| 1 | // |
|---|
| 2 | // |
|---|
| 3 | // TODO: testing orxonox -flocking interface |
|---|
| 4 | // testing algorithm |
|---|
| 5 | |
|---|
| 6 | // ueberpruefen ob vektoren relativ richtig berechnet werden |
|---|
| 7 | // |
|---|
| 8 | //My Flocking Class |
|---|
| 9 | |
|---|
| 10 | #ifndef Flocking_Class |
|---|
| 11 | #define Flocking_Class |
|---|
| 12 | |
|---|
| 13 | #include <Ogre.h> |
|---|
| 14 | #include <OgreVector3.h> |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include <iostream> |
|---|
| 18 | |
|---|
| 19 | |
|---|
| 20 | #endif |
|---|
| 21 | |
|---|
| 22 | using namespace std; |
|---|
| 23 | using namespace Ogre; |
|---|
| 24 | |
|---|
| 25 | class Element // An element that flocks |
|---|
| 26 | { |
|---|
| 27 | |
|---|
| 28 | public: |
|---|
| 29 | Vector3 location; // locationvector of the element |
|---|
| 30 | Vector3 speed; // speedvector of the element |
|---|
| 31 | Vector3 acceleration; // accelerationvector of the element |
|---|
| 32 | bool movable; // movability of the element |
|---|
| 33 | |
|---|
| 34 | Element() { |
|---|
| 35 | acceleration = (0,0,0); |
|---|
| 36 | speed = (0,0,0); |
|---|
| 37 | location = (0,0,0); |
|---|
| 38 | movable = true; |
|---|
| 39 | } |
|---|
| 40 | |
|---|
| 41 | Element(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
|---|
| 42 | acceleration = acceleration_; |
|---|
| 43 | speed = speed_; |
|---|
| 44 | location = location_; |
|---|
| 45 | movable = movable_; |
|---|
| 46 | } |
|---|
| 47 | |
|---|
| 48 | void setValues(Vector3 location_, Vector3 speed_, Vector3 acceleration_, bool movable_) { |
|---|
| 49 | acceleration = acceleration_; |
|---|
| 50 | speed = speed_; |
|---|
| 51 | location = location_; |
|---|
| 52 | movable = movable_; |
|---|
| 53 | } |
|---|
| 54 | |
|---|
| 55 | //calculates the distance between the element and an other point given by temp |
|---|
| 56 | float getDistance(Element temp) { |
|---|
| 57 | Vector3 distance = temp.location-location; //this doesn't work |
|---|
| 58 | return distance.length(); |
|---|
| 59 | } |
|---|
| 60 | |
|---|
| 61 | //EINFÜGEN DES ELEMENTS |
|---|
| 62 | void update(Element arrayOfElements[], const FrameEvent& time) { |
|---|
| 63 | if (this->movable == true) {calculateAcceleration(arrayOfElements);} |
|---|
| 64 | |
|---|
| 65 | /* if (this->movable == true) { |
|---|
| 66 | calculateAcceleration(arrayOfElements); //updates the acceleration |
|---|
| 67 | calculateSpeed(time); //updates the speed |
|---|
| 68 | calculateLocation(time); //updates the location |
|---|
| 69 | } */ |
|---|
| 70 | } |
|---|
| 71 | |
|---|
| 72 | //EINFÜGEN DES ELEMENTS |
|---|
| 73 | void calculateAcceleration(Element arrayOfElements[]) { |
|---|
| 74 | //calculates the accelerationvector based on the steeringvectors of |
|---|
| 75 | //separtion, alignment and cohesion. |
|---|
| 76 | acceleration = separation(arrayOfElements) + alignment(arrayOfElements) + cohesion(arrayOfElements); |
|---|
| 77 | } |
|---|
| 78 | |
|---|
| 79 | void calculateSpeed(const FrameEvent& time) { |
|---|
| 80 | speed = speed + acceleration*time.timeSinceLastFrame; |
|---|
| 81 | } |
|---|
| 82 | |
|---|
| 83 | void calculateLocation(const FrameEvent& time) { |
|---|
| 84 | location = location + speed*time.timeSinceLastFrame; |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | |
|---|
| 88 | Vector3 separation(Element arrayOfElements[]) { |
|---|
| 89 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
|---|
| 90 | Vector3* inverseDistance = new Vector3(0,0,0); |
|---|
| 91 | int numberOfNeighbour = 0; //number of observed neighbours |
|---|
| 92 | float distance = 0; |
|---|
| 93 | //go through all elements |
|---|
| 94 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
|---|
| 95 | Element actual = arrayOfElements[i]; //get the actual element |
|---|
| 96 | distance = getDistance(actual); //get distance between this and actual |
|---|
| 97 | //DUMMY SEPERATION DETECTION DISTANCE =100 |
|---|
