/* orxonox - the future of 3D-vertical-scrollers Copyright (C) 2004 orx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ### File Specific: main-programmer: Patrick Boenzli co-programmer: ... */ #define DEBUG_SPECIAL_MODULE DEBUG_MODULE_COLLISION #include "obb_tree_node.h" #include "list.h" #include "obb.h" #include "obb_tree.h" #include "vector.h" #include "abstract_model.h" #include #include "stdincl.h" #include "lin_alg.h" using namespace std; OBBTree* OBBTreeNode::obbTree = NULL; float** OBBTreeNode::coMat = NULL; float** OBBTreeNode::eigvMat = NULL; float* OBBTreeNode::eigvlMat = NULL; int* OBBTreeNode::rotCount = NULL; /** \brief standard constructor */ OBBTreeNode::OBBTreeNode () { this->setClassID(CL_OBB_TREE_NODE, "OBBTreeNode"); this->nodeLeft = NULL; this->nodeRight = NULL; if(coMat == NULL) { coMat = new float*[4]; for(int i = 0; i < 4; i++) coMat[i] = new float[4]; } if(eigvMat == NULL) { eigvMat = new float*[4]; for(int i = 0; i < 4; i++) eigvMat[i] = new float[4]; } if( eigvlMat == NULL) { eigvlMat = new float[4]; } if( rotCount == NULL) rotCount = new int; this->sphereObj = gluNewQuadric(); } /** \brief standard deconstructor */ OBBTreeNode::~OBBTreeNode () { // delete what has to be deleted here } /** \brief creates a new BVTree or BVTree partition \param depth: how much more depth-steps to go: if == 1 don't go any deeper! \param verticesList: the list of vertices of the object - each vertices triple is interpreted as a triangle */ void OBBTreeNode::spawnBVTree(const int depth, sVec3D *verticesList, const int length) { PRINT(0)("\n"); this->treeIndex = this->obbTree->getID(); PRINTF(0)("OBB Depth: %i, tree index: %i, numVertices: %i\n", depth, treeIndex, length); this->depth = depth; this->bvElement = new OBB(); this->bvElement->vertices = verticesList; this->bvElement->numOfVertices = length; PRINTF(3)("Created OBBox\n"); this->calculateBoxCovariance(this->bvElement, verticesList, length); PRINTF(3)("Calculated attributes1\n"); this->calculateBoxEigenvectors(this->bvElement, verticesList, length); PRINTF(3)("Calculated attributes2\n"); this->calculateBoxAxis(this->bvElement, verticesList, length); PRINTF(3)("Calculated attributes3\n"); if( likely( this->depth > 0)) { this->forkBox(this->bvElement); if(this->tmpLen1 > 0) { OBBTreeNode* node1 = new OBBTreeNode(); this->nodeLeft = node1; this->nodeLeft->spawnBVTree(depth - 1, this->tmpVert1, this->tmpLen1); } else { PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n"); } if( this->tmpLen2 > 0) { OBBTreeNode* node2 = new OBBTreeNode(); this->nodeRight = node2; this->nodeRight->spawnBVTree(depth - 1, this->tmpVert2, this->tmpLen2); } else { PRINTF(0)("Aboarding tree walk: less than 3 vertices left\n"); } } } void OBBTreeNode::calculateBoxCovariance(OBB* box, sVec3D* verticesList, int length) { float facelet[length]; //!< surface area of the i'th triangle of the convex hull float face; //!< surface area of the entire convex hull Vector centroid[length]; //!< centroid of the i'th convex hull Vector center; //!< the center of the entire hull Vector p, q, r; //!< holder of the polygon data, much more conveniant to work with Vector than sVec3d Vector t1, t2; //!< temporary values float covariance[3][3]; //!< the covariance matrix int mode = 3; //!