Planet
navi homePPSaboutscreenshotsdownloaddevelopmentforum

source: code/branches/RacingBots_FS18/src/modules/gametypes/SpaceRaceController.cc @ 11893

Last change on this file since 11893 was 11893, checked in by andera, 6 years ago

new botpointer.mesh added. Bug at the end of the game found not fixed yet

  • Property svn:eol-style set to native
File size: 24.8 KB
Line 
1/*
2 *   ORXONOX - the hottest 3D action shooter ever to exist
3 *                    > www.orxonox.net <
4 *
5 *
6 *   License notice:
7 *
8 *   This program is free software; you can redistribute it and/or
9 *   modify it under the terms of the GNU General Public License
10 *   as published by the Free Software Foundation; either version 2
11 *   of the License, or (at your option) any later version.
12 *
13 *   This program is distributed in the hope that it will be useful,
14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *   GNU General Public License for more details.
17 *
18 *   You should have received a copy of the GNU General Public License
19 *   along with this program; if not, write to the Free Software
20 *   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
21 *
22 *  Created on: Oct 8, 2012findCheck
23 *      Author: purgham
24 */
25
26#include <gametypes/SpaceRaceController.h>
27#include "core/CoreIncludes.h"
28#include "core/XMLPort.h"
29#include "gametypes/SpaceRaceManager.h"
30#include "collisionshapes/CollisionShape.h"
31#include "BulletCollision/CollisionShapes/btCollisionShape.h"
32
33
34namespace orxonox
35{
36    RegisterClass(SpaceRaceController);
37
38    const int ADJUSTDISTANCE = 500;
39    const int MINDISTANCE = 5;
40    /*
41     * Idea: Find static Point (checkpoints the spaceship has to reach)
42     */
43    SpaceRaceController::SpaceRaceController(Context* context) :
44        ArtificialController(context)
45    {
46        RegisterObject(SpaceRaceController);
47        std::vector<RaceCheckPoint*> checkpoints;
48
49        virtualCheckPointIndex = -2;
50        if (ObjectList<SpaceRaceManager>().size() != 1)
51            orxout(internal_warning) << "Expected 1 instance of SpaceRaceManager but found " << ObjectList<SpaceRaceManager>().size() << endl;
52        for (SpaceRaceManager* manager : ObjectList<SpaceRaceManager>())
53        {
54            checkpoints = manager->getAllCheckpoints();
55            nextRaceCheckpoint_ = manager->findCheckpoint(0);
56        }
57
58        OrxAssert(!checkpoints.empty(), "No Checkpoints in Level");
59        checkpoints_ = checkpoints;
60        staticRacePoints_ = findStaticCheckpoints(nextRaceCheckpoint_, checkpoints);
61        // initialisation of currentRaceCheckpoint_
62        currentRaceCheckpoint_ = nullptr;
63
64        int i;
65        for (i = -2; findCheckpoint(i) != nullptr; i--)
66        {
67            continue;
68        }
69
70    }
71
72    //------------------------------
73    // functions for initialisation
74
75    void SpaceRaceController::XMLPort(Element& xmlelement, XMLPort::Mode mode)
76    {
77        SUPER(SpaceRaceController, XMLPort, xmlelement, mode);
78        XMLPortParam(ArtificialController, "accuracy", setAccuracy, getAccuracy, xmlelement, mode).defaultValues(100.0f);
79        XMLPortObject(ArtificialController, WorldEntity, "waypoints", addWaypoint, getWaypoint, xmlelement, mode);
80    }
81
82    /*
83     * called from constructor 'SpaceRaceController'
84     * returns a vector of static Point (checkpoints the spaceship has to reach)
85     */
86    std::vector<RaceCheckPoint*> SpaceRaceController::findStaticCheckpoints(RaceCheckPoint* currentCheckpoint, const std::vector<RaceCheckPoint*>& allCheckpoints)
87    {
88        std::map<RaceCheckPoint*, int> zaehler; // counts how many times the checkpoint was reached (for simulation)
89        for (RaceCheckPoint* checkpoint : allCheckpoints)
90        {