| 98 | if ((distance > 0) && (distance < 200)) { //do only if actual is inside detectionradius |
|---|
| 99 | *inverseDistance = (0,0,0); |
|---|
| 100 | *inverseDistance = location-actual.location; //calculate the distancevector heading towards this |
|---|
| 101 | //*inverseDistance = inverseDistance->normalise(); //does this work correctly? //normalise the distancevector |
|---|
| 102 | if ((distance < 100) && (distance >= 80)) {*inverseDistance = *inverseDistance*2;} |
|---|
| 103 | if ((distance < 80) && (distance >= 60)) {*inverseDistance = *inverseDistance*5;} |
|---|
| 104 | if ((distance < 60) && (distance >= 40)) {*inverseDistance = *inverseDistance*10;} |
|---|
| 105 | if ((distance < 40) && (distance > 0)) {*inverseDistance = *inverseDistance*20;} |
|---|
| 106 | // *inverseDistance = *inverseDistance/distance; //devide distancevector by distance (the closer the bigger gets the distancevector -> steeringvector) |
|---|
| 107 | *steering = *steering + *inverseDistance; //add up all significant steeringvectors |
|---|
| 108 | numberOfNeighbour++; //counts the elements inside the detectionradius |
|---|
| 109 | } |
|---|
| 110 | } |
|---|
| 111 | if(numberOfNeighbour > 0) { |
|---|
| 112 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> separation steeringvector |
|---|
| 113 | } |
|---|
| 114 | cout<<*steering<<endl; |
|---|
| 115 | return *steering; |
|---|
| 116 | } |
|---|
| 117 | |
|---|
| 118 | Vector3 alignment(Element arrayOfElements[]) { |
|---|
| 119 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
|---|
| 120 | int numberOfNeighbour = 0; //number of observed neighbours |
|---|
| 121 | float distance = 0; |
|---|
| 122 | //go through all elements |
|---|
| 123 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
|---|
| 124 | Element actual = arrayOfElements[i]; //get the actual element |
|---|
| 125 | float distance = getDistance(actual); //get distance between this and actual |
|---|
| 126 | //DUMMY ALIGNMENT DETECTION DISTANCE = 1000 |
|---|
| 127 | if ((distance > 0) && (distance < 300)) { //check if actual element is inside detectionradius |
|---|
| 128 | *steering = *steering + actual.speed; //add up all speedvectors inside the detectionradius |
|---|
| 129 | numberOfNeighbour++; //counts the elements inside the detectionradius |
|---|
| 130 | } |
|---|
| 131 | } |
|---|
| 132 | if(numberOfNeighbour > 0) { |
|---|
| 133 | *steering = *steering / (float)numberOfNeighbour; //devide the sum of steeringvectors by the number of elements -> alignment steeringvector |
|---|
| 134 | } |
|---|
| 135 | return *steering; |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | Vector3 cohesion(Element arrayOfElements[]) { |
|---|
| 139 | Vector3* steering = new Vector3(0,0,0); //steeringvector |
|---|
| 140 | int numberOfNeighbour = 0; //number of observed neighbours |
|---|
| 141 | float distance = 0; |
|---|
| 142 | //go through all elements |
|---|
| 143 | for(int i=0; i<9; i++) { //just working with 3 elements at the moment |
|---|
| 144 | Element actual = arrayOfElements[i]; //get the actual element |
|---|
| 145 | float distance = getDistance(actual); //get distance between this and actual |
|---|
| 146 | // DUMMY COHESION DETECTION DISTANCE = 1000 |
|---|
| 147 | if ((distance > 0) && (distance < 5000)) { //check if actual element is inside detectionradius |
|---|
| 148 | *steering = *steering + actual.location; //add up all locations of elements inside the detectionradius |
|---|
| 149 | numberOfNeighbour++; //counts the elements inside the detectionradius |
|---|
| 150 | } |
|---|
| 151 | } |
|---|
| 152 | if(numberOfNeighbour > 0) { |
|---|
| 153 | *steering = *steering / (float)numberOfNeighbour; //devide the sum steeringvector by the number of elements -> cohesion steeringvector |
|---|
| 154 | *steering = *steering - this->location; // (?) Koordinatensystem? |
|---|
| 155 | } |
|---|
| 156 | return *steering; |
|---|
| 157 | } |
|---|
| 158 | }; |
|---|
| 159 | |
|---|
| 160 | |
|---|
| 161 | |
|---|
| 162 | //End of My Flocking Class |
|---|