/* Basic ambient lighting vertex program */ void ambientOneTexture_vp(float4 position : POSITION, float2 uv : TEXCOORD0, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, uniform float4x4 worldViewProj, uniform float4 ambient) { oPosition = mul(worldViewProj, position); oUv = uv; colour = ambient; } /* Basic fragment program using texture and diffuse colour. */ void diffuseOneTexture_fp(float4 position : POSITION, float2 uv : TEXCOORD0, float4 diffuse : COLOR, out float4 colour : COLOR, uniform sampler2D texMap : register(s0)) { colour = tex2D(texMap,uv) * diffuse; } /* Single-weight-per-vertex hardware skinning, 2 lights The trouble with vertex programs is they're not general purpose, but fixed function hardware skinning is very poorly supported */ void hardwareSkinningOneWeight_vp( float4 position : POSITION, float3 normal : NORMAL, float2 uv : TEXCOORD0, float blendIdx : BLENDINDICES, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, // Support up to 24 bones of float3x4 // vs_1_1 only supports 96 params so more than this is not feasible uniform float3x4 worldMatrix3x4Array[24], uniform float4x4 viewProjectionMatrix, uniform float4 lightPos[2], uniform float4 lightDiffuseColour[2], uniform float4 ambient) { // transform by indexed matrix float4 blendPos = float4(mul(worldMatrix3x4Array[blendIdx], position).xyz, 1.0); // view / projection oPosition = mul(viewProjectionMatrix, blendPos); // transform normal float3 norm = mul((float3x3)worldMatrix3x4Array[blendIdx], normal); // Lighting - support point and directional float3 lightDir0 = normalize( lightPos[0].xyz - (blendPos.xyz * lightPos[0].w)); float3 lightDir1 = normalize( lightPos[1].xyz - (blendPos.xyz * lightPos[1].w)); oUv = uv; colour = ambient + (saturate(dot(lightDir0, norm)) * lightDiffuseColour[0]) + (saturate(dot(lightDir1, norm)) * lightDiffuseColour[1]); } /* Single-weight-per-vertex hardware skinning, shadow-caster pass */ void hardwareSkinningOneWeightCaster_vp( float4 position : POSITION, float3 normal : NORMAL, float blendIdx : BLENDINDICES, out float4 oPosition : POSITION, out float4 colour : COLOR, // Support up to 24 bones of float3x4 // vs_1_1 only supports 96 params so more than this is not feasible uniform float3x4 worldMatrix3x4Array[24], uniform float4x4 viewProjectionMatrix, uniform float4 ambient) { // transform by indexed matrix float4 blendPos = float4(mul(worldMatrix3x4Array[blendIdx], position).xyz, 1.0); // view / projection oPosition = mul(viewProjectionMatrix, blendPos); colour = ambient; } /* Two-weight-per-vertex hardware skinning, 2 lights The trouble with vertex programs is they're not general purpose, but fixed function hardware skinning is very poorly supported */ void hardwareSkinningTwoWeights_vp( float4 position : POSITION, float3 normal : NORMAL, float2 uv : TEXCOORD0, float4 blendIdx : BLENDINDICES, float4 blendWgt : BLENDWEIGHT, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, // Support up to 24 bones of float3x4 // vs_1_1 only supports 96 params so more than this is not feasible uniform float3x4 worldMatrix3x4Array[24], uniform float4x4 viewProjectionMatrix, uniform float4 lightPos[2], uniform float4 lightDiffuseColour[2], uniform float4 ambient, uniform float4 diffuse) { // transform by indexed matrix float4 blendPos = float4(0,0,0,0); int i; for (i = 0; i < 2; ++i) { blendPos += float4(mul(worldMatrix3x4Array[blendIdx[i]], position).xyz, 1.0) * blendWgt[i]; } // view / projection oPosition = mul(viewProjectionMatrix, blendPos); // transform normal float3 norm = float3(0,0,0); for (i = 0; i < 2; ++i) { norm += mul((float3x3)worldMatrix3x4Array[blendIdx[i]], normal) * blendWgt[i]; } norm = normalize(norm); // Lighting - support point and directional float3 lightDir0 = normalize( lightPos[0].xyz - (blendPos.xyz * lightPos[0].w)); float3 lightDir1 = normalize( lightPos[1].xyz - (blendPos.xyz * lightPos[1].w)); oUv = uv; colour = diffuse * (ambient + (saturate(dot(lightDir0, norm)) * lightDiffuseColour[0]) + (saturate(dot(lightDir1, norm)) * lightDiffuseColour[1])); } /* Two-weight-per-vertex hardware skinning, shadow caster pass */ void hardwareSkinningTwoWeightsCaster_vp( float4 position : POSITION, float3 normal : NORMAL, float2 uv : TEXCOORD0, float4 blendIdx : BLENDINDICES, float4 blendWgt : BLENDWEIGHT, out float4 oPosition : POSITION, out float4 colour : COLOR, // Support up to 24 bones of float3x4 // vs_1_1 only supports 96 params so more than this is not feasible uniform float3x4 worldMatrix3x4Array[24], uniform float4x4 viewProjectionMatrix, uniform float4 ambient) { // transform by indexed matrix float4 blendPos = float4(0,0,0,0); int i; for (i = 0; i < 2; ++i) { blendPos += float4(mul(worldMatrix3x4Array[blendIdx[i]], position).xyz, 1.0) * blendWgt[i]; } // view / projection oPosition = mul(viewProjectionMatrix, blendPos); colour = ambient; } /* Four-weight-per-vertex hardware skinning, 2 lights The trouble with vertex programs is they're not general purpose, but fixed function hardware skinning is very poorly supported */ void hardwareSkinningFourWeights_vp( float4 position : POSITION, float3 normal : NORMAL, float2 uv : TEXCOORD0, float4 blendIdx : BLENDINDICES, float4 blendWgt : BLENDWEIGHT, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, // Support up to 24 bones of float3x4 // vs_1_1 only supports 96 params so more than this is not feasible uniform float3x4 worldMatrix3x4Array[24], uniform float4x4 viewProjectionMatrix, uniform float4 lightPos[2], uniform float4 lightDiffuseColour[2], uniform float4 ambient) { // transform by indexed matrix float4 blendPos = float4(0,0,0,0); int i; for (i = 0; i < 4; ++i) { blendPos += float4(mul(worldMatrix3x4Array[blendIdx[i]], position).xyz, 1.0) * blendWgt[i]; } // view / projection oPosition = mul(viewProjectionMatrix, blendPos); // transform normal float3 norm = float3(0,0,0); for (i = 0; i < 4; ++i) { float3x3 d = (float3x3)worldMatrix3x4Array[blendIdx[i]]; norm += mul(d, normal) * blendWgt[i]; } norm = normalize(norm); // Lighting - support point and directional float3 lightDir0 = normalize( lightPos[0].xyz - (blendPos.xyz * lightPos[0].w)); float3 lightDir1 = normalize( lightPos[1].xyz - (blendPos.xyz * lightPos[1].w)); oUv = uv; colour = ambient + (saturate(dot(lightDir0, norm)) * lightDiffuseColour[0]) + (saturate(dot(lightDir1, norm)) * lightDiffuseColour[1]); } // hardware morph animation (no normals) void hardwareMorphAnimation(float3 pos1 : POSITION, float4 normal : NORMAL, float2 uv : TEXCOORD0, float3 pos2 : TEXCOORD1, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, uniform float4x4 worldViewProj, uniform float4 anim_t) { // interpolate float4 interp = float4(pos1 + anim_t.x*(pos2 - pos1), 1.0f); oPosition = mul(worldViewProj, interp); oUv = uv; colour = float4(1,0,0,1); } // hardware pose animation (no normals) void hardwarePoseAnimation(float3 pos : POSITION, float4 normal : NORMAL, float2 uv : TEXCOORD0, float3 pose1 : TEXCOORD1, float3 pose2 : TEXCOORD2, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, uniform float4x4 worldViewProj, uniform float4 anim_t) { // interpolate float4 interp = float4(pos + anim_t.x*pose1 + anim_t.y*pose2, 1.0f); oPosition = mul(worldViewProj, interp); oUv = uv; colour = float4(1,0,0,1); } // hardware morph animation (with normals) void hardwareMorphAnimationWithNormals(float3 pos1 : POSITION, float3 normal1 : NORMAL, float2 uv : TEXCOORD0, float3 pos2 : TEXCOORD1, float3 normal2 : TEXCOORD2, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, uniform float4x4 worldViewProj, uniform float4 objSpaceLightPos, uniform float4 ambient, uniform float4 anim_t) { // interpolate position float4 posinterp = float4(pos1 + anim_t.x*(pos2 - pos1), 1.0f); // nlerp normal float3 ninterp = normal1 + anim_t.x*(normal2 - normal1); ninterp = normalize(ninterp); oPosition = mul(worldViewProj, posinterp); oUv = uv; float3 lightDir = normalize( objSpaceLightPos.xyz - (posinterp.xyz * objSpaceLightPos.w)); // Colour it red to make it easy to identify float lit = saturate(dot(lightDir, ninterp)); colour = float4((ambient.rgb + float3(lit,lit,lit)) * float3(1,0,0), 1); } // hardware pose animation (with normals) void hardwarePoseAnimationWithNormals(float3 pos : POSITION, float3 normal : NORMAL, float2 uv : TEXCOORD0, float3 pose1pos : TEXCOORD1, float3 pose1norm : TEXCOORD2, float3 pose2pos : TEXCOORD3, float3 pose2norm : TEXCOORD4, out float4 oPosition : POSITION, out float2 oUv : TEXCOORD0, out float4 colour : COLOR, uniform float4x4 worldViewProj, uniform float4 objSpaceLightPos, uniform float4 ambient, uniform float4 anim_t) { // interpolate float4 posinterp = float4(pos + anim_t.x*pose1pos + anim_t.y*pose2pos, 1.0f); // nlerp normal // First apply the pose normals (these are actual normals, not offsets) float3 ninterp = anim_t.x*pose1norm + anim_t.y*pose2norm; // Now add back any influence of the original normal // This depends on what the cumulative weighting left the normal at, if it's lacking or cancelled out //float remainder = 1.0 - min(anim_t.x + anim_t.y, 1.0); float remainder = 1.0 - min(length(ninterp), 1.0); ninterp = ninterp + (normal * remainder); ninterp = normalize(ninterp); oPosition = mul(worldViewProj, posinterp); oUv = uv; float3 lightDir = normalize( objSpaceLightPos.xyz - (posinterp.xyz * objSpaceLightPos.w)); // Colour it red to make it easy to identify float lit = saturate(dot(lightDir, ninterp)); colour = float4((ambient.rgb + float3(lit,lit,lit)) * float3(1,0,0), 1); } void basicPassthroughTangent_v(float4 position : POSITION, float3 tangent : TANGENT, out float4 oPosition : POSITION, out float3 oTangent : TEXCOORD0, uniform float4x4 worldViewProj) { oPosition = mul(worldViewProj, position); oTangent = tangent; } void basicPassthroughNormal_v(float4 position : POSITION, float3 normal : NORMAL, out float4 oPosition : POSITION, out float3 oNormal : TEXCOORD0, uniform float4x4 worldViewProj) { oPosition = mul(worldViewProj, position); oNormal = normal; } // Basic fragment program to display UV float4 showuv_p (float4 position : POSITION, float2 uv : TEXCOORD0) : COLOR { // wrap values using frac return float4(frac(uv.x), frac(uv.y), 0, 1); } // Basic fragment program to display 3d uv float4 showuvdir3d_p (float4 position : POSITION, float3 uv : TEXCOORD0) : COLOR { float3 n = normalize(uv); return float4(n.x, n.y, n.z, 1); }