91            zaehler.insert(std::pair<RaceCheckPoint*, int>(checkpoint,0));
92        }
93        int maxWays = rekSimulationCheckpointsReached(currentCheckpoint, zaehler);
94
95        std::vector<RaceCheckPoint*> returnVec;
96        for (const auto& mapEntry : zaehler)
97        {
98            if (mapEntry.second == maxWays)
99            {
100                returnVec.push_back(mapEntry.first);
101            }
102        }
103        return returnVec;
104    }
105
106    /*
107     * called from 'findStaticCheckpoints'
108     * return how many ways go from the given Checkpoint to the last Checkpoint (of the Game)
109     */
110    int SpaceRaceController::rekSimulationCheckpointsReached(RaceCheckPoint* currentCheckpoint, std::map<RaceCheckPoint*, int>& zaehler)
111    {
112
113        if (currentCheckpoint->isLast())
114        {// last point reached
115
116            zaehler[currentCheckpoint] += 1;
117            return 1; // 1 Way form the last point to this one
118        }
119        else
120        {
121            int numberOfWays = 0; // counts number of ways from this Point to the last point
122            for (int checkpointIndex : currentCheckpoint->getNextCheckpoints())
123            {
124                if (currentCheckpoint == findCheckpoint(checkpointIndex))
125                {
126                    //orxout() << currentCheckpoint->getCheckpointIndex()<<endl;
127                    continue;
128                }
129                if (findCheckpoint(checkpointIndex) == nullptr){
130                    orxout()<<"nullpointer @ SpaceraceController line 130"<< endl;
131                    orxout(internal_warning) << "Problematic Point: " << checkpointIndex << endl;
132                }
133                else
134                    numberOfWays += rekSimulationCheckpointsReached(findCheckpoint(checkpointIndex), zaehler);
135            }
136            zaehler[currentCheckpoint] += numberOfWays;
137            return numberOfWays; // returns the number of ways from this point to the last one
138        }
139    }
140
141    //-------------------------------------
142    // functions for dynamic Way-search
143
144    float SpaceRaceController::distanceSpaceshipToCheckPoint(RaceCheckPoint* CheckPoint)
145    {
146        if (this->getControllableEntity() != nullptr)
147        {
148            return (CheckPoint->getPosition()- this->getControllableEntity()->getPosition()).length();
149        }
150        return -1;
151    }
152
153    /*
154     * called by: 'tick' or  'adjustNextPoint'
155     * returns the next Checkpoint which the shortest way contains
156     */
157    RaceCheckPoint* SpaceRaceController::nextPointFind(RaceCheckPoint* raceCheckpoint)
158    {
159        float minDistance = 0;
160        RaceCheckPoint* minNextRaceCheckPoint = nullptr;
161
162        // find the next checkpoint with the minimal distance
163        for (int checkpointIndex : raceCheckpoint->getNextCheckpoints())
164        {
165            RaceCheckPoint* nextRaceCheckPoint = findCheckpoint(checkpointIndex);
166            float distance = recCalculateDistance(nextRaceCheckPoint, this->getControllableEntity()->getPosition());
167
168            if (distance < minDistance || minNextRaceCheckPoint == nullptr)
169            {
170                minDistance = distance;
171                minNextRaceCheckPoint = nextRaceCheckPoint;
172            }
173
174        }
175
176        return minNextRaceCheckPoint;
177    }
178
179    /*
180     * called from 'nextPointFind'
181     * returns the distance between "currentPosition" and the next static checkpoint that can be reached from "currentCheckPoint"
182     */
183    float SpaceRaceController::recCalculateDistance(RaceCheckPoint* currentCheckPoint, const Vector3& currentPosition)
184    {
185        // find: looks if the currentCheckPoint is a staticCheckPoint (staticCheckPoint is the same as: static Point)
