[216] | 1 | /************************************************************************* |
---|
| 2 | * * |
---|
| 3 | * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * |
---|
| 4 | * All rights reserved. Email: russ@q12.org Web: www.q12.org * |
---|
| 5 | * * |
---|
| 6 | * This library is free software; you can redistribute it and/or * |
---|
| 7 | * modify it under the terms of EITHER: * |
---|
| 8 | * (1) The GNU Lesser General Public License as published by the Free * |
---|
| 9 | * Software Foundation; either version 2.1 of the License, or (at * |
---|
| 10 | * your option) any later version. The text of the GNU Lesser * |
---|
| 11 | * General Public License is included with this library in the * |
---|
| 12 | * file LICENSE.TXT. * |
---|
| 13 | * (2) The BSD-style license that is included with this library in * |
---|
| 14 | * the file LICENSE-BSD.TXT. * |
---|
| 15 | * * |
---|
| 16 | * This library is distributed in the hope that it will be useful, * |
---|
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
---|
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * |
---|
| 19 | * LICENSE.TXT and LICENSE-BSD.TXT for more details. * |
---|
| 20 | * * |
---|
| 21 | *************************************************************************/ |
---|
| 22 | |
---|
| 23 | /* |
---|
| 24 | |
---|
| 25 | some useful collision utility stuff. this includes some API utility |
---|
| 26 | functions that are defined in the public header files. |
---|
| 27 | |
---|
| 28 | */ |
---|
| 29 | |
---|
| 30 | #include <ode/common.h> |
---|
| 31 | #include <ode/collision.h> |
---|
| 32 | #include <ode/odemath.h> |
---|
| 33 | #include "collision_util.h" |
---|
| 34 | |
---|
| 35 | //**************************************************************************** |
---|
| 36 | |
---|
| 37 | int dCollideSpheres (dVector3 p1, dReal r1, |
---|
| 38 | dVector3 p2, dReal r2, dContactGeom *c) |
---|
| 39 | { |
---|
| 40 | // printf ("d=%.2f (%.2f %.2f %.2f) (%.2f %.2f %.2f) r1=%.2f r2=%.2f\n", |
---|
| 41 | // d,p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],r1,r2); |
---|
| 42 | |
---|
| 43 | dReal d = dDISTANCE (p1,p2); |
---|
| 44 | if (d > (r1 + r2)) return 0; |
---|
| 45 | if (d <= 0) { |
---|
| 46 | c->pos[0] = p1[0]; |
---|
| 47 | c->pos[1] = p1[1]; |
---|
| 48 | c->pos[2] = p1[2]; |
---|
| 49 | c->normal[0] = 1; |
---|
| 50 | c->normal[1] = 0; |
---|
| 51 | c->normal[2] = 0; |
---|
| 52 | c->depth = r1 + r2; |
---|
| 53 | } |
---|
| 54 | else { |
---|
| 55 | dReal d1 = dRecip (d); |
---|
| 56 | c->normal[0] = (p1[0]-p2[0])*d1; |
---|
| 57 | c->normal[1] = (p1[1]-p2[1])*d1; |
---|
| 58 | c->normal[2] = (p1[2]-p2[2])*d1; |
---|
| 59 | dReal k = REAL(0.5) * (r2 - r1 - d); |
---|
| 60 | c->pos[0] = p1[0] + c->normal[0]*k; |
---|
| 61 | c->pos[1] = p1[1] + c->normal[1]*k; |
---|
| 62 | c->pos[2] = p1[2] + c->normal[2]*k; |
---|
| 63 | c->depth = r1 + r2 - d; |
---|
| 64 | } |
---|
| 65 | return 1; |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | void dLineClosestApproach (const dVector3 pa, const dVector3 ua, |
---|
| 70 | const dVector3 pb, const dVector3 ub, |
---|
| 71 | dReal *alpha, dReal *beta) |
---|
| 72 | { |
---|
| 73 | dVector3 p; |
---|
| 74 | p[0] = pb[0] - pa[0]; |
---|
| 75 | p[1] = pb[1] - pa[1]; |
