/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Benjamin Grauer co-programmer: ... */ #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_WORLD_ENTITY #include "water.h" #include "factory.h" #include "load_param.h" #include "grid.h" #include "material.h" #include "resource_manager.h" #include "shader.h" #include "skybox.h" #include "network_game_manager.h" using namespace std; CREATE_FACTORY(Water, CL_WATER); Water::Water(const TiXmlElement* root) { this->setClassID(CL_WATER, "Water"); this->toList(OM_ENVIRON); this->resX = this->resY = 10; this->sizeX = this->sizeY = 1.0f; this->height = 0.5f; this->grid = NULL; this->velocities = NULL; this->viscosity = 5; this->cohesion = .0000000001; if (root != NULL) this->loadParams(root); this->rebuildGrid(); this->waterMaterial = new Material(); this->waterShader = (Shader*)ResourceManager::getInstance()->load("shaders/water.vert", SHADER, RP_GAME, "shaders/water.frag"); this->grid->height(this->grid->columns()/2,this->grid->rows()/2) = 100; } Water::~Water() { delete this->grid; delete this->waterMaterial; } void Water::loadParams(const TiXmlElement* root) { WorldEntity::loadParams(root); LoadParam(root, "size", this, Water, setSize) .describe("the size of the WaterSurface") .defaultValues(2, 1.0f, 1.0f); LoadParam(root, "resolution", this, Water, setResolution) .describe("sets the resolution of the water surface") .defaultValues(2, 10, 10); LoadParam(root, "height", this, Water, setHeight) .describe("the height of the Waves") .defaultValues(1, 0.5f); } void Water::rebuildGrid() { if (this->velocities != NULL) { assert (this->grid != NULL); for (unsigned int i = 0; i < this->grid->rows(); i++) delete[] this->velocities[i]; delete[] this->velocities; } // WE DO NOT NEED THIS AS IT IS DONE IN WORLDENTITY->setModel(); // if (this->grid != NULL) // this->grid = NULL; this->grid = new Grid(this->sizeX, this->sizeY, this->resX, this->resY); this->velocities = new float*[this->resX]; for (unsigned int i = 0; i < this->grid->rows(); i++) { this->velocities[i] = new float[this->resY]; for (unsigned int j = 0; j < this->resY; j++) this->velocities[i][j] = 0.0; } this->setModel(this->grid, 0); } void Water::setResolution(unsigned int resX, unsigned int resY) { this->resX = resX; this->resY = resY; } void Water::setSize(float sizeX, float sizeY) { this->sizeX = sizeX; this->sizeY = sizeY; } void Water::setHeight(float height) { this->height = height; } void Water::draw() const { if (this->grid != NULL) { //SkyBox::enableCubeMap(); WorldEntity::draw(); glBindTexture(GL_TEXTURE_2D, 15); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); glEnable(GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // this->waterShader->activateShader(); // this->waterMaterial->select(); //Shader::deactivateShader(); SkyBox::disableCubeMap(); } } void Water::tick(float dt) { if (unlikely(this->velocities == NULL)) return; /* THE OLD USELESS ALGORITHM phase += dt *.1; for (unsigned int i = 0; i < this->grid->rows(); i++) { for (unsigned int j = 0; j < this->grid->columns(); j++) { this->grid->height(i,j) = this->height*sin(((float)i/(float)this->grid->rows() *phase)+ this->height*cos((float)j/(float)this->grid->columns()) * phase * 2.0); } } this->grid->rebuildNormals(this->height);*/ unsigned int i, j; float u; // wave/advection // calc movement for(j = 1; j < this->grid->rows() - 1; j++) { for(i = 1; i < this->grid->columns() - 1; i++) { u = this->grid->height(i+1,j)+ this->grid->height(i-1, j) + this->grid->height(i, j+1) + this->grid->height(i, j-1) - 4 * this->grid->height(i, j); this->velocities[i][j] += dt * this->viscosity * this->viscosity * u / this->height; this->grid->height(i, j) += dt * this->velocities[i][j] + dt * this->cohesion * u / this->height;; } } // boundraries for (j = 0; j < this->grid->rows(); j++) { this->grid->height(0,j) = this->grid->height(1,j); this->grid->height(this->grid->rows()-1,j) = this->grid->height(this->grid->rows()-2, j); } for (i = 0; i < this->grid->rows(); i++) { this->grid->height(i,0) = this->grid->height(i,1); this->grid->height(i,this->grid->columns()-1) = this->grid->height(i, this->grid->columns()-2); } /* for(j = 1; j < this->grid->rows() - 1; j++) { for(i = 1; i < this->grid->columns() - 1; i++) { this->grid->height(i, j) += dt * this->velocities[i][j]; } }*/ // calc normals // float l[3]; // float m[3]; // for(j = 1; j < this->grid->rows() -1; j++) { // for(i = 1; i < this->grid->columns() - 1; i++) { // l[0] = this->grid->vertexG(i, j-1).x - this->grid->vertexG(i, j+1).x; // l[1] = this->grid->vertexG(i, j-1).y - this->grid->vertexG(i, j+1).y; // l[2] = this->grid->vertexG(i, j-1).z - this->grid->vertexG(i, j+1).z; // m[0] = this->grid->vertexG(i-1,j).x - this->grid->vertexG(i+1, j).x; // m[1] = this->grid->vertexG(i-1,j).y - this->grid->vertexG(i+1, j).y; // m[2] = this->grid->vertexG(i-1,j).z - this->grid->vertexG(i+1, j).z; // this->grid->normalG(i, j).x = l[1] * m[2] - l[2] * m[1]; // this->grid->normalG(i, j).y = l[2] * m[0] - l[0] * m[2]; // this->grid->normalG(i, j).z = l[0] * m[1] - l[1] * m[0]; // } // } this->grid->rebuildNormals(this->height); } /** * Writes data from network containing information about the state * @param data pointer to data * @param length length of data * @param sender hostID of sender */ int Water::writeBytes( const byte * data, int length, int sender ) { setRequestedSync( false ); setIsOutOfSync( false ); SYNCHELP_READ_BEGIN(); SYNCHELP_READ_FKT( Water::writeState ); return SYNCHELP_READ_N; } /** * data copied in data will bee sent to another host * @param data pointer to data * @param maxLength max length of data * @return the number of bytes writen */ int Water::readBytes( byte * data, int maxLength, int * reciever ) { SYNCHELP_WRITE_BEGIN(); if ( isOutOfSync() && !requestedSync() && this->getHostID()!=this->getOwner() ) { (NetworkGameManager::getInstance())->sync( this->getUniqueID(), this->getOwner() ); setRequestedSync( true ); } int rec = this->getRequestSync(); if ( rec > 0 ) { *reciever = rec; SYNCHELP_WRITE_FKT( Water::readState ); } *reciever = 0; return SYNCHELP_WRITE_N; } /** * data copied in data will bee sent to another host * @param data pointer to data * @param maxLength max length of data * @return the number of bytes writen */ int Water::readState( byte * data, int maxLength ) { SYNCHELP_WRITE_BEGIN(); SYNCHELP_WRITE_FKT( WorldEntity::readState ); // sync the size SYNCHELP_WRITE_FLOAT( this->sizeX ); SYNCHELP_WRITE_FLOAT( this->sizeY ); //sync resolution SYNCHELP_WRITE_INT( this->resX ); SYNCHELP_WRITE_INT( this->resY ); //sync the height SYNCHELP_WRITE_FLOAT( this->height ); return SYNCHELP_WRITE_N; } /** * Writes data from network containing information about the state * @param data pointer to data * @param length length of data * @param sender hostID of sender */ int Water::writeState( const byte * data, int length, int sender ) { SYNCHELP_READ_BEGIN(); SYNCHELP_READ_FKT( WorldEntity::writeState ); float f1, f2; int i1, i2; //read the size SYNCHELP_READ_FLOAT( f1 ); SYNCHELP_READ_FLOAT( f2 ); this->sizeX = f1; this->sizeY = f2; PRINTF(0)("Setting Water to size: %f x %f\n", f1, f2); //read the resolution SYNCHELP_READ_INT( i1 ); SYNCHELP_READ_INT( i2 ); this->resX = i1; this->resY = i2; PRINTF(0)("Setting Water to resolution: %i x %i\n", i1, i2); //read the height SYNCHELP_READ_FLOAT( f1 ); this->height = f1; this->rebuildGrid(); return SYNCHELP_READ_N; }