Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/ode/ode-0.9/ode/src/capsule.cpp @ 216

Last change on this file since 216 was 216, checked in by mathiask, 16 years ago

[Physik] add ode-0.9

File size: 12.6 KB
Line 
1/*************************************************************************
2 *                                                                       *
3 * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith.       *
4 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
5 *                                                                       *
6 * This library is free software; you can redistribute it and/or         *
7 * modify it under the terms of EITHER:                                  *
8 *   (1) The GNU Lesser General Public License as published by the Free  *
9 *       Software Foundation; either version 2.1 of the License, or (at  *
10 *       your option) any later version. The text of the GNU Lesser      *
11 *       General Public License is included with this library in the     *
12 *       file LICENSE.TXT.                                               *
13 *   (2) The BSD-style license that is included with this library in     *
14 *       the file LICENSE-BSD.TXT.                                       *
15 *                                                                       *
16 * This library is distributed in the hope that it will be useful,       *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
19 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
20 *                                                                       *
21 *************************************************************************/
22
23/*
24
25standard ODE geometry primitives: public API and pairwise collision functions.
26
27the rule is that only the low level primitive collision functions should set
28dContactGeom::g1 and dContactGeom::g2.
29
30*/
31
32#include <ode/common.h>
33#include <ode/collision.h>
34#include <ode/matrix.h>
35#include <ode/rotation.h>
36#include <ode/odemath.h>
37#include "collision_kernel.h"
38#include "collision_std.h"
39#include "collision_util.h"
40
41#ifdef _MSC_VER
42#pragma warning(disable:4291)  // for VC++, no complaints about "no matching operator delete found"
43#endif
44
45//****************************************************************************
46// capped cylinder public API
47
48dxCapsule::dxCapsule (dSpaceID space, dReal _radius, dReal _length) :
49  dxGeom (space,1)
50{
51  dAASSERT (_radius > 0 && _length > 0);
52  type = dCapsuleClass;
53  radius = _radius;
54  lz = _length;
55}
56
57
58void dxCapsule::computeAABB()
59{
60  const dMatrix3& R = final_posr->R;
61  const dVector3& pos = final_posr->pos;
62 
63  dReal xrange = dFabs(R[2]  * lz) * REAL(0.5) + radius;
64  dReal yrange = dFabs(R[6]  * lz) * REAL(0.5) + radius;
65  dReal zrange = dFabs(R[10] * lz) * REAL(0.5) + radius;
66  aabb[0] = pos[0] - xrange;
67  aabb[1] = pos[0] + xrange;
68  aabb[2] = pos[1] - yrange;
69  aabb[3] = pos[1] + yrange;
70  aabb[4] = pos[2] - zrange;
71  aabb[5] = pos[2] + zrange;
72}
73
74
75dGeomID dCreateCapsule (dSpaceID space, dReal radius, dReal length)
76{
77  return new dxCapsule (space,radius,length);
78}
79
80
81void dGeomCapsuleSetParams (dGeomID g, dReal radius, dReal length)
