| 1 | |
|---|
| 2 | #define WANT_STREAM |
|---|
| 3 | #define WANT_MATH |
|---|
| 4 | #define WANT_FSTREAM |
|---|
| 5 | |
|---|
| 6 | #include "newmatap.h" |
|---|
| 7 | #include "newmatio.h" |
|---|
| 8 | #include "newmatnl.h" |
|---|
| 9 | |
|---|
| 10 | #ifdef use_namespace |
|---|
| 11 | using namespace RBD_LIBRARIES; |
|---|
| 12 | #endif |
|---|
| 13 | |
|---|
| 14 | // This is a demonstration of a special case of the Garch model |
|---|
| 15 | // Observe two series X and Y of length n |
|---|
| 16 | // and suppose |
|---|
| 17 | // Y(i) = beta * X(i) + epsilon(i) |
|---|
| 18 | // where epsilon(i) is normally distributed with zero mean and variance = |
|---|
| 19 | // h(i) = alpha0 + alpha1 * square(epsilon(i-1)) + beta1 * h(i-1). |
|---|
| 20 | // Then this program is supposed to estimate beta, alpha0, alpha1, beta1 |
|---|
| 21 | // The Garch model is supposed to model something like an instability |
|---|
| 22 | // in the stock or options market following an unexpected result. |
|---|
| 23 | // alpha1 determines the size of the instability and beta1 determines how |
|---|
| 24 | // quickly is dies away. |
|---|
| 25 | // We should, at least, have an X of several columns and beta as a vector |
|---|
| 26 | |
|---|
| 27 | inline Real square(Real x) { return x*x; } |
|---|
| 28 | |
|---|
| 29 | // the class that defines the GARCH log-likelihood |
|---|
| 30 | |
|---|
| 31 | class GARCH11_LL : public LL_D_FI |
|---|
| 32 | { |
|---|
| 33 | ColumnVector Y; // Y values |
|---|
| 34 | ColumnVector X; // X values |
|---|
| 35 | ColumnVector D; // derivatives of loglikelihood |
|---|
| 36 | SymmetricMatrix D2; // - approximate second derivatives |
|---|
| 37 | int n; // number of observations |
|---|
| 38 | Real beta, alpha0, alpha1, beta1; |
|---|
| 39 | // the parameters |
|---|
| 40 | |
|---|
| 41 | public: |
|---|
| 42 | |
|---|
| 43 | GARCH11_LL(const ColumnVector& y, const ColumnVector& x) |
|---|
| 44 | : Y(y), X(x), n(y.Nrows()) {} |
|---|
| 45 | // constructor - load Y and X values |
|---|
| 46 | |
|---|
| 47 | void Set(const ColumnVector& p) // set parameter values |
|---|
| 48 | { |
|---|
| 49 | para = p; |
|---|
| 50 | beta = para(1); alpha0 = para(2); |
|---|
| 51 | alpha1 = para(3); beta1 = para(4); |
|---|
| 52 | } |
|---|
| 53 | |
|---|
| 54 | bool IsValid(); // are parameters valid |
|---|
| 55 | Real LogLikelihood(); // return the loglikelihood |
|---|
| 56 | ReturnMatrix Derivatives(); // derivatives of log-likelihood |
|---|
| 57 | ReturnMatrix FI(); // Fisher Information matrix |
|---|
| 58 | }; |
|---|
| 59 | |
|---|
| 60 | bool GARCH11_LL::IsValid() |
|---|
| 61 | { return alpha0>0 && alpha1>0 && beta1>0 && (alpha1+beta1)<1.0; } |
|---|
| 62 | |
|---|
| 63 | Real GARCH11_LL::LogLikelihood() |
|---|
| 64 | { |
|---|
| 65 | // cout << endl << " "; |
|---|
| 66 | // cout << setw(10) << setprecision(5) << beta; |
|---|
| 67 | // cout << setw(10) << setprecision(5) << alpha0; |
|---|
| 68 | // cout << setw(10) << setprecision(5) << alpha1; |
|---|
| 69 | // cout << setw(10) << setprecision(5) << beta1; |
|---|
| 70 | // cout << endl; |
|---|
| 71 | ColumnVector H(n); // residual variances |
|---|
| 72 | ColumnVector U = Y - X * beta; // the residuals |
|---|
| 73 | ColumnVector LH(n); // derivative of log-likelihood wrt H |
|---|
| 74 | // each row corresponds to one observation |
|---|
| 75 | LH(1)=0; |
|---|
| 76 | Matrix Hderiv(n,4); // rectangular matrix of derivatives |
|---|
| 77 | // of H wrt parameters |
|---|
| 78 | // each row corresponds to one observation |
|---|
| 79 | // each column to one of the parameters |
|---|
| 80 | |
|---|
| 81 | // Regard Y(1) as fixed and don't include in likelihood |
|---|
| 82 | // then put in an expected value of H(1) in place of actual value |
|---|
| 83 | // which we don't know. Use |
|---|
| 84 | // E{H(i)} = alpha0 + alpha1 * E{square(epsilon(i-1))} + beta1 * E{H(i-1)} |
|---|
| 85 | // and E{square(epsilon(i-1))} = E{H(i-1)} = E{H(i)} |
|---|
| 86 | Real denom = (1-alpha1-beta1); |
|---|
| 87 | H(1) = alpha0/denom; // the expected value of H |
|---|
| 88 | Hderiv(1,1) = 0; |