< mode = 0: vertex soup, no connections, mode = 1: 3 following verteces build a triangle this->numOfVertices = length; this->vertices = verticesList; if( likely(mode == 0)) { /* fist compute all the convex hull face/facelets and centroids */ for(int i = 0; i < length; i+=3) /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/ { p = verticesList[i]; q = verticesList[i + 1]; r = verticesList[i + 2]; t1 = p - q; t2 = p - r; /* finding the facelet surface via cross-product */ facelet[i] = 0.5f * fabs( t1.cross(t2).len() ); /* update the entire convex hull surface */ face += facelet[i]; /* calculate the cetroid of the hull triangles */ centroid[i] = (p + q + r) * 1/3; /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */ center += centroid[i] * facelet[i]; } /* take the average of the centroid sum */ center /= face; PRINTF(3)("-- Calculated Center\n"); /* now calculate the covariance matrix - if not written in three for-loops, it would compute faster: minor */ for(int j = 0; j < 3; ++j) { for(int k = 0; k < 3; ++k) { for(int i = 0; i < length; i+=3) { p = verticesList[i]; q = verticesList[i + 1]; r = verticesList[i + 2]; covariance[j][k] = facelet[i] / (12.0f * face) * (9.0f * centroid[i][j] * centroid[i][k] + p[j] * p[k] + q[j] * q[k] + r[j] * r[k]) - center[j] * center[k]; } } } PRINTF(3)("-- Calculated Covariance\n"); } else if( mode == 1) { for( int i = 0; i < length; i+=3) /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/ { p = verticesList[i]; q = verticesList[i + 1]; r = verticesList[i + 2]; centroid[i] = (p + q + r) / 3.0f; center += centroid[i]; } center /= length; for( int j = 0; j < 3; ++j) { for( int k = 0; k < 3; ++k) { for( int i = 0; i < length; i+=3) { p = verticesList[i]; q = verticesList[i +1]; r = verticesList[i + 2]; covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k]; } covariance[j][k] /= (3.0f * length); } } PRINTF(3)("-- Calculated Covariance\n"); } else if( mode == 2) { /* fist compute all the convex hull face/facelets and centroids */ for(int i = 0; i < length; i+=3) /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/ { p = verticesList[i]; q = verticesList[i + 1]; r = verticesList[i + 2]; t1 = p - q; t2 = p - r; /* finding the facelet surface via cross-product */ facelet[i] = 0.5f * fabs( t1.cross(t2).len() ); /* update the entire convex hull surface */ face += facelet[i]; /* calculate the cetroid of the hull triangles */ centroid[i] = (p + q + r) * 1/3; /* now calculate the centroid of the entire convex hull, weighted average of triangle centroids */ center += centroid[i] * facelet[i]; } /* take the average of the centroid sum */ center /= face; PRINTF(3)("-- Calculated Center\n"); for( int j = 0; j < 3; ++j) { for( int k = 0; k < 3; ++k) { for( int i = 0; i < length; i+=3) { p = verticesList[i]; q = verticesList[i +1]; r = verticesList[i + 2]; covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k]; } covariance[j][k] /= (3.0f * length); } } PRINTF(3)("-- Calculated Covariance\n"); } else { for( int i = 0; i < length; ++i) /* FIX-ME-QUICK: hops of 3, array indiscontinuity*/ { center += verticesList[i]; } center /= length; for( int j = 0; j < 3; ++j) { for( int k = 0; k < 3; ++k) { for( int i = 0; i < length; i+=3) { p = verticesList[i]; q = verticesList[i +1]; r = verticesList[i + 2]; covariance[j][k] = p[j] * p[k] + q[j] * q[k] + r[j] + r[k]; } covariance[j][k] /= (3.0f * length); } } PRINTF(3)("-- Calculated Covariance\n"); } PRINTF(3)("\nVertex Data:\n"); for(int i = 0; i < length; i++) { //PRINTF(0)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]); PRINTF(3)("vertex %i: %f, %f, %f\n", i, box->vertices[i][0], box->vertices[i][1], box->vertices[i][2]); } // PRINTF(3)("\nCovariance Matrix:\n"); // for(int j = 0; j < 3; ++j) // { // PRINTF(3)(" |"); // for(int k = 0; k < 3; ++k) // { // PRINTF(3)(" \b%f ", covariance[j][k]); // } // PRINTF(3)(" |\n"); // } PRINTF(3)("center: %f, %f, %f\n", center.x, center.y, center.z); // for(int i = 0; i < 3; ++i) // { // box->covarianceMatrix[i][0] = covariance[i][0]; // box->covarianceMatrix[i][1] = covariance[i][1]; // box->covarianceMatrix[i][3] = covariance[i][2]; // } *box->center = center; PRINTF(3)("-- Written Result to obb\n"); } void OBBTreeNode::calculateBoxEigenvectors(OBB* box, sVec3D* verticesList, int length) { /* now getting spanning vectors of the sub-space: the eigenvectors of a symmertric matrix, such as the covarience matrix are mutually orthogonal. after normalizing them, they can be used as a the basis vectors */ Vector** axis = new Vector*[3]; //!< the references to the obb axis coMat[1][1] = box->covarianceMatrix[0][0]; coMat[1][2] = box->covarianceMatrix[0][1]; coMat[1][3] = box->covarianceMatrix[0][2]; coMat[2][1] = box->covarianceMatrix[1][0]; coMat[2][2] = box->covarianceMatrix[1][1]; coMat[2][3] = box->covarianceMatrix[1][2]; coMat[3][1] = box->covarianceMatrix[2][0]; coMat[3][2] = box->covarianceMatrix[2][1]; coMat[3][3] = box->covarianceMatrix[2][2]; /* new jacobi tests */ JacobI(coMat, 3, eigvlMat, eigvMat, rotCount); PRINTF(3)("-- Done Jacobi Decomposition\n"); // PRINTF(3)("Jacobi\n"); // for(int j = 1; j < 4; ++j) // { // PRINTF(3)(" |"); // for(int k = 1; k < 4; ++k) // { // PRINTF(3)(" \b%f ", eigvMat[j][k]); // } // PRINTF(3)(" |\n"); // } axis[0] = new Vector(eigvMat[1][1], eigvMat[2][1], eigvMat[3][1]); axis[1] = new Vector(eigvMat[1][2], eigvMat[2][2], eigvMat[3][2]); axis[2] = new Vector(eigvMat[1][3], eigvMat[2][3], eigvMat[3][3]); box->axis = axis; PRINTF(3)("-- Got Axis\n"); PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[0]->x, box->axis[0]->y, box->axis[0]->z); PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[1]->x, box->axis[1]->y, box->axis[1]->z); PRINTF(0)("eigenvector: %f, %f, %f\n", box->axis[2]->x, box->axis[2]->y, box->axis[2]->z); } void OBBTreeNode::calculateBoxAxis(OBB* box, sVec3D* verticesList, int length) { /* now get the axis length */ Line ax[3]; //!< the axis float* halfLength = new float[3]; //!< half length of the axis float tmpLength; //!< tmp save point for the length Plane p0(*box->axis[0], *box->center); //!< the axis planes Plane p1(*box->axis[1], *box->center); Plane p2(*box->axis[2], *box->center); float maxLength[3]; float minLength[3]; /* get a bad bounding box */ halfLength[0] = -1.0f; for(int j = 0; j < length; ++j) { tmpLength = fabs(p1.distancePoint(vertices[j])); if( tmpLength > halfLength[0]) halfLength[0] = tmpLength; } halfLength[1] = -1.0f; for(int j = 0; j < length; ++j) { tmpLength = fabs(p1.distancePoint(vertices[j])); if( tmpLength > halfLength[1]) halfLength[1] = tmpLength; } halfLength[2] = -1.0f; for(int j = 0; j < length; ++j) { tmpLength = fabs(p1.distancePoint(vertices[j])); if( tmpLength > halfLength[2]) halfLength[2] = tmpLength; } /* get the maximal dimensions of the body in all directions */ // maxLength[0] = 0.0f; // minLength[0] = 0.0f; // for(int j = 0; j < length; ++j) // { // tmpLength = p0.distancePoint(vertices[j]); // if( tmpLength > maxLength[0]) // maxLength[0] = tmpLength; // else if( tmpLength < minLength[0]) // minLength[0] = tmpLength; // } // // maxLength[1] = 0.0f; // minLength[1] = 0.0f; // for(int j = 0; j < length; ++j) // { // tmpLength = p0.distancePoint(vertices[j]); // if( tmpLength > maxLength[1]) // maxLength[1] = tmpLength; // else if( tmpLength < minLength[1]) // minLength[1] = tmpLength; // } // // maxLength[2] = 