82{
83  dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
84  dAASSERT (radius > 0 && length > 0);
85  dxCapsule *c = (dxCapsule*) g;
86  c->radius = radius;
87  c->lz = length;
88  dGeomMoved (g);
89}
90
91
92void dGeomCapsuleGetParams (dGeomID g, dReal *radius, dReal *length)
93{
94  dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
95  dxCapsule *c = (dxCapsule*) g;
96  *radius = c->radius;
97  *length = c->lz;
98}
99
100
101dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z)
102{
103  dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
104  g->recomputePosr();
105  dxCapsule *c = (dxCapsule*) g;
106
107  const dReal* R = g->final_posr->R;
108  const dReal* pos = g->final_posr->pos;
109 
110  dVector3 a;
111  a[0] = x - pos[0];
112  a[1] = y - pos[1];
113  a[2] = z - pos[2];
114  dReal beta = dDOT14(a,R+2);
115  dReal lz2 = c->lz*REAL(0.5);
116  if (beta < -lz2) beta = -lz2;
117  else if (beta > lz2) beta = lz2;
118  a[0] = c->final_posr->pos[0] + beta*R[0*4+2];
119  a[1] = c->final_posr->pos[1] + beta*R[1*4+2];
120  a[2] = c->final_posr->pos[2] + beta*R[2*4+2];
121  return c->radius -
122    dSqrt ((x-a[0])*(x-a[0]) + (y-a[1])*(y-a[1]) + (z-a[2])*(z-a[2]));
123}
124
125
126
127int dCollideCapsuleSphere (dxGeom *o1, dxGeom *o2, int flags,
128                             dContactGeom *contact, int skip)
129{
130  dIASSERT (skip >= (int)sizeof(dContactGeom));
131  dIASSERT (o1->type == dCapsuleClass);
132  dIASSERT (o2->type == dSphereClass);
133  dIASSERT ((flags & NUMC_MASK) >= 1);
134 
135  dxCapsule *ccyl = (dxCapsule*) o1;
136  dxSphere *sphere = (dxSphere*) o2;
137
138  contact->g1 = o1;
139  contact->g2 = o2;
140
141  // find the point on the cylinder axis that is closest to the sphere
142  dReal alpha = 
143    o1->final_posr->R[2]  * (o2->final_posr->pos[0] - o1->final_posr->pos[0]) +
144    o1->final_posr->R[6]  * (o2->final_posr->pos[1] - o1->final_posr->pos[1]) +
145    o1->final_posr->R[10] * (o2->final_posr->pos[2] - o1->final_posr->pos[2]);
146  dReal lz2 = ccyl->lz * REAL(0.5);
147  if (alpha > lz2) alpha = lz2;
148  if (alpha < -lz2) alpha = -lz2;
149
150  // collide the spheres
151  dVector3 p;
152  p[0] = o1->final_posr->pos[0] + alpha * o1->final_posr->R[2];
153  p[1] = o1->final_posr->pos[1] + alpha * o1->final_posr->R[6];
154  p[2] = o1->final_posr->pos[2] + alpha * o1->final_posr->R[10];
155  return dCollideSpheres (p,ccyl->radius,o2->final_posr->pos,sphere->radius,contact);
156}
157
158
159int dCollideCapsuleBox (dxGeom *o1, dxGeom *o2, int flags,
160                          dContactGeom *contact, int skip)
161{
162  dIASSERT (skip >= (int)sizeof(dContactGeom));
163  dIASSERT (o1->type == dCapsuleClass);
164  dIASSERT (o2->type == dBoxClass);
165  dIASSERT ((flags & NUMC_MASK) >= 1);
166
167  dxCapsule *cyl = (dxCapsule*) o1;
168  dxBox *box = (dxBox*) o2;
169
170  contact->g1 = o1;
171  contact->g2 = o2;
172
173  // get p1,p2 = cylinder axis endpoints, get radius
174  dVector3 p1,p2;
175  dReal clen = cyl->lz * REAL(0.5);
176  p1[0] = o1->final_posr->pos[0] + clen * o1->final_posr->R[2];
177  p1[1] = o1->final_posr->pos[1] + clen * o1->final_posr->R[6];
178  p1[2] = o1->final_posr->pos[2] + clen * o1->final_posr->R[10];
179  p2[0] = o1->final_posr->pos[0] - clen * o1->final_posr->R[2];
