/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2013 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef __Math_H__ #define __Math_H__ #include "OgrePrerequisites.h" #include "OgreHeaderPrefix.h" namespace Ogre { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** Wrapper class which indicates a given angle value is in Radians. @remarks Radian values are interchangeable with Degree values, and conversions will be done automatically between them. */ class Radian { Real mRad; public: explicit Radian ( Real r=0 ) : mRad(r) {} Radian ( const Degree& d ); Radian& operator = ( const Real& f ) { mRad = f; return *this; } Radian& operator = ( const Radian& r ) { mRad = r.mRad; return *this; } Radian& operator = ( const Degree& d ); Real valueDegrees() const; // see bottom of this file Real valueRadians() const { return mRad; } Real valueAngleUnits() const; const Radian& operator + () const { return *this; } Radian operator + ( const Radian& r ) const { return Radian ( mRad + r.mRad ); } Radian operator + ( const Degree& d ) const; Radian& operator += ( const Radian& r ) { mRad += r.mRad; return *this; } Radian& operator += ( const Degree& d ); Radian operator - () const { return Radian(-mRad); } Radian operator - ( const Radian& r ) const { return Radian ( mRad - r.mRad ); } Radian operator - ( const Degree& d ) const; Radian& operator -= ( const Radian& r ) { mRad -= r.mRad; return *this; } Radian& operator -= ( const Degree& d ); Radian operator * ( Real f ) const { return Radian ( mRad * f ); } Radian operator * ( const Radian& f ) const { return Radian ( mRad * f.mRad ); } Radian& operator *= ( Real f ) { mRad *= f; return *this; } Radian operator / ( Real f ) const { return Radian ( mRad / f ); } Radian& operator /= ( Real f ) { mRad /= f; return *this; } bool operator < ( const Radian& r ) const { return mRad < r.mRad; } bool operator <= ( const Radian& r ) const { return mRad <= r.mRad; } bool operator == ( const Radian& r ) const { return mRad == r.mRad; } bool operator != ( const Radian& r ) const { return mRad != r.mRad; } bool operator >= ( const Radian& r ) const { return mRad >= r.mRad; } bool operator > ( const Radian& r ) const { return mRad > r.mRad; } inline _OgreExport friend std::ostream& operator << ( std::ostream& o, const Radian& v ) { o << "Radian(" << v.valueRadians() << ")"; return o; } }; /** Wrapper class which indicates a given angle value is in Degrees. @remarks Degree values are interchangeable with Radian values, and conversions will be done automatically between them. */ class Degree { Real mDeg; // if you get an error here - make sure to define/typedef 'Real' first public: explicit Degree ( Real d=0 ) : mDeg(d) {} Degree ( const Radian& r ) : mDeg(r.valueDegrees()) {} Degree& operator = ( const Real& f ) { mDeg = f; return *this; } Degree& operator = ( const Degree& d ) { mDeg = d.mDeg; return *this; } Degree& operator = ( const Radian& r ) { mDeg = r.valueDegrees(); return *this; } Real valueDegrees() const { return mDeg; } Real valueRadians() const; // see bottom of this file Real valueAngleUnits() const; const Degree& operator + () const { return *this; } Degree operator + ( const Degree& d ) const { return Degree ( mDeg + d.mDeg ); } Degree operator + ( const Radian& r ) const { return Degree ( mDeg + r.valueDegrees() ); } Degree& operator += ( const Degree& d ) { mDeg += d.mDeg; return *this; } Degree& operator += ( const Radian& r ) { mDeg += r.valueDegrees(); return *this; } Degree operator - () const { return Degree(-mDeg); } Degree operator - ( const Degree& d ) const { return Degree ( mDeg - d.mDeg ); } Degree operator - ( const Radian& r ) const { return Degree ( mDeg - r.valueDegrees() ); } Degree& operator -= ( const Degree& d ) { mDeg -= d.mDeg; return *this; } Degree& operator -= ( const Radian& r ) { mDeg -= r.valueDegrees(); return *this; } Degree operator * ( Real f ) const { return Degree ( mDeg * f ); } Degree operator * ( const Degree& f ) const { return Degree ( mDeg * f.mDeg ); } Degree& operator *= ( Real f ) { mDeg *= f; return *this; } Degree operator / ( Real f ) const { return Degree ( mDeg / f ); } Degree& operator /= ( Real f ) { mDeg /= f; return *this; } bool operator < ( const Degree& d ) const { return mDeg < d.mDeg; } bool operator <= ( const Degree& d ) const { return mDeg <= d.mDeg; } bool operator == ( const Degree& d ) const { return mDeg == d.mDeg; } bool operator != ( const Degree& d ) const { return mDeg != d.mDeg; } bool operator >= ( const Degree& d ) const { return mDeg >= d.mDeg; } bool operator > ( const Degree& d ) const { return mDeg > d.mDeg; } inline _OgreExport friend std::ostream& operator << ( std::ostream& o, const Degree& v ) { o << "Degree(" << v.valueDegrees() << ")"; return o; } }; /** Wrapper class which identifies a value as the currently default angle type, as defined by Math::setAngleUnit. @remarks Angle values will be automatically converted between radians and degrees, as appropriate. */ class Angle { Real mAngle; public: explicit Angle ( Real angle ) : mAngle(angle) {} operator Radian() const; operator Degree() const; }; // these functions could not be defined within the class definition of class // Radian because they required class Degree to be defined inline Radian::Radian ( const Degree& d ) : mRad(d.valueRadians()) { } inline Radian& Radian::operator = ( const Degree& d ) { mRad = d.valueRadians(); return *this; } inline Radian Radian::operator + ( const Degree& d ) const { return Radian ( mRad + d.valueRadians() ); } inline Radian& Radian::operator += ( const Degree& d ) { mRad += d.valueRadians(); return *this; } inline Radian Radian::operator - ( const Degree& d ) const { return Radian ( mRad - d.valueRadians() ); } inline Radian& Radian::operator -= ( const Degree& d ) { mRad -= d.valueRadians(); return *this; } /** Class to provide access to common mathematical functions. @remarks Most of the maths functions are aliased versions of the C runtime library functions. They are aliased here to provide future optimisation opportunities, either from faster RTLs or custom math approximations. @note
This is based on MgcMath.h from Wild Magic. */ class _OgreExport Math { public: /** The angular units used by the API. This functionality is now deprecated in favor of discreet angular unit types ( see Degree and Radian above ). The only place this functionality is actually still used is when parsing files. Search for usage of the Angle class for those instances */ enum AngleUnit { AU_DEGREE, AU_RADIAN }; /** This class is used to provide an external random value provider. */ class RandomValueProvider { public: virtual ~RandomValueProvider() {} /** When called should return a random values in the range of [0,1] */ virtual Real getRandomUnit() = 0; }; protected: /// Angle units used by the api static AngleUnit msAngleUnit; /// Size of the trig tables as determined by constructor. static int mTrigTableSize; /// Radian -> index factor value ( mTrigTableSize / 2 * PI ) static Real mTrigTableFactor; static Real* mSinTable; static Real* mTanTable; /// A random value provider. overriding the default random number generator. static RandomValueProvider* mRandProvider; /** Private function to build trig tables. */ void buildTrigTables(); static Real SinTable (Real fValue); static Real TanTable (Real fValue); public: /** Default constructor. @param trigTableSize Optional parameter to set the size of the tables used to implement Sin, Cos, Tan */ Math(unsigned int trigTableSize = 4096); /** Default destructor. */ ~Math(); static inline int IAbs (int iValue) { return ( iValue >= 0 ? iValue : -iValue ); } static inline int ICeil (float fValue) { return int(ceil(fValue)); } static inline int IFloor (float fValue) { return int(floor(fValue)); } static int ISign (int iValue); /** Absolute value function @param fValue The value whose absolute value will be returned. */ static inline Real Abs (Real fValue) { return Real(fabs(fValue)); } /** Absolute value function @param dValue The value, in degrees, whose absolute value will be returned. */ static inline Degree Abs (const Degree& dValue) { return Degree(fabs(dValue.valueDegrees())); } /** Absolute value function @param rValue The value, in radians, whose absolute value will be returned. */ static inline Radian Abs (const Radian& rValue) { return Radian(fabs(rValue.valueRadians())); } /** Arc cosine function @param fValue The value whose arc cosine will be returned. */ static Radian ACos (Real fValue); /** Arc sine function @param fValue The value whose arc sine will be returned. */ static Radian ASin (Real fValue); /** Arc tangent function @param fValue The value whose arc tangent will be returned. */ static inline Radian ATan (Real fValue) { return Radian(atan(fValue)); } /** Arc tangent between two values function @param fY The first value to calculate the arc tangent with. @param fX The second value to calculate the arc tangent with. */ static inline Radian ATan2 (Real fY, Real fX) { return Radian(atan2(fY,fX)); } /** Ceiling function Returns the smallest following integer. (example: Ceil(1.1) = 2) @param fValue The value to round up to the nearest integer. */ static inline Real Ceil (Real fValue) { return Real(ceil(fValue)); } static