/*! \file vector.h \brief A basic 3D math framework Contains classes to handle vectors, lines, rotations and planes */ #ifndef _VECTOR_H #define _VECTOR_H #include #include "compiler.h" #include "abstract_model.h" //! PI the circle-constant #define PI 3.14159265359f //! 3D Vector /** Class to handle 3D Vectors */ class Vector { public: Vector (float x, float y, float z) : x(x), y(y), z(z) {} //!< assignment constructor Vector () : x(0), y(0), z(0) {} ~Vector () {} /** \param index The index of the "array" \returns the x/y/z coordinate */ inline float operator[] (float index) const {if( index == 0) return this->x; if( index == 1) return this->y; if( index == 2) return this->z; } /** \param v The vector to add \returns the addition between two vectors (this + v) */ inline Vector operator+ (const Vector& v) const { return Vector(x + v.x, y + v.y, z + v.z); }; /** \param v The vector to add \returns the addition between two vectors (this += v) */ inline const Vector& operator+= (const Vector& v) { this->x += v.x; this->y += v.y; this->z += v.z; return *this; }; /** \param v The vector to substract \returns the substraction between two vectors (this - v) */ inline Vector operator- (const Vector& v) const { return Vector(x - v.x, y - v.y, z - v.z); } /** \param v The vector to substract \returns the substraction between two vectors (this -= v) */ inline const Vector& operator-= (const Vector& v) { this->x -= v.x; this->y -= v.y; this->z -= v.z; return *this; }; /** \param v the second vector \returns The dotProduct between two vector (this (dot) v) */ inline float operator* (const Vector& v) const { return x * v.x + y * v.y + z * v.z; }; /** \todo strange */ inline const Vector& operator*= (const Vector& v) { this->x *= v.x; this->y *= v.y; this->z *= v.z; return *this; }; /** \param f a factor to multiply the vector with \returns the vector multiplied by f (this * f) */ inline Vector operator* (float f) const { return Vector(x * f, y * f, z * f); }; /** \param f a factor to multiply the vector with \returns the vector multiplied by f (this *= f) */ inline const Vector& operator*= (float f) { this->x *= f; this->y *= f; this->z *= f; return *this; }; /** \param f a factor to divide the vector with \returns the vector divided by f (this / f) */ inline Vector operator/ (float f) const {if (unlikely(f == 0.0)) return Vector(0,0,0); else return Vector(this->x / f, this->y / f, this->z / f); }; /** \param f a factor to divide the vector with \returns the vector divided by f (this /= f) */ inline const Vector& operator/= (float f) {if (unlikely(f == 0.0)) {this->x=0;this->y=0;this->z=0;} else {this->x /= f; this->y /= f; this->z /= f;} return *this; }; /** \brief copy constructor \todo (i do not know it this is faster) \param v the vector to assign to this vector. \returns the vector v */ inline const Vector& operator= (const Vector& v) { this->x = v.x; this->y = v.y; this->z = v.z; return *this; }; /** \brief copy constructor \param v the sVec3D to assign to this vector. \returns the vector v */ inline const Vector& operator= (const sVec3D& v) { this->x = v[0]; this->y = v[1]; this->z = v[2]; } /** \param v: the other vector \return the dot product of the vectors */ float dot (const Vector& v) const { return x*v.x+y*v.y+z*v.z; }; /** \param v: the corss-product partner \returns the cross-product between this and v (this (x) v) */ inline Vector cross (const Vector& v) const { return Vector(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x ); } /** \brief scales the this vector with v \param v the vector to scale this with */ void scale(const Vector& v) { x *= v.x; y *= v.y; z *= v.z; }; /** \returns the length of the vector */ inline float len() const { return sqrt (x*x+y*y+z*z); } /** \brief normalizes the vector */ inline void normalize() { float l = len(); if( unlikely(l == 0.0)) { // Prevent divide by zero return; } x = x / l; y = y / l; z = z / l; } Vector getNormalized() const; Vector abs(); void debug() const; public: float x; //!< The x Coordinate of the Vector. float y; //!< The y Coordinate of the Vector. float z; //!