---|
| 76 | p[2] = pb[2] - pa[2]; |
---|
| 77 | dReal uaub = dDOT(ua,ub); |
---|
| 78 | dReal q1 = dDOT(ua,p); |
---|
| 79 | dReal q2 = -dDOT(ub,p); |
---|
| 80 | dReal d = 1-uaub*uaub; |
---|
| 81 | if (d <= REAL(0.0001)) { |
---|
| 82 | // @@@ this needs to be made more robust |
---|
| 83 | *alpha = 0; |
---|
| 84 | *beta = 0; |
---|
| 85 | } |
---|
| 86 | else { |
---|
| 87 | d = dRecip(d); |
---|
| 88 | *alpha = (q1 + uaub*q2)*d; |
---|
| 89 | *beta = (uaub*q1 + q2)*d; |
---|
| 90 | } |
---|
| 91 | } |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | // given two line segments A and B with endpoints a1-a2 and b1-b2, return the |
---|
| 95 | // points on A and B that are closest to each other (in cp1 and cp2). |
---|
| 96 | // in the case of parallel lines where there are multiple solutions, a |
---|
| 97 | // solution involving the endpoint of at least one line will be returned. |
---|
| 98 | // this will work correctly for zero length lines, e.g. if a1==a2 and/or |
---|
| 99 | // b1==b2. |
---|
| 100 | // |
---|
| 101 | // the algorithm works by applying the voronoi clipping rule to the features |
---|
| 102 | // of the line segments. the three features of each line segment are the two |
---|
| 103 | // endpoints and the line between them. the voronoi clipping rule states that, |
---|
| 104 | // for feature X on line A and feature Y on line B, the closest points PA and |
---|
| 105 | // PB between X and Y are globally the closest points if PA is in V(Y) and |
---|
| 106 | // PB is in V(X), where V(X) is the voronoi region of X. |
---|
| 107 | |
---|
| 108 | void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2, |
---|
| 109 | const dVector3 b1, const dVector3 b2, |
---|
| 110 | dVector3 cp1, dVector3 cp2) |
---|
| 111 | { |
---|
| 112 | dVector3 a1a2,b1b2,a1b1,a1b2,a2b1,a2b2,n; |
---|
| 113 | dReal la,lb,k,da1,da2,da3,da4,db1,db2,db3,db4,det; |
---|
| 114 | |
---|
| 115 | #define SET2(a,b) a[0]=b[0]; a[1]=b[1]; a[2]=b[2]; |
---|
| 116 | #define SET3(a,b,op,c) a[0]=b[0] op c[0]; a[1]=b[1] op c[1]; a[2]=b[2] op c[2]; |
---|
| 117 | |
---|
| 118 | // check vertex-vertex features |
---|
| 119 | |
---|
| 120 | SET3 (a1a2,a2,-,a1); |
---|
| 121 | SET3 (b1b2,b2,-,b1); |
---|
| 122 | SET3 (a1b1,b1,-,a1); |
---|
| 123 | da1 = dDOT(a1a2,a1b1); |
---|
| 124 | db1 = dDOT(b1b2,a1b1); |
---|
| 125 | if (da1 <= 0 && db1 >= 0) { |
---|
| 126 | SET2 (cp1,a1); |
---|
| 127 | SET2 (cp2,b1); |
---|
| 128 | return; |
---|
| 129 | } |
---|
| 130 | |
---|
| 131 | SET3 (a1b2,b2,-,a1); |
---|
| 132 | da2 = dDOT(a1a2,a1b2); |
---|
| 133 | db2 = dDOT(b1b2,a1b2); |
---|
| 134 | if (da2 <= 0 && db2 <= 0) { |
---|
| 135 | SET2 (cp1,a1); |
---|
| 136 | SET2 (cp2,b2); |
---|
| 137 | return; |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | SET3 (a2b1,b1,-,a2); |
---|
| 141 | da3 = dDOT(a1a2,a2b1); |
---|
| 142 | db3 = dDOT(b1b2,a2b1); |
---|
| 143 | if (da3 >= 0 && db3 >= 0) { |
---|
| 144 | SET2 (cp1,a2); |
---|
| 145 | SET2 (cp2,b1); |
---|
| 146 | return; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | SET3 (a2b2,b2,-,a2); |
---|
| 150 | da4 = dDOT(a1a2,a2b2); |
---|
| 151 | db4 = dDOT(b1b2,a2b2); |
---|
| 152 | if (da4 >= 0 && db4 <= 0) { |
---|
| 153 | SET2 (cp1,a2); |
---|
| 154 | SET2 (cp2,b2); |
