355    }
356    else {
357      if (fix2) {
358        // fix alpha2 but let alpha1 be free
359        if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2;
360        for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
361        alpha1 = (axis1[0]*(sphere2[0]-pos1[0]) +
362                  axis1[1]*(sphere2[1]-pos1[1]) +
363                  axis1[2]*(sphere2[2]-pos1[2]));
364        for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
365      }
366      else {
367        // let alpha1 and alpha2 be free
368        // compute determinant of d(d^2)\d(alpha) jacobian
369        dReal a1a2 = dDOT (axis1,axis2);
370        dReal det = REAL(1.0)-a1a2*a1a2;
371        if (det < tolerance) {
372          // the cylinder axes (almost) parallel, so we will generate up to two
373          // contacts. the solution matrix is rank deficient so alpha1 and
374          // alpha2 are related by:
375          //       alpha2 =   alpha1 + (pos1-pos2)'*axis1   (if axis1==axis2)
376          //    or alpha2 = -(alpha1 + (pos1-pos2)'*axis1)  (if axis1==-axis2)
377          // first compute where the two cylinders overlap in alpha1 space:
378          if (a1a2 < 0) {
379            axis2[0] = -axis2[0];
380            axis2[1] = -axis2[1];
381            axis2[2] = -axis2[2];
382          }
383          dReal q[3];
384          for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i];
385          dReal k = dDOT (axis1,q);
386          dReal a1lo = -lz1;
387          dReal a1hi = lz1;
388          dReal a2lo = -lz2 - k;
389          dReal a2hi = lz2 - k;
390          dReal lo = (a1lo > a2lo) ? a1lo : a2lo;
391          dReal hi = (a1hi < a2hi) ? a1hi : a2hi;
392          if (lo <= hi) {
393            int num_contacts = flags & NUMC_MASK;
394            if (num_contacts >= 2 && lo < hi) {
395              // generate up to two contacts. if one of those contacts is
396              // not made, fall back on the one-contact strategy.
397              for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i];
398              for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i];
399              int n1 = dCollideSpheres (sphere1,cyl1->radius,
400                                        sphere2,cyl2->radius,contact);
401              if (n1) {
402                for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i];
403                for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i];
404                dContactGeom *c2 = CONTACT(contact,skip);
405                int n2 = dCollideSpheres (sphere1,cyl1->radius,
406                                          sphere2,cyl2->radius, c2);
407                if (n2) {
408                  c2->g1 = o1;
409                  c2->g2 = o2;
410                  return 2;
411                }
412              }
413            }
414
415            // just one contact to generate, so put it in the middle of
416            // the range
417            alpha1 = (lo + hi) * REAL(0.5);
418            alpha2 = alpha1 + k;
419            for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
420            for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
421            return dCollideSpheres (sphere1,cyl1->radius,
422                                    sphere2,cyl2->radius,contact);
423          }
424          else return 0;
425        }
426        det = REAL(1.0)/det;
427        dReal delta[3];
428        for (i=0; i<3; i++) delta[i] = pos1[i] - pos2[i];
429        dReal q1 = dDOT (delta,axis1);
430        dReal q2 = dDOT (delta,axis2);
431        alpha1 = det*(a1a2*q2-q1);
432        alpha2 = det*(q2-a1a2*q1);
433        for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
434        for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
435      }
436    }
437
438    // if the alphas are outside their allowed ranges then fix them and
439    // try again
440    if (fix1==0) {
441      if (alpha1 < -lz1) {
442        fix1 = -1;
443        continue;
444      }
445      if (alpha1 > lz1) {
446        fix1 = 1;
447        continue;
448      }
449    }
450    if (fix2==0) {
451      if (alpha2 < -lz2) {
452        fix2 = -1;
453        continue;
454      }
455      if (alpha2 > lz2) {
456        fix2 = 1;
457        continue;
458      }
459    }
460
461    // unfix the alpha variables if the local distance gradient indicates
462    // that we are not yet at the minimum
463    dReal tmp[3];
464    for (i=0; i<3; i++) tmp[i] = sphere1[i] - sphere2[i];
465    if (fix1) {
466      dReal gradient = dDOT (tmp,axis1);
467      if ((fix1 > 0 && gradient > 0) || (fix1 < 0 && gradient < 0)) {
468        fix1 = 0;
469        continue;
470      }
471    }
472    if (fix2) {
473      dReal gradient = -dDOT (tmp,axis2);
474      if ((fix2 > 0 && gradient > 0) || (fix2 < 0 && gradient < 0)) {
475        fix2 = 0;
476        continue;
477      }
478    }
479    return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact);
480  }
481  // if we go through the loop too much, then give up. we should NEVER get to
482  // this point (i hope).
483  dMessage (0,"dCollideCC(): too many iterations");
484  return 0;
485}
Note: See TracBrowser for help on using the repository browser.