0.0f; // minLength[2] = 0.0f; // for(int j = 0; j < length; ++j) // { // tmpLength = p0.distancePoint(vertices[j]); // if( tmpLength > maxLength[2]) // maxLength[2] = tmpLength; // else if( tmpLength < minLength[2]) // minLength[2] = tmpLength; // } // // // /* calculate the real centre of the body by using the axis length */ // float center[3]; // float offset[3]; // for(int i = 0; i < 3; ++i) // { // center[i] = (maxLength[i] - minLength[i]) / 2.0f; // min length is negative // offset[i] = halfLength[i] - center[i]; // box->center[i] += *box->axis[i] * offset[i]; // update the new center vector // PRINTF(0)("Center Translation Operation: halfLength old: %f, new: %f\n", halfLength[i], center[i]); // halfLength[i] = center[i]; // } box->halfLength = halfLength; PRINTF(3)("-- Written Axis to obb\n"); PRINTF(3)("-- Finished Calculating Attributes\n"); // PRINTF(3)("\nwe got length: \n"); for(int i = 0; i < 3; ++i) { //if( box->halfLength[i] == 0.0) PRINTF(0)("length[%i] = %f\n", i, box->halfLength[i]); } } /** \brief this separates an ob-box in the middle \param box: the box to separate this will separate the box into to smaller boxes. the separation is done along the middle of the longest axis */ void OBBTreeNode::forkBox(OBB* box) { /* get the longest axis of the box */ float aLength = -1.0f; //!< the length of the longest axis int axisIndex = 0; //!< this is the nr of the longest axis for(int i = 0; i < 3; ++i) { if( aLength < box->halfLength[i]) { aLength = box->halfLength[i]; axisIndex = i; } } PRINTF(0)("longest axis is: nr %i with a half-length of: %f\n", axisIndex, aLength); /* get the closest vertex near the center */ float dist = 999999.0f; //!< the smallest distance to each vertex float tmpDist; //!< temporary distance int vertexIndex; Plane middlePlane(*box->axis[axisIndex], *box->center); //!< the middle plane for(int i = 0; i < box->numOfVertices; ++i) { tmpDist = fabs(middlePlane.distancePoint(box->vertices[i])); if( tmpDist < dist) { dist = tmpDist; vertexIndex = i; } } // PRINTF(3)("\nthe clostest vertex is nr: %i, with a dist of: %f\n", vertexIndex ,dist); /* now definin the separation plane through this specified nearest point and partition the points depending on which side they are located */ tList partition1; //!< the vertex partition 1 tList partition2; //!< the vertex partition 2 this->separationPlane = new Plane(*box->axis[axisIndex], box->vertices[vertexIndex]); //!< separation plane this->sepPlaneCenter = &box->vertices[vertexIndex]; this->longestAxisIndex = axisIndex; for(int i = 0; i < box->numOfVertices; ++i) { if( this->separationPlane->distancePoint(box->vertices[i]) > 0.0f) partition1.add(&box->vertices[i]); else partition2.add(&box->vertices[i]); } partition1.add(&box->vertices[vertexIndex]); // PRINTF(3)("\npartition1: got %i vertices/ partition 2: got %i vertices\n", partition1.getSize(), partition2.getSize()); /* now comes the separation into two different sVec3D arrays */ tIterator* iterator; //!< the iterator to go through the lists sVec3D* element; //!< the elements int index; //!< index storage place sVec3D* vertList1; //!< the vertex list 1 sVec3D* vertList2; //!