---|
| 155 | return; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | // check edge-vertex features. |
---|
| 159 | // if one or both of the lines has zero length, we will never get to here, |
---|
| 160 | // so we do not have to worry about the following divisions by zero. |
---|
| 161 | |
---|
| 162 | la = dDOT(a1a2,a1a2); |
---|
| 163 | if (da1 >= 0 && da3 <= 0) { |
---|
| 164 | k = da1 / la; |
---|
| 165 | SET3 (n,a1b1,-,k*a1a2); |
---|
| 166 | if (dDOT(b1b2,n) >= 0) { |
---|
| 167 | SET3 (cp1,a1,+,k*a1a2); |
---|
| 168 | SET2 (cp2,b1); |
---|
| 169 | return; |
---|
| 170 | } |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | if (da2 >= 0 && da4 <= 0) { |
---|
| 174 | k = da2 / la; |
---|
| 175 | SET3 (n,a1b2,-,k*a1a2); |
---|
| 176 | if (dDOT(b1b2,n) <= 0) { |
---|
| 177 | SET3 (cp1,a1,+,k*a1a2); |
---|
| 178 | SET2 (cp2,b2); |
---|
| 179 | return; |
---|
| 180 | } |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | lb = dDOT(b1b2,b1b2); |
---|
| 184 | if (db1 <= 0 && db2 >= 0) { |
---|
| 185 | k = -db1 / lb; |
---|
| 186 | SET3 (n,-a1b1,-,k*b1b2); |
---|
| 187 | if (dDOT(a1a2,n) >= 0) { |
---|
| 188 | SET2 (cp1,a1); |
---|
| 189 | SET3 (cp2,b1,+,k*b1b2); |
---|
| 190 | return; |
---|
| 191 | } |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | if (db3 <= 0 && db4 >= 0) { |
---|
| 195 | k = -db3 / lb; |
---|
| 196 | SET3 (n,-a2b1,-,k*b1b2); |
---|
| 197 | if (dDOT(a1a2,n) <= 0) { |
---|
| 198 | SET2 (cp1,a2); |
---|
| 199 | SET3 (cp2,b1,+,k*b1b2); |
---|
| 200 | return; |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | // it must be edge-edge |
---|
| 205 | |
---|
| 206 | k = dDOT(a1a2,b1b2); |
---|
| 207 | det = la*lb - k*k; |
---|
| 208 | if (det <= 0) { |
---|
| 209 | // this should never happen, but just in case... |
---|
| 210 | SET2(cp1,a1); |
---|
| 211 | SET2(cp2,b1); |
---|
| 212 | return; |
---|
| 213 | } |
---|
| 214 | det = dRecip (det); |
---|
| 215 | dReal alpha = (lb*da1 - k*db1) * det; |
---|
| 216 | dReal beta = ( k*da1 - la*db1) * det; |
---|
| 217 | SET3 (cp1,a1,+,alpha*a1a2); |
---|
| 218 | SET3 (cp2,b1,+,beta*b1b2); |
---|
| 219 | |
---|
| 220 | # undef SET2 |
---|
| 221 | # undef SET3 |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | // a simple root finding algorithm is used to find the value of 't' that |
---|
| 226 | // satisfies: |
---|
| 227 | // d|D(t)|^2/dt = 0 |
---|
| 228 | // where: |
---|
| 229 | // |D(t)| = |p(t)-b(t)| |
---|
| 230 | // where p(t) is a point on the line parameterized by t: |
---|
| 231 | // p(t) = p1 + t*(p2-p1) |
---|
| 232 | // and b(t) is that same point clipped to the boundary of the box. in box- |
---|
| 233 | // relative coordinates d|D(t)|^2/dt is the sum of three x,y,z components |
---|
| 234 | // each of which looks like this: |
---|
| 235 | // |
---|
| 236 | // t_lo / |
---|
| 237 | // ______/ -->t |
---|
| 238 | // / t_hi |
---|
| 239 | // / |
---|
| 240 | // |
---|
| 241 | // t_lo and t_hi are the t values where the line passes through the planes |
---|
| 242 | // corresponding to the sides of the box. the algorithm computes d|D(t)|^2/dt |
---|
| 243 | // in a piecewise fashion from t=0 to t=1, stopping at the point where |
---|
| 244 | // d|D(t)|^2/dt crosses from negative to positive. |
---|
| 245 | |
