[216] | 1 | |
---|
| 2 | // This is collision detection. If you do another distance test for collision *response*, |
---|
| 3 | // if might be useful to simply *skip* the test below completely, and report a collision. |
---|
| 4 | // - if sphere-triangle overlap, result is ok |
---|
| 5 | // - if they don't, we'll discard them during collision response with a similar test anyway |
---|
| 6 | // Overall this approach should run faster. |
---|
| 7 | |
---|
| 8 | // Original code by David Eberly in Magic. |
---|
| 9 | BOOL SphereCollider::SphereTriOverlap(const Point& vert0, const Point& vert1, const Point& vert2) |
---|
| 10 | { |
---|
| 11 | // Stats |
---|
| 12 | mNbVolumePrimTests++; |
---|
| 13 | |
---|
| 14 | // Early exit if one of the vertices is inside the sphere |
---|
| 15 | Point kDiff = vert2 - mCenter; |
---|
| 16 | float fC = kDiff.SquareMagnitude(); |
---|
| 17 | if(fC <= mRadius2) return TRUE; |
---|
| 18 | |
---|
| 19 | kDiff = vert1 - mCenter; |
---|
| 20 | fC = kDiff.SquareMagnitude(); |
---|
| 21 | if(fC <= mRadius2) return TRUE; |
---|
| 22 | |
---|
| 23 | kDiff = vert0 - mCenter; |
---|
| 24 | fC = kDiff.SquareMagnitude(); |
---|
| 25 | if(fC <= mRadius2) return TRUE; |
---|
| 26 | |
---|
| 27 | // Else do the full distance test |
---|
| 28 | Point TriEdge0 = vert1 - vert0; |
---|
| 29 | Point TriEdge1 = vert2 - vert0; |
---|
| 30 | |
---|
| 31 | //Point kDiff = vert0 - mCenter; |
---|
| 32 | float fA00 = TriEdge0.SquareMagnitude(); |
---|
| 33 | float fA01 = TriEdge0 | TriEdge1; |
---|
| 34 | float fA11 = TriEdge1.SquareMagnitude(); |
---|
| 35 | float fB0 = kDiff | TriEdge0; |
---|
| 36 | float fB1 = kDiff | TriEdge1; |
---|
| 37 | //float fC = kDiff.SquareMagnitude(); |
---|
| 38 | float fDet = fabsf(fA00*fA11 - fA01*fA01); |
---|
| 39 | float u = fA01*fB1-fA11*fB0; |
---|
| 40 | float v = fA01*fB0-fA00*fB1; |
---|
| 41 | float SqrDist; |
---|
| 42 | |
---|
| 43 | if(u + v <= fDet) |
---|
| 44 | { |
---|
| 45 | if(u < 0.0f) |
---|
| 46 | { |
---|
| 47 | if(v < 0.0f) // region 4 |
---|
| 48 | { |
---|
| 49 | if(fB0 < 0.0f) |
---|
| 50 | { |
---|
| 51 | // v = 0.0f; |
---|
| 52 | if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } |
---|
| 53 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } |
---|
| 54 | } |
---|
| 55 | else |
---|
| 56 | { |
---|
| 57 | // u = 0.0f; |
---|
| 58 | if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; } |
---|
| 59 | else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } |
---|
| 60 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } |
---|
| 61 | } |
---|
| 62 | } |
---|
| 63 | else // region 3 |
---|
| 64 | { |
---|
| 65 | // u = 0.0f; |
---|
| 66 | if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; } |
---|
| 67 | else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } |
---|
| 68 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } |
---|
| 69 | } |
---|
| 70 | } |
---|
| 71 | else if(v < 0.0f) // region 5 |
---|
| 72 | { |
---|
| 73 | // v = 0.0f; |
---|
| 74 | if(fB0>=0.0f) { /*u = 0.0f;*/ SqrDist = fC; } |
---|
| 75 | else if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } |
---|
| 76 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } |
---|
| 77 | } |
---|
| 78 | else // region 0 |
---|
| 79 | { |