186        if (std::find(staticRacePoints_.begin(), staticRacePoints_.end(), currentCheckPoint) != staticRacePoints_.end())
187        {
188            return (currentCheckPoint->getPosition() - currentPosition).length();
189        }
190        else
191        {
192            float minimum = std::numeric_limits<float>::max();
193            for (int checkpointIndex : currentCheckPoint->getNextCheckpoints())
194            {
195                int dist_currentCheckPoint_currentPosition = static_cast<int> ((currentPosition- currentCheckPoint->getPosition()).length());
196
197                minimum = std::min(minimum, dist_currentCheckPoint_currentPosition + recCalculateDistance(findCheckpoint(checkpointIndex), currentCheckPoint->getPosition()));
198                // minimum of distanz from 'currentPosition' to the next static Checkpoint
199            }
200            return minimum;
201        }
202    }
203
204    /*called by 'tick'
205     *adjust chosen way of the Spaceship every "AdjustDistance" because spaceship could be displaced through an other one
206     */
207    RaceCheckPoint* SpaceRaceController::adjustNextPoint()
208    {
209        if (currentRaceCheckpoint_ == nullptr) // no Adjust possible
210
211        {
212            return nextRaceCheckpoint_;
213        }
214        if ((currentRaceCheckpoint_->getNextCheckpoints()).size() == 1) // no Adjust possible
215
216        {
217            return nextRaceCheckpoint_;
218        }
219
220        //Adjust possible
221
222        return nextPointFind(currentRaceCheckpoint_);
223    }
224
225    RaceCheckPoint* SpaceRaceController::findCheckpoint(int index) const
226    {
227        for (RaceCheckPoint* checkpoint : this->checkpoints_){
228            if (checkpoint->getCheckpointIndex() == index)
229                return checkpoint;
230        }
231
232        return nullptr;
233    }
234
235    /*RaceCheckPoint* SpaceRaceController::addVirtualCheckPoint( RaceCheckPoint* previousCheckpoint, int indexFollowingCheckPoint , const Vector3& virtualCheckPointPosition )
236    {
237        orxout()<<"add VCP at"<<virtualCheckPointPosition.x<<", "<<virtualCheckPointPosition.y<<", "<<virtualCheckPointPosition.z<<endl;
238        RaceCheckPoint* newTempRaceCheckPoint;
239        ObjectList<SpaceRaceManager> list;
240        for (ObjectList<SpaceRaceManager>::iterator it = list.begin(); it!= list.end(); ++it)
241        {
242            newTempRaceCheckPoint = new RaceCheckPoint((*it));
243        }
244        newTempRaceCheckPoint->setVisible(false);
245        newTempRaceCheckPoint->setPosition(virtualCheckPointPosition);
246        newTempRaceCheckPoint->setCheckpointIndex(virtualCheckPointIndex);
247        newTempRaceCheckPoint->setLast(false);
248        newTempRaceCheckPoint->setNextVirtualCheckpointsAsVector3(Vector3(indexFollowingCheckPoint,-1,-1));
249
250        Vector3 temp = previousCheckpoint->getVirtualNextCheckpointsAsVector3();
251        //orxout()<<"temp bei 0: ="<< temp.x<< temp.y<< temp.z<<endl;
252        checkpoints_.insert(checkpoints_.end(), newTempRaceCheckPoint);
253        int positionInNextCheckPoint;
254        for (int i = 0; i <3; i++)
255        {
256            if(previousCheckpoint->getVirtualNextCheckpointsAsVector3()[i] == indexFollowingCheckPoint)
257            positionInNextCheckPoint=i;
258        }
259        switch(positionInNextCheckPoint)
260        {
261            case 0: temp.x=virtualCheckPointIndex; break;
262            case 1: temp.y=virtualCheckPointIndex; break;
263            case 2: temp.z=virtualCheckPointIndex; break;
264        }
265        previousCheckpoint->setNextVirtualCheckpointsAsVector3(temp); //Existiert internes Problem bei negativen index fueer next Checkpoint
266        virtualCheckPointIndex--;
267        //orxout()<<"temp bei 1: ="<< temp.x<< temp.y<< temp.z<<endl;