< the vertex list 2 vertList1 = new sVec3D[partition1.getSize()]; vertList2 = new sVec3D[partition2.getSize()]; iterator = partition1.getIterator(); element = iterator->nextElement(); index = 0; while( element != NULL) { vertList1[index][0] = element[0][0]; vertList1[index][1] = element[0][1]; vertList1[index][2] = element[0][2]; ++index; element = iterator->nextElement(); } // PRINTF(0)("\npartition 1:\n"); // for(int i = 0; i < partition1.getSize(); ++i) // { // PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList1[i][0], i, vertList1[i][1], i, vertList1[i][2]); // } iterator = partition2.getIterator(); element = iterator->nextElement(); index = 0; while( element != NULL) { vertList2[index][0] = element[0][0]; vertList2[index][1] = element[0][1]; vertList2[index][2] = element[0][2]; ++index; element = iterator->nextElement(); } this->tmpVert1 = vertList1; this->tmpVert2 = vertList2; this->tmpLen1 = partition1.getSize(); this->tmpLen2 = partition2.getSize(); delete iterator; // PRINTF(0)("\npartition 2:\n"); // for(int i = 0; i < partition2.getSize(); ++i) // { // PRINTF(0)("v[%i][0] = %f,\tv[%i][1] = %f,\tv[%i][1] = %f\n", i, vertList2[i][0], i, vertList2[i][1], i, vertList2[i][2]); // } } void OBBTreeNode::collideWith(const BVTree &tree) {} void OBBTreeNode::drawBV(int depth, int drawMode) const { this->obbTree->getMaterial(treeIndex)->select(); /* draw the model itself, there is some problem concerning this: the vertices are drawn multiple times */ if( drawMode & DRAW_MODEL || drawMode & DRAW_ALL) { if( !(drawMode & DRAW_SINGLE && depth != 0)) { //glBegin(GL_LINE_STRIP); for(int i = 0; i < this->bvElement->numOfVertices; ++i) { glPushMatrix(); //glMatrixMode(GL_MODELVIEW); //glVertex3f(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]); glTranslatef(this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]); gluSphere(this->sphereObj, 1, 10, 10); //PRINTF(0)("v(%f, %f, %f)\n", this->bvElement->vertices[i][0], this->bvElement->vertices[i][1], this->bvElement->vertices[i][2]); glPopMatrix(); } //glEnd(); } } /* draw world axes */ // glBegin(GL_LINES); // glColor3f(0.0, 0.4, 0.3); // glVertex3f(0.0, 0.0, 0.0); // glVertex3f(3.0, 0.0, 0.0); // // glVertex3f(0.0, 0.0, 0.0); // glVertex3f(0.0, 3.0, 0.0); // // glVertex3f(0.0, 0.0, 0.0); // glVertex3f(0.0, 0.0, 3.0); // glEnd(); if( drawMode & DRAW_BV_AXIS || drawMode & DRAW_ALL) { if( !(drawMode & DRAW_SINGLE && depth != 0)) { /* draw the obb axes */ glBegin(GL_LINES); glColor3f(0.0, 0.4, 0.3); glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z); glVertex3f(this->bvElement->center->x + this->bvElement->axis[0]->x * this->bvElement->halfLength[0], this->bvElement->center->y + this->bvElement->axis[0]->y * this->bvElement->halfLength[0], this->bvElement->center->z + this->bvElement->axis[0]->z * this->bvElement->halfLength[0]); glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z); glVertex3f(this->bvElement->center->x + this->bvElement->axis[1]->x * this->bvElement->halfLength[1], this->bvElement->center->y + this->bvElement->axis[1]->y * this->bvElement->halfLength[1], this->bvElement->center->z + this->bvElement->axis[1]->z * this->bvElement->halfLength[1]); glVertex3f(this->bvElement->center->x, this->bvElement->center->y, this->bvElement->center->z); glVertex3f(this->bvElement->center->x + this->bvElement->axis[2]->x * this->bvElement->halfLength[2], this->bvElement->center->y + this->bvElement->axis[2]->y * this->bvElement->halfLength[2], this->bvElement->center->z + this->bvElement->axis[2]->z * this->bvElement->halfLength[2]); glEnd(); } } if( drawMode & DRAW_BV_POLYGON || drawMode & DRAW_ALL) { if( !