|---|
| 89 | Hderiv(1,2) = 1.0 / denom; |
|---|
| 90 | Hderiv(1,3) = alpha0 / square(denom); |
|---|
| 91 | Hderiv(1,4) = Hderiv(1,3); |
|---|
| 92 | Real LL = 0.0; // the log likelihood |
|---|
| 93 | Real sum1 = 0; // for forming derivative wrt beta |
|---|
| 94 | Real sum2 = 0; // for forming second derivative wrt beta |
|---|
| 95 | for (int i=2; i<=n; i++) |
|---|
| 96 | { |
|---|
| 97 | Real u1 = U(i-1); Real h1 = H(i-1); |
|---|
| 98 | Real h = alpha0 + alpha1*square(u1) + beta1*h1; // variance of this obsv. |
|---|
| 99 | H(i) = h; Real u = U(i); |
|---|
| 100 | LL += log(h) + square(u) / h; // -2 * log likelihood |
|---|
| 101 | // Hderiv are derivatives of h with respect to the parameters |
|---|
| 102 | // need to allow for h1 depending on parameters |
|---|
| 103 | Hderiv(i,1) = -2*u1*alpha1*X(i-1) + beta1*Hderiv(i-1,1); // beta |
|---|
| 104 | Hderiv(i,2) = 1 + beta1*Hderiv(i-1,2); // alpha0 |
|---|
| 105 | Hderiv(i,3) = square(u1) + beta1*Hderiv(i-1,3); // alpha1 |
|---|
| 106 | Hderiv(i,4) = h1 + beta1*Hderiv(i-1,4); // beta1 |
|---|
| 107 | LH(i) = -0.5 * (1/h - square(u/h)); |
|---|
| 108 | sum1 += u * X(i)/ h; |
|---|
| 109 | sum2 += square(X(i)) / h; |
|---|
| 110 | } |
|---|
| 111 | D = Hderiv.t()*LH; // derivatives of likelihood wrt parameters |
|---|
| 112 | D(1) += sum1; // add on deriv wrt beta from square(u) term |
|---|
| 113 | // cout << setw(10) << setprecision(5) << D << endl; |
|---|
| 114 | |
|---|
| 115 | // do minus expected value of second derivatives |
|---|
| 116 | if (wg) // do only if second derivatives wanted |
|---|
| 117 | { |
|---|
| 118 | Hderiv.Row(1) = 0.0; |
|---|
| 119 | Hderiv = H.AsDiagonal().i() * Hderiv; |
|---|
| 120 | D2 << Hderiv.t() * Hderiv; D2 = D2 / 2.0; |
|---|
| 121 | D2(1,1) += sum2; |
|---|
| 122 | // cout << setw(10) << setprecision(5) << D2 << endl; |
|---|
| 123 | // DiagonalMatrix DX; EigenValues(D2,DX); |
|---|
| 124 | // cout << setw(10) << setprecision(5) << DX << endl; |
|---|
| 125 | |
|---|
| 126 | } |
|---|
| 127 | return -0.5 * LL; |
|---|
| 128 | } |
|---|
| 129 | |
|---|
| 130 | ReturnMatrix GARCH11_LL::Derivatives() |
|---|
| 131 | { return D; } |
|---|
| 132 | |
|---|
| 133 | ReturnMatrix GARCH11_LL::FI() |
|---|
| 134 | { |
|---|
| 135 | if (!wg) cout << endl << "unexpected call of FI" << endl; |
|---|
| 136 | return D2; |
|---|
| 137 | } |
|---|
| 138 | |
|---|
| 139 | |
|---|
| 140 | |
|---|
| 141 | int main() |
|---|
| 142 | { |
|---|
| 143 | // get data |
|---|
| 144 | ifstream fin("garch.dat"); |
|---|
| 145 | if (!fin) { cout << "cannot find garch.dat\n"; exit(1); } |
|---|
| 146 | int n; fin >> n; // series length |
|---|
| 147 | // Y contains the dependant variable, X the predictor variable |
|---|
| 148 | ColumnVector Y(n), X(n); |
|---|
| 149 | int i; |
|---|
| 150 | for (i=1; i<=n; i++) fin >> Y(i) >> X(i); |
|---|
| 151 | cout << "Read " << n << " data points - begin fit\n\n"; |
|---|
| 152 | // now do the fit |
|---|
| 153 | ColumnVector H(n); |
|---|
| 154 | GARCH11_LL garch11(Y,X); // loglikehood "object" |
|---|
| 155 | MLE_D_FI mle_d_fi(garch11,100,0.0001); // mle "object" |
|---|
| 156 | ColumnVector Para(4); // to hold the parameters |
|---|
| 157 | Para << 0.0 << 0.1 << 0.1 << 0.1; // starting values |
|---|
| 158 | // (Should change starting values to a more intelligent formula) |
|---|
| 159 | mle_d_fi.Fit(Para); // do the fit |
|---|
| 160 | ColumnVector SE; |
|---|
| 161 | mle_d_fi.GetStandardErrors(SE); |
|---|
| 162 | cout << "\n\n"; |
|---|
| 163 | cout << "estimates and standard errors\n"; |
|---|
| 164 | cout << setw(15) << setprecision(5) << (Para | SE) << endl << endl; |
|---|
| 165 | SymmetricMatrix Corr; |
|---|
| 166 | mle_d_fi.GetCorrelations(Corr); |
|---|
| 167 | cout << "correlation matrix\n"; |
|---|
| 168 | cout << setw(10) << setprecision(2) << Corr << endl << endl; |
|---|
| 169 | cout << "inverse of correlation matrix\n"; |
|---|
| 170 | cout << setw(10) << setprecision(2) << Corr.i() << endl << endl; |
|---|
| 171 | return 0; |
|---|
| 172 | } |
|---|
| 173 | |
|---|
| 174 | |
|---|
| 175 | |
|---|