268        //orxout()<<"temp nach ausgabe: "<<previousCheckpoint->getVirtualNextCheckpointsAsVector3().x<<previousCheckpoint->getVirtualNextCheckpointsAsVector3().y<<previousCheckpoint->getVirtualNextCheckpointsAsVector3().z<<endl;
269        //OrxAssert(virtualCheckPointIndex < -1, "TO much virtual cp");
270        orxout()<<"id: "<< previousCheckpoint->getCheckpointIndex() <<", following:"<<indexFollowingCheckPoint<<" :       "<<temp.x<<", "<<temp.y<<", "<<temp.z<<";       ";
271         temp=previousCheckpoint->getNextCheckpointsAsVector3();
272         orxout()<<"id: "<< previousCheckpoint->getCheckpointIndex() <<":       "<<temp.x<<", "<<temp.y<<", "<<temp.z<<";       ";
273         orxout()<<endl;
274        return newTempRaceCheckPoint;
275    }*/
276
277    SpaceRaceController::~SpaceRaceController()
278    {
279        if (this->isInitialized())
280        {
281            for (int i =-1; i>virtualCheckPointIndex; i--)
282                delete findCheckpoint(i);
283        }
284    }
285
286    void SpaceRaceController::tick(float dt)
287    {
288        if (this->getControllableEntity() == nullptr || this->getControllableEntity()->getPlayer() == nullptr )
289        {
290            //orxout()<< this->getControllableEntity() << " in tick"<<endl;
291            return;
292        }
293        //FOR virtual Checkpoints
294        if(nextRaceCheckpoint_->getCheckpointIndex() < 0)
295        {
296            if( distanceSpaceshipToCheckPoint(nextRaceCheckpoint_) < 200)
297            {
298                currentRaceCheckpoint_=nextRaceCheckpoint_;
299                nextRaceCheckpoint_ = nextPointFind(nextRaceCheckpoint_);
300                lastPositionSpaceship=this->getControllableEntity()->getPosition();
301                //orxout()<< "CP "<< currentRaceCheckpoint_->getCheckpointIndex()<<" chanched to: "<< nextRaceCheckpoint_->getCheckpointIndex()<<endl;
302            }
303        }
304
305        if (nextRaceCheckpoint_->playerWasHere(this->getControllableEntity()->getPlayer()))
306        {//Checkpoint erreicht
307
308            currentRaceCheckpoint_ = nextRaceCheckpoint_;
309            OrxAssert(nextRaceCheckpoint_, "next race checkpoint undefined");
310            nextRaceCheckpoint_ = nextPointFind(nextRaceCheckpoint_);
311            lastPositionSpaceship = this->getControllableEntity()->getPosition();
312            //orxout()<< "CP "<< currentRaceCheckpoint_->getCheckpointIndex()<<" chanched to: "<< nextRaceCheckpoint_->getCheckpointIndex()<<endl;
313        }
314
315        else if ((lastPositionSpaceship-this->getControllableEntity()->getPosition()).length()/dt > ADJUSTDISTANCE)
316        {
317            nextRaceCheckpoint_ = adjustNextPoint();
318            lastPositionSpaceship = this->getControllableEntity()->getPosition();
319        }
320
321        // Abmessung fuer MINDISTANCE gut;
322
323        else if((lastPositionSpaceship - this->getControllableEntity()->getPosition()).length()/dt < MINDISTANCE )
324        {
325            this->moveToPosition(Vector3(rnd()*100, rnd()*100, rnd()*100));
326            this->spin();
327            //orxout(user_status) << "Mindistance reached" << std::endl;
328            return;
329        }
330        //orxout(user_status) << "dt= " << dt << ";  distance= " << (lastPositionSpaceship-this->getControllableEntity()->getPosition()).length() <<std::endl;
331        lastPositionSpaceship = this->getControllableEntity()->getPosition();
332       
333        this->boostControl();
334        if (nextRaceCheckpoint_ == nullptr) orxout() << "nextRaceCheckpoint_ equals to nullpointer look @line 334 SpaceRaceController.cc" << endl;
335        this->moveToPosition(nextRaceCheckpoint_->getPosition());
336        this->boostControl();
337    }
338
339    // True if a coordinate of 'pointToPoint' is smaller then the corresponding coordinate of 'groesse'