inline bool isNaN(Real f) { // std::isnan() is C99, not supported by all compilers // However NaN always fails this next test, no other number does. return f != f; } /** Cosine function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Cos (const Radian& fValue, bool useTables = false) { return (!useTables) ? Real(cos(fValue.valueRadians())) : SinTable(fValue.valueRadians() + HALF_PI); } /** Cosine function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Cos (Real fValue, bool useTables = false) { return (!useTables) ? Real(cos(fValue)) : SinTable(fValue + HALF_PI); } static inline Real Exp (Real fValue) { return Real(exp(fValue)); } /** Floor function Returns the largest previous integer. (example: Floor(1.9) = 1) @param fValue The value to round down to the nearest integer. */ static inline Real Floor (Real fValue) { return Real(floor(fValue)); } static inline Real Log (Real fValue) { return Real(log(fValue)); } /// Stored value of log(2) for frequent use static const Real LOG2; static inline Real Log2 (Real fValue) { return Real(log(fValue)/LOG2); } static inline Real LogN (Real base, Real fValue) { return Real(log(fValue)/log(base)); } static inline Real Pow (Real fBase, Real fExponent) { return Real(pow(fBase,fExponent)); } static Real Sign (Real fValue); static inline Radian Sign ( const Radian& rValue ) { return Radian(Sign(rValue.valueRadians())); } static inline Degree Sign ( const Degree& dValue ) { return Degree(Sign(dValue.valueDegrees())); } //Simulate the shader function saturate that clamps a parameter value between 0 and 1 static inline float saturate(float t) { return (t < 0) ? 0 : ((t > 1) ? 1 : t); } static inline double saturate(double t) { return (t < 0) ? 0 : ((t > 1) ? 1 : t); } //Simulate the shader function lerp which performers linear interpolation //given 3 parameters v0, v1 and t the function returns the value of (1 – t)* v0 + t * v1. //where v0 and v1 are matching vector or scalar types and t can be either a scalar or a vector of the same type as a and b. template static V lerp(const V& v0, const V& v1, const T& t) { return v0 * (1 - t) + v1 * t; } /** Sine function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Sin (const Radian& fValue, bool useTables = false) { return (!useTables) ? Real(sin(fValue.valueRadians())) : SinTable(fValue.valueRadians()); } /** Sine function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Sin (Real fValue, bool useTables = false) { return (!useTables) ? Real(sin(fValue)) : SinTable(fValue); } /** Squared function. @param fValue The value to be squared (fValue^2) */ static inline Real Sqr (Real fValue) { return fValue*fValue; } /** Square root function. @param fValue The value whose square root will be calculated. */ static inline Real Sqrt (Real fValue) { return Real(sqrt(fValue)); } /** Square root function. @param fValue The value, in radians, whose square root will be calculated. @return The square root of the angle in radians. */ static inline Radian Sqrt (const Radian& fValue) { return Radian(sqrt(fValue.valueRadians())); } /** Square root function. @param fValue The value, in degrees, whose square root will be calculated. @return The square root of the angle in degrees. */ static inline Degree Sqrt (const Degree& fValue) { return Degree(sqrt(fValue.valueDegrees())); } /** Inverse square root i.e. 1 / Sqrt(x), good for vector normalisation. @param fValue The value whose inverse square root will be calculated. */ static Real InvSqrt (Real fValue); /** Generate a random number of unit length. @return A random number in the range from [0,1]. */ static Real UnitRandom (); /** Generate a random number within the range provided. @param fLow The lower bound of the range. @param fHigh The upper bound of the range. @return A random number in the range from [fLow,fHigh]. */ static Real RangeRandom (Real fLow, Real fHigh); /** Generate a random number in the range [-1,1]. @return A random number in the range from [-1,1]. */ static Real SymmetricRandom (); static void SetRandomValueProvider(RandomValueProvider* provider); /** Tangent function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Tan (const Radian& fValue, bool useTables = false) { return (!useTables) ? Real(tan(fValue.valueRadians())) : TanTable(fValue.valueRadians()); } /** Tangent function. @param fValue Angle in radians @param useTables If true, uses lookup tables rather than calculation - faster but less accurate. */ static inline Real Tan (Real fValue, bool useTables = false) { return (!useTables) ? Real(tan(fValue)) : TanTable(fValue); } static inline Real DegreesToRadians(Real