(drawMode & DRAW_SINGLE && depth != 0)) { Vector cen = *this->bvElement->center; Vector** axis = this->bvElement->axis; float* len = this->bvElement->halfLength; /* draw bounding box */ glBegin(GL_LINE_LOOP); glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2], cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2], cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2], cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2], cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2], cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2], cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2], cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2], cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2], cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2], cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2], cen.y + axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2], cen.z + axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2], cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2], cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2], cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2], cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] + axis[2]->x * len[2], cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] + axis[2]->y * len[2], cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] + axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] - axis[1]->x * len[1] - axis[2]->x * len[2], cen.y - axis[0]->y * len[0] - axis[1]->y * len[1] - axis[2]->y * len[2], cen.z - axis[0]->z * len[0] - axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2], cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2], cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2], cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2], cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2], cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2], cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]); glVertex3f(cen.x - axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2], cen.y - axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2], cen.z - axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] + axis[2]->x * len[2], cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] + axis[2]->y * len[2], cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] + axis[2]->z * len[2]); glVertex3f(cen.x + axis[0]->x * len[0] + axis[1]->x * len[1] - axis[2]->x * len[2], cen.y + axis[0]->y * len[0] + axis[1]->y * len[1] - axis[2]->y * len[2], cen.z + axis[0]->z * len[0] + axis[1]->z * len[1] - axis[2]->z * len[2]); glEnd(); } } if( drawMode & DRAW_SEPARATING_PLANE || drawMode & DRAW_ALL) { if( !(drawMode & DRAW_SINGLE && depth != 0)) { /* now draw the separation plane */ Vector a1 = *this->bvElement->axis[(this->longestAxisIndex + 1)%3]; Vector a2 = *this->bvElement->axis[(this->longestAxisIndex + 2)%3]; Vector c = *this->bvElement->center; float l1 = this->bvElement->halfLength[(this->longestAxisIndex + 1)%3]; float l2 = this->bvElement->halfLength[(this->longestAxisIndex + 2)%3]; glBegin(GL_QUADS); glVertex3f(c.x + a1.x * l1 + a2.x * l2, c.y + a1.y * l1+ a2.y * l2, c.z + a1.z * l1 + a2.z * l2); glVertex3f(c.x - a1.x * l1 + a2.x * l2, c.y - a1.y * l1+ a2.y * l2, c.z - a1.z * l1 + a2.z * l2); glVertex3f(c.x - a1.x * l1 - a2.x * l2, c.y - a1.y * l1- a2.y * l2, c.z - a1.z * l1 - a2.z * l2); glVertex3f(c.x + a1.x * l1 - a2.x * l2, c.y + a1.y * l1- a2.y * l2, c.z + a1.z * l1 - a2.z * l2); glEnd(); } } if( this->nodeLeft != NULL && depth != 0 ) this->nodeLeft->drawBV(depth - 1, drawMode); if( this->nodeRight != NULL && depth != 0) this->nodeRight->drawBV(depth - 1, drawMode); } void OBBTreeNode::debug() { /* for(int i = 0; i < length; i++) { PRINTF(3)("vertex %i: %f, %f, %f\n", i, verticesList[i][0], verticesList[i][1], verticesList[i][2]); } */ }