---|
| 246 | void dClosestLineBoxPoints (const dVector3 p1, const dVector3 p2, |
---|
| 247 | const dVector3 c, const dMatrix3 R, |
---|
| 248 | const dVector3 side, |
---|
| 249 | dVector3 lret, dVector3 bret) |
---|
| 250 | { |
---|
| 251 | int i; |
---|
| 252 | |
---|
| 253 | // compute the start and delta of the line p1-p2 relative to the box. |
---|
| 254 | // we will do all subsequent computations in this box-relative coordinate |
---|
| 255 | // system. we have to do a translation and rotation for each point. |
---|
| 256 | dVector3 tmp,s,v; |
---|
| 257 | tmp[0] = p1[0] - c[0]; |
---|
| 258 | tmp[1] = p1[1] - c[1]; |
---|
| 259 | tmp[2] = p1[2] - c[2]; |
---|
| 260 | dMULTIPLY1_331 (s,R,tmp); |
---|
| 261 | tmp[0] = p2[0] - p1[0]; |
---|
| 262 | tmp[1] = p2[1] - p1[1]; |
---|
| 263 | tmp[2] = p2[2] - p1[2]; |
---|
| 264 | dMULTIPLY1_331 (v,R,tmp); |
---|
| 265 | |
---|
| 266 | // mirror the line so that v has all components >= 0 |
---|
| 267 | dVector3 sign; |
---|
| 268 | for (i=0; i<3; i++) { |
---|
| 269 | if (v[i] < 0) { |
---|
| 270 | s[i] = -s[i]; |
---|
| 271 | v[i] = -v[i]; |
---|
| 272 | sign[i] = -1; |
---|
| 273 | } |
---|
| 274 | else sign[i] = 1; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | // compute v^2 |
---|
| 278 | dVector3 v2; |
---|
| 279 | v2[0] = v[0]*v[0]; |
---|
| 280 | v2[1] = v[1]*v[1]; |
---|
| 281 | v2[2] = v[2]*v[2]; |
---|
| 282 | |
---|
| 283 | // compute the half-sides of the box |
---|
| 284 | dReal h[3]; |
---|
| 285 | h[0] = REAL(0.5) * side[0]; |
---|
| 286 | h[1] = REAL(0.5) * side[1]; |
---|
| 287 | h[2] = REAL(0.5) * side[2]; |
---|
| 288 | |
---|
| 289 | // region is -1,0,+1 depending on which side of the box planes each |
---|
| 290 | // coordinate is on. tanchor is the next t value at which there is a |
---|
| 291 | // transition, or the last one if there are no more. |
---|
| 292 | int region[3]; |
---|
| 293 | dReal tanchor[3]; |
---|
| 294 | |
---|
| 295 | // Denormals are a problem, because we divide by v[i], and then |
---|
| 296 | // multiply that by 0. Alas, infinity times 0 is infinity (!) |
---|
| 297 | // We also use v2[i], which is v[i] squared. Here's how the epsilons |
---|
| 298 | // are chosen: |
---|
| 299 | // float epsilon = 1.175494e-038 (smallest non-denormal number) |
---|
| 300 | // double epsilon = 2.225074e-308 (smallest non-denormal number) |
---|
| 301 | // For single precision, choose an epsilon such that v[i] squared is |
---|
| 302 | // not a denormal; this is for performance. |
---|
| 303 | // For double precision, choose an epsilon such that v[i] is not a |
---|
| 304 | // denormal; this is for correctness. (Jon Watte on mailinglist) |
---|
| 305 | |
---|
| 306 | #if defined( dSINGLE ) |
---|
| 307 | const dReal tanchor_eps = REAL(1e-19); |
---|
| 308 | #else |
---|
| 309 | const dReal tanchor_eps = REAL(1e-307); |
---|
| 310 | #endif |
---|
| 311 | |
---|
| 312 | // find the region and tanchor values for p1 |
---|
| 313 | for (i=0; i<3; i++) { |
---|
| 314 | if (v[i] > tanchor_eps) { |
---|
| 315 | if (s[i] < -h[i]) { |
---|
| 316 | region[i] = -1; |
---|
| 317 | tanchor[i] = (-h[i]-s[i])/v[i]; |
---|
| 318 | } |
---|
| 319 | else { |
---|
| 320 | region[i] = (s[i] > h[i]); |
---|
| 321 | tanchor[i] = (h[i]-s[i])/v[i]; |