340    bool SpaceRaceController::vergleicheQuader(const Vector3& pointToPoint, const Vector3& groesse)
341    {
342        if(std::abs(pointToPoint.x) < groesse.x)
343            return true;
344        if(std::abs(pointToPoint.y) < groesse.y)
345            return true;
346        if(std::abs(pointToPoint.z) < groesse.z)
347            return true;
348        return false;
349
350    }
351
352    bool SpaceRaceController::directLinePossible(RaceCheckPoint* racepoint1, RaceCheckPoint* racepoint2, const std::vector<StaticEntity*>& allObjects)
353    {
354
355        Vector3 cP1ToCP2 = (racepoint2->getPosition() - racepoint1->getPosition()) / (racepoint2->getPosition() - racepoint1->getPosition()).length(); //unit Vector
356        Vector3 centerCP1 = racepoint1->getPosition();
357        btVector3 positionObject;
358        btScalar radiusObject;
359
360        for (StaticEntity* object : allObjects)
361        {
362            for (int everyShape=0; object->getAttachedCollisionShape(everyShape) != nullptr; everyShape++)
363            {
364                btCollisionShape* currentShape = object->getAttachedCollisionShape(everyShape)->getCollisionShape();
365                if(currentShape == nullptr)
366                continue;
367
368                currentShape->getBoundingSphere(positionObject,radiusObject);
369                Vector3 positionObjectNonBT(positionObject.x(), positionObject.y(), positionObject.z());
370                if((powf((cP1ToCP2.dotProduct(centerCP1-positionObjectNonBT)),2)-(centerCP1-positionObjectNonBT).dotProduct(centerCP1-positionObjectNonBT)+powf(radiusObject, 2))>0)
371                {
372                    return false;
373                }
374
375            }
376        }
377        return true;
378
379    }
380
381    /*void SpaceRaceController::computeVirtualCheckpoint(RaceCheckPoint* racepoint1, RaceCheckPoint* racepoint2, const std::vector<StaticEntity*>& allObjects)
382    {
383        Vector3 cP1ToCP2=(racepoint2->getPosition()-racepoint1->getPosition()) / (racepoint2->getPosition()-racepoint1->getPosition()).length(); //unit Vector
384        Vector3 centerCP1=racepoint1->getPosition();
385        btVector3 positionObject;
386        btScalar radiusObject;
387
388        for (std::vector<StaticEntity*>::iterator it = allObjects.begin(); it != allObjects.end(); ++it)
389        {
390            for (int everyShape=0; (*it)->getAttachedCollisionShape(everyShape) != nullptr; everyShape++)
391            {
392                btCollisionShape* currentShape = (*it)->getAttachedCollisionShape(everyShape)->getCollisionShape();
393                if(currentShape == nullptr)
394                continue;
395
396                currentShape->getBoundingSphere(positionObject,radiusObject);
397                Vector3 positionObjectNonBT(positionObject.x(), positionObject.y(), positionObject.z());
398                Vector3 norm_r_CP = cP1ToCP2.crossProduct(centerCP1-positionObjectNonBT);
399
400                if(norm_r_CP.length() == 0){
401                    Vector3 zufall;
402                    do{
403                        zufall=Vector3(rnd(),rnd(),rnd());//random
404                    }while((zufall.crossProduct(cP1ToCP2)).length() == 0);
405                    norm_r_CP=zufall.crossProduct(cP1ToCP2);
406                }
407                Vector3 VecToVCP = norm_r_CP.crossProduct(cP1ToCP2);
408                float distanzToCP1 = sqrt(powf(radiusObject,4)/(powf((centerCP1-positionObjectNonBT).length(), 2)-powf(radiusObject,2))+powf(radiusObject,2));
409                float distanzToCP2 = sqrt(powf(radiusObject,4)/(powf((racepoint2->getPosition()-positionObjectNonBT).length(), 2)-powf(radiusObject,2))+powf(radiusObject,2));
410                float distanz = std::max(distanzToCP1,distanzToCP2);
411                //float distanz = 0.0f; //TEMPORARY