degrees) { return degrees * fDeg2Rad; } static inline Real RadiansToDegrees(Real radians) { return radians * fRad2Deg; } /** These functions used to set the assumed angle units (radians or degrees) expected when using the Angle type. @par You can set this directly after creating a new Root, and also before/after resource creation, depending on whether you want the change to affect resource files. */ static void setAngleUnit(AngleUnit unit); /** Get the unit being used for angles. */ static AngleUnit getAngleUnit(void); /** Convert from the current AngleUnit to radians. */ static Real AngleUnitsToRadians(Real units); /** Convert from radians to the current AngleUnit . */ static Real RadiansToAngleUnits(Real radians); /** Convert from the current AngleUnit to degrees. */ static Real AngleUnitsToDegrees(Real units); /** Convert from degrees to the current AngleUnit. */ static Real DegreesToAngleUnits(Real degrees); /** Checks whether a given point is inside a triangle, in a 2-dimensional (Cartesian) space. @remarks The vertices of the triangle must be given in either trigonometrical (anticlockwise) or inverse trigonometrical (clockwise) order. @param p The point. @param a The triangle's first vertex. @param b The triangle's second vertex. @param c The triangle's third vertex. @return If the point resides in the triangle, true is returned. @par If the point is outside the triangle, false is returned. */ static bool pointInTri2D(const Vector2& p, const Vector2& a, const Vector2& b, const Vector2& c); /** Checks whether a given 3D point is inside a triangle. @remarks The vertices of the triangle must be given in either trigonometrical (anticlockwise) or inverse trigonometrical (clockwise) order, and the point must be guaranteed to be in the same plane as the triangle @param p p The point. @param a The triangle's first vertex. @param b The triangle's second vertex. @param c The triangle's third vertex. @param normal The triangle plane's normal (passed in rather than calculated on demand since the caller may already have it) @return If the point resides in the triangle, true is returned. @par If the point is outside the triangle, false is returned. */ static bool pointInTri3D(const Vector3& p, const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& normal); /** Ray / plane intersection, returns boolean result and distance. */ static std::pair intersects(const Ray& ray, const Plane& plane); /** Ray / sphere intersection, returns boolean result and distance. */ static std::pair intersects(const Ray& ray, const Sphere& sphere, bool discardInside = true); /** Ray / box intersection, returns boolean result and distance. */ static std::pair intersects(const Ray& ray, const AxisAlignedBox& box); /** Ray / box intersection, returns boolean result and two intersection distance. @param ray The ray. @param box The box. @param d1 A real pointer to retrieve the near intersection distance from the ray origin, maybe null which means don't care about the near intersection distance. @param d2 A real pointer to retrieve the far intersection distance from the ray origin, maybe null which means don't care about the far intersection distance. @return If the ray is intersects the box, true is returned, and the near intersection distance is return by d1, the far intersection distance is return by d2. Guarantee 0 <= d1 <= d2. @par If the ray isn't intersects the box, false is returned, and d1 and d2 is unmodified. */ static bool intersects(const Ray& ray, const AxisAlignedBox& box, Real* d1, Real* d2); /** Ray / triangle intersection, returns boolean result and distance. @param ray The ray. @param a The triangle's first vertex. @param b The triangle's second vertex. @param c The triangle's third vertex. @param normal The triangle plane's normal (passed in rather than calculated on demand since the caller may already have it), doesn't need normalised since we don't care. @param positiveSide Intersect with "positive side" of the triangle @param negativeSide Intersect with "negative side" of the triangle @return If the ray is intersects the triangle, a pair of true and the distance between intersection point and ray origin returned. @par If the ray isn't intersects the triangle, a pair of false and 0 returned. */ static std::pair intersects(const Ray& ray, const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& normal, bool positiveSide = true, bool negativeSide = true); /** Ray / triangle intersection, returns boolean result and distance. @param ray The ray. @param a The triangle's first vertex. @param b The triangle's second vertex. @param c The triangle's third