< The z Coordinate of the Vector. }; /** \brief calculate the angle between two vectors in radiances \param v1: a vector \param v2: another vector \return the angle between the vectors in radians */ inline float angleDeg (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())); }; /** \brief calculate the angle between two vectors in degrees \param v1: a vector \param v2: another vector \return the angle between the vectors in degrees */ inline float angleRad (const Vector& v1, const Vector& v2) { return acos( v1 * v2 / (v1.len() * v2.len())) * 180/M_PI; }; //! Quaternion /** Class to handle 3-dimensional rotation efficiently */ class Quaternion { public: /** \brief creates a Default quaternion (multiplicational identity Quaternion)*/ inline Quaternion () { w = 1; v = Vector(0,0,0); } /** \brief creates a Quaternion looking into the direction v \param v: the direction \param f: the value */ inline Quaternion (const Vector& v, float f) { this->w = f; this->v = v; } Quaternion (float m[4][4]); /** \brief turns a rotation along an axis into a Quaternion \param angle: the amount of radians to rotate \param axis: the axis to rotate around */ inline Quaternion (float angle, const Vector& axis) { w = cos(angle/2); v = axis * sin(angle/2); } Quaternion (const Vector& dir, const Vector& up); Quaternion (float roll, float pitch, float yaw); Quaternion operator/ (const float& f) const; /** \param f: the value to divide by \returns the quaternion devided by f (this /= f) */ inline const Quaternion& operator/= (const float& f) {*this = *this / f; return *this;} Quaternion operator* (const float& f) const; /** \param f: the value to multiply by \returns the quaternion multiplied by f (this *= f) */ inline const Quaternion& operator*= (const float& f) {*this = *this * f; return *this;} Quaternion operator* (const Quaternion& q) const; /** \param q: the Quaternion to multiply by \returns the quaternion multiplied by q (this *= q) */ inline const Quaternion operator*= (const Quaternion& q) {*this = *this * q; return *this; }; /** \param q the Quaternion to add to this \returns the quaternion added with q (this + q) */ inline Quaternion operator+ (const Quaternion& q) const { return Quaternion(q.v + v, q.w + w); }; /** \param q the Quaternion to add to this \returns the quaternion added with q (this += q) */ inline const Quaternion& operator+= (const Quaternion& q) { this->v += q.v; this->w += q.w; return *this; }; /** \param q the Quaternion to substrace from this \returns the quaternion substracted by q (this - q) */ inline Quaternion operator- (const Quaternion& q) const { return Quaternion(q.v - v, q.w - w); } /** \param q the Quaternion to substrace from this \returns the quaternion substracted by q (this -= q) */ inline const Quaternion& operator-= (const Quaternion& q) { this->v -= q.v; this->w -= q.w; return *this; }; /** \brief copy constructor \param q: the Quaternion to set this to. \returns the Quaternion q (or this) */ inline Quaternion operator= (const Quaternion& q) {this->v = q.v; this->w = q.w; return *this;} /** \brief conjugates this Quaternion \returns the conjugate */ inline Quaternion conjugate () const { Quaternion r(*this); r.v = Vector() - r.v; return r;} Quaternion inverse () const; Vector apply (const Vector& f) const; float norm () const; void matrix (float m[4][4]) const; void debug(); public: Vector v; //!< Imaginary Vector float w; //!< Real part of the number }; Quaternion quatSlerp(const Quaternion& from, const Quaternion& to, float t); //! 3D rotation (OBSOLETE) /** Class to handle 3-dimensional rotations. Can create a rotation from several inputs, currently stores rotation using a 3x3 Matrix */ class Rotation { public: float m[9]; //!< 3x3 Rotation Matrix Rotation ( const Vector& v); Rotation ( const Vector& axis, float angle); Rotation ( float pitch, float yaw, float roll); Rotation (); ~Rotation () {} Rotation operator* (const Rotation& r); void glmatrix (float* buffer); }; //!< Apply a rotation to a vector Vector rotateVector( const Vector& v, const Rotation& r); //! 3D line /** Class to store Lines in 3-dimensional space Supports line-to-line distance measurements and rotation */ class Line { public: Vector r; //!< Offset Vector a; //!< Direction Line ( Vector r, Vector a) : r(r), a(a) {} //!< assignment constructor Line () : r(Vector(0,0,0)), a(Vector (1,1,1)) {} ~Line () {} float distance (const Line& l) const; float distancePoint (const Vector& v) const; Vector* footpoints (const Line& l) const; float len () const; void rotate(const Rotation& rot); }; //! 3D plane /** Class to handle planes in 3-dimensional space Critical for polygon-based collision detection */ class Plane { public: Vector n; //!< Normal vector float k; //!< Offset constant Plane (Vector a, Vector b, Vector c); Plane (Vector norm, Vector p); Plane (Vector n, float k) : n(n), k(k) {} //!< assignment constructor Plane () : n(Vector(1,1,1)), k(0) {} ~Plane () {} Vector intersectLine (const Line& l) const; float distancePoint (const Vector& p) const; float locatePoint (const Vector& p) const; }; #endif /* _VECTOR_H */