---|
| 322 | } |
---|
| 323 | } |
---|
| 324 | else { |
---|
| 325 | region[i] = 0; |
---|
| 326 | tanchor[i] = 2; // this will never be a valid tanchor |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | // compute d|d|^2/dt for t=0. if it's >= 0 then p1 is the closest point |
---|
| 331 | dReal t=0; |
---|
| 332 | dReal dd2dt = 0; |
---|
| 333 | for (i=0; i<3; i++) dd2dt -= (region[i] ? v2[i] : 0) * tanchor[i]; |
---|
| 334 | if (dd2dt >= 0) goto got_answer; |
---|
| 335 | |
---|
| 336 | do { |
---|
| 337 | // find the point on the line that is at the next clip plane boundary |
---|
| 338 | dReal next_t = 1; |
---|
| 339 | for (i=0; i<3; i++) { |
---|
| 340 | if (tanchor[i] > t && tanchor[i] < 1 && tanchor[i] < next_t) |
---|
| 341 | next_t = tanchor[i]; |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | // compute d|d|^2/dt for the next t |
---|
| 345 | dReal next_dd2dt = 0; |
---|
| 346 | for (i=0; i<3; i++) { |
---|
| 347 | next_dd2dt += (region[i] ? v2[i] : 0) * (next_t - tanchor[i]); |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | // if the sign of d|d|^2/dt has changed, solution = the crossover point |
---|
| 351 | if (next_dd2dt >= 0) { |
---|
| 352 | dReal m = (next_dd2dt-dd2dt)/(next_t - t); |
---|
| 353 | t -= dd2dt/m; |
---|
| 354 | goto got_answer; |
---|
| 355 | } |
---|
| 356 | |
---|
| 357 | // advance to the next anchor point / region |
---|
| 358 | for (i=0; i<3; i++) { |
---|
| 359 | if (tanchor[i] == next_t) { |
---|
| 360 | tanchor[i] = (h[i]-s[i])/v[i]; |
---|
| 361 | region[i]++; |
---|
| 362 | } |
---|
| 363 | } |
---|
| 364 | t = next_t; |
---|
| 365 | dd2dt = next_dd2dt; |
---|
| 366 | } |
---|
| 367 | while (t < 1); |
---|
| 368 | t = 1; |
---|
| 369 | |
---|
| 370 | got_answer: |
---|
| 371 | |
---|
| 372 | // compute closest point on the line |
---|
| 373 | for (i=0; i<3; i++) lret[i] = p1[i] + t*tmp[i]; // note: tmp=p2-p1 |
---|
| 374 | |
---|
| 375 | // compute closest point on the box |
---|
| 376 | for (i=0; i<3; i++) { |
---|
| 377 | tmp[i] = sign[i] * (s[i] + t*v[i]); |
---|
| 378 | if (tmp[i] < -h[i]) tmp[i] = -h[i]; |
---|
| 379 | else if (tmp[i] > h[i]) tmp[i] = h[i]; |
---|
| 380 | } |
---|
| 381 | dMULTIPLY0_331 (s,R,tmp); |
---|
| 382 | for (i=0; i<3; i++) bret[i] = s[i] + c[i]; |
---|
| 383 | } |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | // given boxes (p1,R1,side1) and (p1,R1,side1), return 1 if they intersect |
---|
| 387 | // or 0 if not. |
---|
| 388 | |
---|
| 389 | int dBoxTouchesBox (const dVector3 p1, const dMatrix3 R1, |
---|
| 390 | const dVector3 side1, const dVector3 p2, |
---|
| 391 | const dMatrix3 R2, const dVector3 side2) |
---|
| 392 | { |
---|
| 393 | // two boxes are disjoint if (and only if) there is a separating axis |
---|
| 394 | // perpendicular to a face from one box or perpendicular to an edge from |
---|
| 395 | // either box. the following tests are derived from: |
---|
| 396 | // "OBB Tree: A Hierarchical Structure for Rapid Interference Detection", |
---|
| 397 | // S.Gottschalk, M.C.Lin, D.Manocha., Proc of ACM Siggraph 1996. |
---|
| 398 | |
---|
| 399 | // Rij is R1'*R2, i.e. the relative rotation between R1 and R2. |
---|
| 400 | // Qij is abs(Rij) |
---|
| 401 | dVector3 p,pp; |
---|