vertex. @param positiveSide Intersect with "positive side" of the triangle @param negativeSide Intersect with "negative side" of the triangle @return If the ray is intersects the triangle, a pair of true and the distance between intersection point and ray origin returned. @par If the ray isn't intersects the triangle, a pair of false and 0 returned. */ static std::pair intersects(const Ray& ray, const Vector3& a, const Vector3& b, const Vector3& c, bool positiveSide = true, bool negativeSide = true); /** Sphere / box intersection test. */ static bool intersects(const Sphere& sphere, const AxisAlignedBox& box); /** Plane / box intersection test. */ static bool intersects(const Plane& plane, const AxisAlignedBox& box); /** Ray / convex plane list intersection test. @param ray The ray to test with @param planeList List of planes which form a convex volume @param normalIsOutside Does the normal point outside the volume */ static std::pair intersects( const Ray& ray, const vector::type& planeList, bool normalIsOutside); /** Ray / convex plane list intersection test. @param ray The ray to test with @param planeList List of planes which form a convex volume @param normalIsOutside Does the normal point outside the volume */ static std::pair intersects( const Ray& ray, const list::type& planeList, bool normalIsOutside); /** Sphere / plane intersection test. @remarks NB just do a plane.getDistance(sphere.getCenter()) for more detail! */ static bool intersects(const Sphere& sphere, const Plane& plane); /** Compare 2 reals, using tolerance for inaccuracies. */ static bool RealEqual(Real a, Real b, Real tolerance = std::numeric_limits::epsilon()); /** Calculates the tangent space vector for a given set of positions / texture coords. */ static Vector3 calculateTangentSpaceVector( const Vector3& position1, const Vector3& position2, const Vector3& position3, Real u1, Real v1, Real u2, Real v2, Real u3, Real v3); /** Build a reflection matrix for the passed in plane. */ static Matrix4 buildReflectionMatrix(const Plane& p); /** Calculate a face normal, including the w component which is the offset from the origin. */ static Vector4 calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3); /** Calculate a face normal, no w-information. */ static Vector3 calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3); /** Calculate a face normal without normalize, including the w component which is the offset from the origin. */ static Vector4 calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3); /** Calculate a face normal without normalize, no w-information. */ static Vector3 calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3); /** Generates a value based on the Gaussian (normal) distribution function with the given offset and scale parameters. */ static Real gaussianDistribution(Real x, Real offset = 0.0f, Real scale = 1.0f); /** Clamp a value within an inclusive range. */ template static T Clamp(T val, T minval, T maxval) { assert (minval <= maxval && "Invalid clamp range"); return std::max(std::min(val, maxval), minval); } static Matrix4 makeViewMatrix(const Vector3& position, const Quaternion& orientation, const Matrix4* reflectMatrix = 0); /** Get a bounding radius value from a bounding box. */ static Real boundingRadiusFromAABB(const AxisAlignedBox& aabb); static const Real POS_INFINITY; static const Real NEG_INFINITY; static const Real PI; static const Real TWO_PI; static const Real HALF_PI; static const Real fDeg2Rad; static const Real fRad2Deg; }; // these functions must be defined down here, because they rely on the // angle unit conversion functions in class Math: inline Real Radian::valueDegrees() const { return Math::RadiansToDegrees ( mRad ); } inline Real Radian::valueAngleUnits() const { return Math::RadiansToAngleUnits ( mRad ); } inline Real Degree::valueRadians() const { return Math::DegreesToRadians ( mDeg ); } inline Real Degree::valueAngleUnits() const { return Math::DegreesToAngleUnits ( mDeg ); } inline Angle::operator Radian() const { return Radian(Math::AngleUnitsToRadians(mAngle)); } inline Angle::operator Degree() const { return Degree(Math::AngleUnitsToDegrees(mAngle)); } inline Radian operator * ( Real a, const Radian& b ) { return Radian ( a * b.valueRadians() ); } inline Radian operator / ( Real a, const Radian& b ) { return Radian ( a / b.valueRadians() ); } inline Degree operator * ( Real a, const Degree& b ) { return Degree ( a * b.valueDegrees() ); } inline Degree operator / ( Real a, const Degree& b ) { return Degree ( a / b.valueDegrees() ); } /** @} */ /** @} */ } #include "OgreHeaderSuffix.h" #endif