412                Vector3 newCheckpointPositionPos = positionObjectNonBT+(distanz*VecToVCP)/VecToVCP.length();
413                Vector3 newCheckpointPositionNeg = positionObjectNonBT-(distanz*VecToVCP)/VecToVCP.length();
414                if((newCheckpointPositionPos - centerCP1).length() + (newCheckpointPositionPos - (centerCP1+cP1ToCP2)).length() < (newCheckpointPositionNeg - centerCP1).length() + (newCheckpointPositionNeg - (centerCP1+cP1ToCP2)).length() )
415                {
416                    RaceCheckPoint* newVirtualCheckpoint = addVirtualCheckPoint(racepoint1,racepoint2->getCheckpointIndex(), newCheckpointPositionPos);
417                }
418                else
419                {
420                    RaceCheckPoint* newVirtualCheckpoint = addVirtualCheckPoint(racepoint1,racepoint2->getCheckpointIndex(), newCheckpointPositionNeg);
421                }
422                return;
423            }
424        }
425
426    }*/
427
428    /*void SpaceRaceController::placeVirtualCheckpoints(RaceCheckPoint* racepoint1, RaceCheckPoint* racepoint2)
429    {
430        Vector3 point1 = racepoint1->getPosition();
431        Vector3 point2 = racepoint2->getPosition();
432        std::vector<StaticEntity*> problematicObjects;
433
434        ObjectList<StaticEntity> list;
435        for (ObjectList<StaticEntity>::iterator it = list.begin(); it!= list.end(); ++it)
436        {
437
438            if (dynamic_cast<RaceCheckPoint*>(*it) != nullptr)
439            {
440                continue;
441            } // does not work jet
442
443            problematicObjects.insert(problematicObjects.end(), *it);
444            //it->getScale3D();// vector fuer halbe wuerfellaenge
445        }
446
447        if(!directLinePossible(racepoint1, racepoint2, problematicObjects))
448        {
449            //orxout()<<"From "<<racepoint1->getCheckpointIndex()<<" to "<<racepoint2->getCheckpointIndex()<<"produces: "<< virtualCheckPointIndex<<endl;
450            computeVirtualCheckpoint(racepoint1, racepoint2, problematicObjects);
451        }
452
453        //
454        //        do{
455        //            zufall=Vector3(rnd(),rnd(),rnd());//random
456        //        }while((zufall.crossProduct(objectmiddle-racepoint1->getPosition())).length()==0);
457        //
458        //        Vector3 normalvec=zufall.crossProduct(objectmiddle-racepoint1->getPosition());
459        //        // a'/b'=a/b => a' =b'*a/b
460        //        float laengeNormalvec=(objectmiddle-racepoint1->getPosition()).length()/sqrt((objectmiddle-racepoint1->getPosition()).squaredLength()-radius*radius)*radius;
461        //        addVirtualCheckPoint(racepoint1,racepoint2->getCheckpointIndex(), objectmiddle+normalvec/normalvec.length()*laengeNormalvec);
462
463        //        Vector3 richtungen [6];
464        //        richtungen[0]= Vector3(1,0,0);
465        //        richtungen[1]= Vector3(-1,0,0);
466        //        richtungen[2]= Vector3(0,1,0);
467        //        richtungen[3]= Vector3(0,-1,0);
468        //        richtungen[4]= Vector3(0,0,1);
469        //        richtungen[5]= Vector3(0,0,-1);
470        //
471        //        for (int i = 0; i< 6; i++)
472        //        {
473        //            const int STEPS=100;
474        //            const float PHI=1.1;
475        //            bool collision=false;
476        //
477        //            for (int j =0; j<STEPS; j++)
478        //            {
479        //                Vector3 tempPosition=(point1 - (point2-point1+richtungen[i]*PHI)*(float)j/STEPS);
480        //                for (std::vector<StaticEntity*>::iterator it = problematicObjects.begin(); it!=problematicObjects.end(); ++it)
481        //                {
482        //                    btVector3 positionObject;
483        //                    btScalar radiusObject;
484        //                    if((*it)==nullptr)