| 402 | dReal A1,A2,A3,B1,B2,B3,R11,R12,R13,R21,R22,R23,R31,R32,R33, |
---|
| 403 | Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33; |
---|
| 404 | |
---|
| 405 | // get vector from centers of box 1 to box 2, relative to box 1 |
---|
| 406 | p[0] = p2[0] - p1[0]; |
---|
| 407 | p[1] = p2[1] - p1[1]; |
---|
| 408 | p[2] = p2[2] - p1[2]; |
---|
| 409 | dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 |
---|
| 410 | |
---|
| 411 | // get side lengths / 2 |
---|
| 412 | A1 = side1[0]*REAL(0.5); A2 = side1[1]*REAL(0.5); A3 = side1[2]*REAL(0.5); |
---|
| 413 | B1 = side2[0]*REAL(0.5); B2 = side2[1]*REAL(0.5); B3 = side2[2]*REAL(0.5); |
---|
| 414 | |
---|
| 415 | // for the following tests, excluding computation of Rij, in the worst case, |
---|
| 416 | // 15 compares, 60 adds, 81 multiplies, and 24 absolutes. |
---|
| 417 | // notation: R1=[u1 u2 u3], R2=[v1 v2 v3] |
---|
| 418 | |
---|
| 419 | // separating axis = u1,u2,u3 |
---|
| 420 | R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); |
---|
| 421 | Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); |
---|
| 422 | if (dFabs(pp[0]) > (A1 + B1*Q11 + B2*Q12 + B3*Q13)) return 0; |
---|
| 423 | R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); |
---|
| 424 | Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); |
---|
| 425 | if (dFabs(pp[1]) > (A2 + B1*Q21 + B2*Q22 + B3*Q23)) return 0; |
---|
| 426 | R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); |
---|
| 427 | Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); |
---|
| 428 | if (dFabs(pp[2]) > (A3 + B1*Q31 + B2*Q32 + B3*Q33)) return 0; |
---|
| 429 | |
---|
| 430 | // separating axis = v1,v2,v3 |
---|
| 431 | if (dFabs(dDOT41(R2+0,p)) > (A1*Q11 + A2*Q21 + A3*Q31 + B1)) return 0; |
---|
| 432 | if (dFabs(dDOT41(R2+1,p)) > (A1*Q12 + A2*Q22 + A3*Q32 + B2)) return 0; |
---|
| 433 | if (dFabs(dDOT41(R2+2,p)) > (A1*Q13 + A2*Q23 + A3*Q33 + B3)) return 0; |
---|
| 434 | |
---|
| 435 | // separating axis = u1 x (v1,v2,v3) |
---|
| 436 | if (dFabs(pp[2]*R21-pp[1]*R31) > A2*Q31 + A3*Q21 + B2*Q13 + B3*Q12) return 0; |
---|
| 437 | if (dFabs(pp[2]*R22-pp[1]*R32) > A2*Q32 + A3*Q22 + B1*Q13 + B3*Q11) return 0; |
---|
| 438 | if (dFabs(pp[2]*R23-pp[1]*R33) > A2*Q33 + A3*Q23 + B1*Q12 + B2*Q11) return 0; |
---|
| 439 | |
---|
| 440 | // separating axis = u2 x (v1,v2,v3) |
---|
| 441 | if (dFabs(pp[0]*R31-pp[2]*R11) > A1*Q31 + A3*Q11 + B2*Q23 + B3*Q22) return 0; |
---|
| 442 | if (dFabs(pp[0]*R32-pp[2]*R12) > A1*Q32 + A3*Q12 + B1*Q23 + B3*Q21) return 0; |
---|
| 443 | if (dFabs(pp[0]*R33-pp[2]*R13) > A1*Q33 + A3*Q13 + B1*Q22 + B2*Q21) return 0; |
---|
| 444 | |
---|
| 445 | // separating axis = u3 x (v1,v2,v3) |
---|
| 446 | if (dFabs(pp[1]*R11-pp[0]*R21) > A1*Q21 + A2*Q11 + B2*Q33 + B3*Q32) return 0; |
---|
| 447 | if (dFabs(pp[1]*R12-pp[0]*R22) > A1*Q22 + A2*Q12 + B1*Q33 + B3*Q31) return 0; |
---|
| 448 | if (dFabs(pp[1]*R13-pp[0]*R23) > A1*Q23 + A2*Q13 + B1*Q32 + B2*Q31) return 0; |
---|
| 449 | |
---|
| 450 | return 1; |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | //**************************************************************************** |
---|
| 454 | // other utility functions |
---|
| 455 | |
---|
| 456 | void dInfiniteAABB (dxGeom *geom, dReal aabb[6]) |
---|
| 457 | { |
---|