180  p2[1] = o1->final_posr->pos[1] - clen * o1->final_posr->R[6];
181  p2[2] = o1->final_posr->pos[2] - clen * o1->final_posr->R[10];
182  dReal radius = cyl->radius;
183
184  // copy out box center, rotation matrix, and side array
185  dReal *c = o2->final_posr->pos;
186  dReal *R = o2->final_posr->R;
187  const dReal *side = box->side;
188
189  // get the closest point between the cylinder axis and the box
190  dVector3 pl,pb;
191  dClosestLineBoxPoints (p1,p2,c,R,side,pl,pb);
192
193  // generate contact point
194  return dCollideSpheres (pl,radius,pb,0,contact);
195}
196
197
198int dCollideCapsuleCapsule (dxGeom *o1, dxGeom *o2,
199                                int flags, dContactGeom *contact, int skip)
200{
201  dIASSERT (skip >= (int)sizeof(dContactGeom));
202  dIASSERT (o1->type == dCapsuleClass);
203  dIASSERT (o2->type == dCapsuleClass);
204  dIASSERT ((flags & NUMC_MASK) >= 1);
205
206  int i;
207  const dReal tolerance = REAL(1e-5);
208
209  dxCapsule *cyl1 = (dxCapsule*) o1;
210  dxCapsule *cyl2 = (dxCapsule*) o2;
211
212  contact->g1 = o1;
213  contact->g2 = o2;
214
215  // copy out some variables, for convenience
216  dReal lz1 = cyl1->lz * REAL(0.5);
217  dReal lz2 = cyl2->lz * REAL(0.5);
218  dReal *pos1 = o1->final_posr->pos;
219  dReal *pos2 = o2->final_posr->pos;
220  dReal axis1[3],axis2[3];
221  axis1[0] = o1->final_posr->R[2];
222  axis1[1] = o1->final_posr->R[6];
223  axis1[2] = o1->final_posr->R[10];
224  axis2[0] = o2->final_posr->R[2];
225  axis2[1] = o2->final_posr->R[6];
226  axis2[2] = o2->final_posr->R[10];
227
228  // if the cylinder axes are close to parallel, we'll try to detect up to
229  // two contact points along the body of the cylinder. if we can't find any
230  // points then we'll fall back to the closest-points algorithm. note that
231  // we are not treating this special case for reasons of degeneracy, but
232  // because we want two contact points in some situations. the closet-points
233  // algorithm is robust in all casts, but it can return only one contact.
234
235  dVector3 sphere1,sphere2;
236  dReal a1a2 = dDOT (axis1,axis2);
237  dReal det = REAL(1.0)-a1a2*a1a2;
238  if (det < tolerance) {
239    // the cylinder axes (almost) parallel, so we will generate up to two
240    // contacts. alpha1 and alpha2 (line position parameters) are related by:
241    //       alpha2 =   alpha1 + (pos1-pos2)'*axis1   (if axis1==axis2)
242    //    or alpha2 = -(alpha1 + (pos1-pos2)'*axis1)  (if axis1==-axis2)
243    // first compute where the two cylinders overlap in alpha1 space:
244    if (a1a2 < 0) {
245      axis2[0] = -axis2[0];
246      axis2[1] = -axis2[1];
247      axis2[2] = -axis2[2];
248    }
249    dReal q[3];
250    for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i];
251    dReal k = dDOT (axis1,q);
252    dReal a1lo = -lz1;
253    dReal a1hi = lz1;
254    dReal a2lo = -lz2 - k;
255    dReal a2hi = lz2 - k;
256    dReal lo = (a1lo > a2lo) ? a1lo : a2lo;
257    dReal hi = (a1hi < a2hi) ? a1hi : a2hi;
258    if (lo <= hi) {
259      int num_contacts = flags & NUMC_MASK;
260      if (num_contacts >= 2 && lo < hi) {
261        // generate up to two contacts. if one of those contacts is
262        // not made, fall back on the one-contact strategy.