---|
| 80 | // minimum at interior point |
---|
| 81 | if(fDet==0.0f) |
---|
| 82 | { |
---|
| 83 | // u = 0.0f; |
---|
| 84 | // v = 0.0f; |
---|
| 85 | SqrDist = MAX_FLOAT; |
---|
| 86 | } |
---|
| 87 | else |
---|
| 88 | { |
---|
| 89 | float fInvDet = 1.0f/fDet; |
---|
| 90 | u *= fInvDet; |
---|
| 91 | v *= fInvDet; |
---|
| 92 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; |
---|
| 93 | } |
---|
| 94 | } |
---|
| 95 | } |
---|
| 96 | else |
---|
| 97 | { |
---|
| 98 | float fTmp0, fTmp1, fNumer, fDenom; |
---|
| 99 | |
---|
| 100 | if(u < 0.0f) // region 2 |
---|
| 101 | { |
---|
| 102 | fTmp0 = fA01 + fB0; |
---|
| 103 | fTmp1 = fA11 + fB1; |
---|
| 104 | if(fTmp1 > fTmp0) |
---|
| 105 | { |
---|
| 106 | fNumer = fTmp1 - fTmp0; |
---|
| 107 | fDenom = fA00-2.0f*fA01+fA11; |
---|
| 108 | if(fNumer >= fDenom) |
---|
| 109 | { |
---|
| 110 | // u = 1.0f; |
---|
| 111 | // v = 0.0f; |
---|
| 112 | SqrDist = fA00+2.0f*fB0+fC; |
---|
| 113 | } |
---|
| 114 | else |
---|
| 115 | { |
---|
| 116 | u = fNumer/fDenom; |
---|
| 117 | v = 1.0f - u; |
---|
| 118 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; |
---|
| 119 | } |
---|
| 120 | } |
---|
| 121 | else |
---|
| 122 | { |
---|
| 123 | // u = 0.0f; |
---|
| 124 | if(fTmp1 <= 0.0f) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; } |
---|
| 125 | else if(fB1 >= 0.0f) { /*v = 0.0f;*/ SqrDist = fC; } |
---|
| 126 | else { v = -fB1/fA11; SqrDist = fB1*v+fC; } |
---|
| 127 | } |
---|
| 128 | } |
---|
| 129 | else if(v < 0.0f) // region 6 |
---|
| 130 | { |
---|
| 131 | fTmp0 = fA01 + fB1; |
---|
| 132 | fTmp1 = fA00 + fB0; |
---|
| 133 | if(fTmp1 > fTmp0) |
---|
| 134 | { |
---|
| 135 | fNumer = fTmp1 - fTmp0; |
---|
| 136 | fDenom = fA00-2.0f*fA01+fA11; |
---|
| 137 | if(fNumer >= fDenom) |
---|
| 138 | { |
---|
| 139 | // v = 1.0f; |
---|
| 140 | // u = 0.0f; |
---|
| 141 | SqrDist = fA11+2.0f*fB1+fC; |
---|
| 142 | } |
---|
| 143 | else |
---|
| 144 | { |
---|
| 145 | v = fNumer/fDenom; |
---|
| 146 | u = 1.0f - v; |
---|
| 147 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; |
---|
| 148 | } |
---|
| 149 | } |
---|
| 150 | else |
---|
| 151 | { |
---|
| 152 | // v = 0.0f; |
---|
| 153 | if(fTmp1 <= 0.0f) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; } |
---|
| 154 | else if(fB0 >= 0.0f) { /*u = 0.0f;*/ SqrDist = fC; } |
---|
| 155 | else { u = -fB0/fA00; SqrDist = fB0*u+fC; } |
---|
| 156 | } |
---|
| 157 | } |
---|
| 158 | else // region 1 |
---|
| 159 | { |
---|
| 160 | fNumer = fA11 + fB1 - fA01 - fB0; |
---|
| 161 | if(fNumer <= 0.0f) |
---|
| 162 | { |
---|
| 163 | // u = 0.0f; |
---|
| 164 | // v = 1.0f; |
---|
| 165 | SqrDist = fA11+2.0f*fB1+fC; |
---|
| 166 | } |
---|
| 167 | else |
---|
| 168 | { |
---|
| 169 | fDenom = fA00-2.0f*fA01+fA11; |
---|
| 170 | if(fNumer >= fDenom) |
---|
| 171 | { |
---|
| 172 | // u = 1.0f; |
---|
| 173 | // v = 0.0f; |
---|
| 174 | SqrDist = fA00+2.0f*fB0+fC; |
---|
| 175 | } |
---|
| 176 | else |
---|
| 177 | { |
---|
| 178 | u = fNumer/fDenom; |
---|
| 179 | v = 1.0f - u; |
---|
| 180 | SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC; |
---|
| 181 | } |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | return fabsf(SqrDist) < mRadius2; |
---|
| 187 | } |
---|