| 458 | aabb[0] = -dInfinity; |
---|
| 459 | aabb[1] = dInfinity; |
---|
| 460 | aabb[2] = -dInfinity; |
---|
| 461 | aabb[3] = dInfinity; |
---|
| 462 | aabb[4] = -dInfinity; |
---|
| 463 | aabb[5] = dInfinity; |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | //**************************************************************************** |
---|
| 468 | // Helpers for Croteam's collider - by Nguyen Binh |
---|
| 469 | |
---|
| 470 | int dClipEdgeToPlane( dVector3 &vEpnt0, dVector3 &vEpnt1, const dVector4& plPlane) |
---|
| 471 | { |
---|
| 472 | // calculate distance of edge points to plane |
---|
| 473 | dReal fDistance0 = dPointPlaneDistance( vEpnt0 ,plPlane ); |
---|
| 474 | dReal fDistance1 = dPointPlaneDistance( vEpnt1 ,plPlane ); |
---|
| 475 | |
---|
| 476 | // if both points are behind the plane |
---|
| 477 | if ( fDistance0 < 0 && fDistance1 < 0 ) |
---|
| 478 | { |
---|
| 479 | // do nothing |
---|
| 480 | return 0; |
---|
| 481 | // if both points in front of the plane |
---|
| 482 | } |
---|
| 483 | else if ( fDistance0 > 0 && fDistance1 > 0 ) |
---|
| 484 | { |
---|
| 485 | // accept them |
---|
| 486 | return 1; |
---|
| 487 | // if we have edge/plane intersection |
---|
| 488 | } else if ((fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0)) |
---|
| 489 | { |
---|
| 490 | |
---|
| 491 | // find intersection point of edge and plane |
---|
| 492 | dVector3 vIntersectionPoint; |
---|
| 493 | vIntersectionPoint[0]= vEpnt0[0]-(vEpnt0[0]-vEpnt1[0])*fDistance0/(fDistance0-fDistance1); |
---|
| 494 | vIntersectionPoint[1]= vEpnt0[1]-(vEpnt0[1]-vEpnt1[1])*fDistance0/(fDistance0-fDistance1); |
---|
| 495 | vIntersectionPoint[2]= vEpnt0[2]-(vEpnt0[2]-vEpnt1[2])*fDistance0/(fDistance0-fDistance1); |
---|
| 496 | |
---|
| 497 | // clamp correct edge to intersection point |
---|
| 498 | if ( fDistance0 < 0 ) |
---|
| 499 | { |
---|
| 500 | dVector3Copy(vIntersectionPoint,vEpnt0); |
---|
| 501 | } else |
---|
| 502 | { |
---|
| 503 | dVector3Copy(vIntersectionPoint,vEpnt1); |
---|
| 504 | } |
---|
| 505 | return 1; |
---|
| 506 | } |
---|
| 507 | return 1; |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | // clip polygon with plane and generate new polygon points |
---|
| 511 | void dClipPolyToPlane( const dVector3 avArrayIn[], const int ctIn, |
---|
| 512 | dVector3 avArrayOut[], int &ctOut, |
---|
| 513 | const dVector4 &plPlane ) |
---|
| 514 | { |
---|
| 515 | // start with no output points |
---|
| 516 | ctOut = 0; |
---|
| 517 | |
---|
| 518 | int i0 = ctIn-1; |
---|
| 519 | |
---|
| 520 | // for each edge in input polygon |
---|
| 521 | for (int i1=0; i1<ctIn; i0=i1, i1++) { |
---|
| 522 | |
---|
| 523 | |
---|
| 524 | // calculate distance of edge points to plane |
---|
| 525 | dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane ); |
---|
| 526 | dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane ); |
---|
| 527 | |
---|
| 528 | // if first point is in front of plane |
---|
| 529 | if( fDistance0 >= 0 ) { |
---|
| 530 | // emit point |
---|
| 531 | avArrayOut[ctOut][0] = avArrayIn[i0][0]; |
---|
| 532 | avArrayOut[ctOut][1] = avArrayIn[i0][1]; |
---|
| 533 | avArrayOut[ctOut][2] = avArrayIn[i0][2]; |
---|
| 534 | ctOut++; |
---|
| 535 | } |
---|
| 536 | |
---|
