/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2013 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef _Bitwise_H__ #define _Bitwise_H__ #include "OgrePrerequisites.h" namespace Ogre { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** Class for manipulating bit patterns. */ class Bitwise { public: /** Returns the most significant bit set in a value. */ static FORCEINLINE unsigned int mostSignificantBitSet(unsigned int value) { unsigned int result = 0; while (value != 0) { ++result; value >>= 1; } return result-1; } /** Returns the closest power-of-two number greater or equal to value. @note 0 and 1 are powers of two, so firstPO2From(0)==0 and firstPO2From(1)==1. */ static FORCEINLINE uint32 firstPO2From(uint32 n) { --n; n |= n >> 16; n |= n >> 8; n |= n >> 4; n |= n >> 2; n |= n >> 1; ++n; return n; } /** Determines whether the number is power-of-two or not. @note 0 and 1 are tread as power of two. */ template static FORCEINLINE bool isPO2(T n) { return (n & (n-1)) == 0; } /** Returns the number of bits a pattern must be shifted right by to remove right-hand zeros. */ template static FORCEINLINE unsigned int getBitShift(T mask) { if (mask == 0) return 0; unsigned int result = 0; while ((mask & 1) == 0) { ++result; mask >>= 1; } return result; } /** Takes a value with a given src bit mask, and produces another value with a desired bit mask. @remarks This routine is useful for colour conversion. */ template static inline DestT convertBitPattern(SrcT srcValue, SrcT srcBitMask, DestT destBitMask) { // Mask off irrelevant source value bits (if any) srcValue = srcValue & srcBitMask; // Shift source down to bottom of DWORD const unsigned int srcBitShift = getBitShift(srcBitMask); srcValue >>= srcBitShift; // Get max value possible in source from srcMask const SrcT srcMax = srcBitMask >> srcBitShift; // Get max available in dest const unsigned int destBitShift = getBitShift(destBitMask); const DestT destMax = destBitMask >> destBitShift; // Scale source value into destination, and shift back DestT destValue = (srcValue * destMax) / srcMax; return (destValue << destBitShift); } /** * Convert N bit colour channel value to P bits. It fills P bits with the * bit pattern repeated. (this is /((1< p) { // Less bits required than available; this is easy value >>= n-p; } else if(n < p) { // More bits required than are there, do the fill // Use old fashioned division, probably better than a loop if(value == 0) value = 0; else if(value == (static_cast(1)<= 1.0f) return (1<> 16) & 0xFF); ((uint8*)dest)[1] = (uint8)((value >> 8) & 0xFF); ((uint8*)dest)[2] = (uint8)(value & 0xFF); #else ((uint8*)dest)[2] = (uint8)((value >> 16) & 0xFF); ((uint8*)dest)[1] = (uint8)((value >> 8) & 0xFF); ((uint8*)dest)[0] = (uint8)(value & 0xFF); #endif break; case 4: ((uint32*)dest)[0] = (uint32)value; break; } } /** * Read a n*8 bits integer value to memory in native endian. */ static inline unsigned int intRead(const void *src, int n) { switch(n) { case 1: return ((const uint8*)src)[0]; case 2: return ((const uint16*)src)[0]; case 3: #if OGRE_ENDIAN == OGRE_ENDIAN_BIG return ((uint32)((const uint8*)src)[0]<<16)| ((uint32)((const uint8*)src)[1]<<8)| ((uint32)((const uint8*)src)[2]); #else return ((uint32)((const uint8*)src)[0])| ((uint32)((const uint8*)src)[1]<<8)| ((uint32)((const uint8*)src)[2]<<16); #endif case 4: return ((const uint32*)src)[0]; } return 0; // ? } /** Convert a float32 to a float16 (NV_half_float) Courtesy of OpenEXR */ static inline uint16 floatToHalf(float i) { union { float f; uint32 i; } v; v.f = i; return floatToHalfI(v.i); } /** Converts float in uint32 format to a a half in uint16 format */ static inline uint16 floatToHalfI(uint32 i) { register int s = (i >> 16) & 0x00008000; register int e = ((i >> 23) & 0x000000ff) - (127 - 15); register int m = i & 0x007fffff; if (e <= 0) { if (e < -10) { return 0; } m = (m | 0x00800000) >> (1 - e); return static_cast(s | (m >> 13)); } else if (e == 0xff - (127 - 15)) { if (m == 0) // Inf { return static_cast(s | 0x7c00); } else // NAN { m >>= 13; return static_cast(s | 0x7c00 | m | (m == 0)); } } else { if (e > 30) // Overflow { return static_cast(s | 0x7c00); } return static_cast(s | (e << 10) | (m >> 13)); } } /** * Convert a float16 (NV_half_float) to a float32 * Courtesy of OpenEXR */ static inline float halfToFloat(uint16 y) { union { float f; uint32 i; } v; v.i = halfToFloatI(y); return v.f; } /** Converts a half in uint16 format to a float in uint32 format */ static inline uint32 halfToFloatI(uint16 y) { register int s = (y >> 15) & 0x00000001; register int e = (y >> 10) & 0x0000001f; register int m = y & 0x000003ff; if (e == 0) { if (m == 0) // Plus or minus zero { return s << 31; } else // Denormalized number -- renormalize it { while (!(m & 0x00000400)) { m <<= 1; e -= 1; } e += 1; m &= ~0x00000400; } } else if (e == 31) { if (m == 0) // Inf { return (s << 31) | 0x7f800000; } else // NaN { return (s << 31) | 0x7f800000 | (m << 13); } } e = e + (127 - 15); m = m << 13; return (s << 31) | (e << 23) | m; } }; /** @} */ /** @} */ } #endif