485        //                    {   orxout()<<"Problempoint 1.1"<<endl; continue;}
486        //                    //TODO: Probably it points on a wrong object
487        //                    for (int everyShape=0; (*it)->getAttachedCollisionShape(everyShape)!=nullptr; everyShape++)
488        //                    {
489        //                        if((*it)->getAttachedCollisionShape(everyShape)->getCollisionShape()==nullptr)
490        //                        {    continue;}
491        //
492        //                        orxout()<<"Problempoint 2.1"<<endl;
493        //                        (*it)->getAttachedCollisionShape(everyShape)->getCollisionShape()->getBoundingSphere(positionObject,radiusObject);
494        //                        Vector3 positionObjectNonBT(positionObject.x(), positionObject.y(), positionObject.z());
495        //                        if (((tempPosition - positionObjectNonBT).length()<radiusObject) && (vergleicheQuader((tempPosition-positionObjectNonBT),(*it)->getScale3D())))
496        //                        {
497        //                            collision=true; break;
498        //                        }
499        //                    }
500        //                    if(collision) break;
501        //                }
502        //                if(collision)break;
503        //            }
504        //            if(collision) continue;
505        //            // no collision => possible Way
506        //            for (float j =0; j<STEPS; j++)
507        //            {
508        //                Vector3 possiblePosition=(point1 - (point2-point1+richtungen[i]*PHI)*j/STEPS);
509        //                collision=false;
510        //                for(int ij=0; ij<STEPS; j++)
511        //                {
512        //                    Vector3 tempPosition=(possiblePosition - (point2-possiblePosition)*(float)ij/STEPS);
513        //                    for (std::vector<StaticEntity*>::iterator it = problematicObjects.begin(); it!=problematicObjects.end(); ++it)
514        //                    {
515        //                        btVector3 positionObject;
516        //                        btScalar radiusObject;
517        //                        if((*it)==nullptr)
518        //                        {   orxout()<<"Problempoint 1"<<endl; continue;}
519        //                        for (int everyShape=0; (*it)->getAttachedCollisionShape(everyShape)!=nullptr; everyShape++)
520        //                        {
521        //                            if((*it)->getAttachedCollisionShape(everyShape)->getCollisionShape()==nullptr)
522        //                            {   orxout()<<"Problempoint 2.2"<<endl; continue;}
523        //                            (*it)->getAttachedCollisionShape(everyShape)->getCollisionShape()->getBoundingSphere(positionObject,radiusObject);
524        //                            Vector3 positionObjectNonBT(positionObject.x(), positionObject.y(), positionObject.z());
525        //                            if (((tempPosition-positionObjectNonBT).length()<radiusObject) && (vergleicheQuader((tempPosition-positionObjectNonBT),(*it)->getScale3D())))
526        //                            {
527        //                                collision=true; break;
528        //                            }
529        //                        }
530        //                        if(collision) break;
531        //                    }
532        //                    if(collision)break;
533        //                    //addVirtualCheckPoint(racepoint1, racepoint2->getCheckpointIndex(), possiblePosition);
534        //                    return;
535        //                }
536        //
537        //            }
538        //        }
539
540    }*/
541}
Note: See TracBrowser for help on using the repository browser.