| 537 | // if points are on different sides |
---|
| 538 | if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) { |
---|
| 539 | |
---|
| 540 | // find intersection point of edge and plane |
---|
| 541 | dVector3 vIntersectionPoint; |
---|
| 542 | vIntersectionPoint[0]= avArrayIn[i0][0] - |
---|
| 543 | (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1); |
---|
| 544 | vIntersectionPoint[1]= avArrayIn[i0][1] - |
---|
| 545 | (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1); |
---|
| 546 | vIntersectionPoint[2]= avArrayIn[i0][2] - |
---|
| 547 | (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1); |
---|
| 548 | |
---|
| 549 | // emit intersection point |
---|
| 550 | avArrayOut[ctOut][0] = vIntersectionPoint[0]; |
---|
| 551 | avArrayOut[ctOut][1] = vIntersectionPoint[1]; |
---|
| 552 | avArrayOut[ctOut][2] = vIntersectionPoint[2]; |
---|
| 553 | ctOut++; |
---|
| 554 | } |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | void dClipPolyToCircle(const dVector3 avArrayIn[], const int ctIn, |
---|
| 560 | dVector3 avArrayOut[], int &ctOut, |
---|
| 561 | const dVector4 &plPlane ,dReal fRadius) |
---|
| 562 | { |
---|
| 563 | // start with no output points |
---|
| 564 | ctOut = 0; |
---|
| 565 | |
---|
| 566 | int i0 = ctIn-1; |
---|
| 567 | |
---|
| 568 | // for each edge in input polygon |
---|
| 569 | for (int i1=0; i1<ctIn; i0=i1, i1++) |
---|
| 570 | { |
---|
| 571 | // calculate distance of edge points to plane |
---|
| 572 | dReal fDistance0 = dPointPlaneDistance( avArrayIn[i0],plPlane ); |
---|
| 573 | dReal fDistance1 = dPointPlaneDistance( avArrayIn[i1],plPlane ); |
---|
| 574 | |
---|
| 575 | // if first point is in front of plane |
---|
| 576 | if( fDistance0 >= 0 ) |
---|
| 577 | { |
---|
| 578 | // emit point |
---|
| 579 | if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius) |
---|
| 580 | { |
---|
| 581 | avArrayOut[ctOut][0] = avArrayIn[i0][0]; |
---|
| 582 | avArrayOut[ctOut][1] = avArrayIn[i0][1]; |
---|
| 583 | avArrayOut[ctOut][2] = avArrayIn[i0][2]; |
---|
| 584 | ctOut++; |
---|
| 585 | } |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | // if points are on different sides |
---|
| 589 | if( (fDistance0 > 0 && fDistance1 < 0) || ( fDistance0 < 0 && fDistance1 > 0) ) |
---|
| 590 | { |
---|
| 591 | |
---|
| 592 | // find intersection point of edge and plane |
---|
| 593 | dVector3 vIntersectionPoint; |
---|
| 594 | vIntersectionPoint[0]= avArrayIn[i0][0] - |
---|
| 595 | (avArrayIn[i0][0]-avArrayIn[i1][0])*fDistance0/(fDistance0-fDistance1); |
---|
| 596 | vIntersectionPoint[1]= avArrayIn[i0][1] - |
---|
| 597 | (avArrayIn[i0][1]-avArrayIn[i1][1])*fDistance0/(fDistance0-fDistance1); |
---|
| 598 | vIntersectionPoint[2]= avArrayIn[i0][2] - |
---|
| 599 | (avArrayIn[i0][2]-avArrayIn[i1][2])*fDistance0/(fDistance0-fDistance1); |
---|
| 600 | |
---|
| 601 | // emit intersection point |
---|
| 602 | if (dVector3Length2(avArrayIn[i0]) <= fRadius*fRadius) |
---|
| 603 | { |
---|
| 604 | avArrayOut[ctOut][0] = vIntersectionPoint[0]; |
---|
| 605 | avArrayOut[ctOut][1] = vIntersectionPoint[1]; |
---|
| 606 | avArrayOut[ctOut][2] = vIntersectionPoint[2]; |
---|
| 607 | ctOut++; |
---|
| 608 | } |
---|
| 609 | } |
---|
| 610 | } |
---|
| 611 | } |
---|
| 612 | |
---|