263        for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i];
264        for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i];
265        int n1 = dCollideSpheres (sphere1,cyl1->radius,
266                                  sphere2,cyl2->radius,contact);
267        if (n1) {
268          for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i];
269          for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i];
270          dContactGeom *c2 = CONTACT(contact,skip);
271          int n2 = dCollideSpheres (sphere1,cyl1->radius,
272                                    sphere2,cyl2->radius, c2);
273          if (n2) {
274            c2->g1 = o1;
275            c2->g2 = o2;
276            return 2;
277          }
278        }
279      }
280
281      // just one contact to generate, so put it in the middle of
282      // the range
283      dReal alpha1 = (lo + hi) * REAL(0.5);
284      dReal alpha2 = alpha1 + k;
285      for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
286      for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
287      return dCollideSpheres (sphere1,cyl1->radius,
288                              sphere2,cyl2->radius,contact);
289    }
290  }
291         
292  // use the closest point algorithm
293  dVector3 a1,a2,b1,b2;
294  a1[0] = o1->final_posr->pos[0] + axis1[0]*lz1;
295  a1[1] = o1->final_posr->pos[1] + axis1[1]*lz1;
296  a1[2] = o1->final_posr->pos[2] + axis1[2]*lz1;
297  a2[0] = o1->final_posr->pos[0] - axis1[0]*lz1;
298  a2[1] = o1->final_posr->pos[1] - axis1[1]*lz1;
299  a2[2] = o1->final_posr->pos[2] - axis1[2]*lz1;
300  b1[0] = o2->final_posr->pos[0] + axis2[0]*lz2;
301  b1[1] = o2->final_posr->pos[1] + axis2[1]*lz2;
302  b1[2] = o2->final_posr->pos[2] + axis2[2]*lz2;
303  b2[0] = o2->final_posr->pos[0] - axis2[0]*lz2;
304  b2[1] = o2->final_posr->pos[1] - axis2[1]*lz2;
305  b2[2] = o2->final_posr->pos[2] - axis2[2]*lz2;
306
307  dClosestLineSegmentPoints (a1,a2,b1,b2,sphere1,sphere2);
308  return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact);
309}
310
311
312int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags,
313                            dContactGeom *contact, int skip)
314{
315  dIASSERT (skip >= (int)sizeof(dContactGeom));
316  dIASSERT (o1->type == dCapsuleClass);
317  dIASSERT (o2->type == dPlaneClass);
318  dIASSERT ((flags & NUMC_MASK) >= 1);
319
320  dxCapsule *ccyl = (dxCapsule*) o1;
321  dxPlane *plane = (dxPlane*) o2;
322
323  // collide the deepest capping sphere with the plane
324  dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0);
325  dVector3 p;
326  p[0] = o1->final_posr->pos[0] + o1->final_posr->R[2]  * ccyl->lz * REAL(0.5) * sign;
327  p[1] = o1->final_posr->pos[1] + o1->final_posr->R[6]  * ccyl->lz * REAL(0.5) * sign;
328  p[2] = o1->final_posr->pos[2] + o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;
329
330  dReal k = dDOT (p,plane->p);
331  dReal depth = plane->p[3] - k + ccyl->radius;
332  if (depth < 0) return 0;
333  contact->normal[0] = plane->p[0];
334  contact->normal[1] = plane->p[1];
335  contact->normal[2] = plane->p[2];
336  contact->pos[0] = p[0] - plane->p[0] * ccyl->radius;
337  contact->pos[1] = p[1] - plane->p[1] * ccyl->radius;
338  contact->pos[2] = p[2] - plane->p[2] * ccyl->radius;
339  contact->depth = depth;
340
341  int ncontacts = 1;
342  if ((flags & NUMC_MASK) >= 2) {
343    // collide the other capping sphere with the plane
344    p[0] = o1->final_posr->pos[0] - o1->final_posr->R[2]  * ccyl->lz * REAL(0.5) * sign;
345    p[1] = o1->final_posr->pos[1] - o1->final_posr->R[6]  * ccyl->lz * REAL(0.5) * sign;
346    p[2] = o1->final_posr->pos[2] - o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;
347
348    k = dDOT (p,plane->p);
349    depth = plane->p[3] - k + ccyl->radius;
350    if (depth >= 0) {
351      dContactGeom *c2 = CONTACT(contact,skip);
352      c2->normal[0] = plane->p[0];
353      c2->normal[1] = plane->p[1];
354      c2->normal[2] = plane->p[2];
355      c2->pos[0] = p[0] - plane->p[0] * ccyl->radius;
356      c2->pos[1] = p[1] - plane->p[1] * ccyl->radius;
357      c2->pos[2] = p[2] - plane->p[2] * ccyl->radius;
358      c2->depth = depth;
359      ncontacts = 2;
360    }
361  }
362
363  for (int i=0; i < ncontacts; i++) {
364    CONTACT(contact,i*skip)->g1 = o1;
365    CONTACT(contact,i*skip)->g2 = o2;
366  }
367  return ncontacts;
368}
369
Note: See TracBrowser for help on using the repository browser.