/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2013 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef __AxisAlignedBox_H_ #define __AxisAlignedBox_H_ // Precompiler options #include "OgrePrerequisites.h" #include "OgreVector3.h" #include "OgreMatrix4.h" namespace Ogre { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** A 3D box aligned with the x/y/z axes. @remarks This class represents a simple box which is aligned with the axes. Internally it only stores 2 points as the extremeties of the box, one which is the minima of all 3 axes, and the other which is the maxima of all 3 axes. This class is typically used for an axis-aligned bounding box (AABB) for collision and visibility determination. */ class _OgreExport AxisAlignedBox { public: enum Extent { EXTENT_NULL, EXTENT_FINITE, EXTENT_INFINITE }; protected: Vector3 mMinimum; Vector3 mMaximum; Extent mExtent; mutable Vector3* mCorners; public: /* 1-------2 /| /| / | / | 5-------4 | | 0----|--3 | / | / |/ |/ 6-------7 */ typedef enum { FAR_LEFT_BOTTOM = 0, FAR_LEFT_TOP = 1, FAR_RIGHT_TOP = 2, FAR_RIGHT_BOTTOM = 3, NEAR_RIGHT_BOTTOM = 7, NEAR_LEFT_BOTTOM = 6, NEAR_LEFT_TOP = 5, NEAR_RIGHT_TOP = 4 } CornerEnum; inline AxisAlignedBox() : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0) { // Default to a null box setMinimum( -0.5, -0.5, -0.5 ); setMaximum( 0.5, 0.5, 0.5 ); mExtent = EXTENT_NULL; } inline AxisAlignedBox(Extent e) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0) { setMinimum( -0.5, -0.5, -0.5 ); setMaximum( 0.5, 0.5, 0.5 ); mExtent = e; } inline AxisAlignedBox(const AxisAlignedBox & rkBox) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0) { if (rkBox.isNull()) setNull(); else if (rkBox.isInfinite()) setInfinite(); else setExtents( rkBox.mMinimum, rkBox.mMaximum ); } inline AxisAlignedBox( const Vector3& min, const Vector3& max ) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0) { setExtents( min, max ); } inline AxisAlignedBox( Real mx, Real my, Real mz, Real Mx, Real My, Real Mz ) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0) { setExtents( mx, my, mz, Mx, My, Mz ); } AxisAlignedBox& operator=(const AxisAlignedBox& rhs) { // Specifically override to avoid copying mCorners if (rhs.isNull()) setNull(); else if (rhs.isInfinite()) setInfinite(); else setExtents(rhs.mMinimum, rhs.mMaximum); return *this; } ~AxisAlignedBox() { if (mCorners) OGRE_FREE(mCorners, MEMCATEGORY_SCENE_CONTROL); } /** Gets the minimum corner of the box. */ inline const Vector3& getMinimum(void) const { return mMinimum; } /** Gets a modifiable version of the minimum corner of the box. */ inline Vector3& getMinimum(void) { return mMinimum; } /** Gets the maximum corner of the box. */ inline const Vector3& getMaximum(void) const { return mMaximum; } /** Gets a modifiable version of the maximum corner of the box. */ inline Vector3& getMaximum(void) { return mMaximum; } /** Sets the minimum corner of the box. */ inline void setMinimum( const Vector3& vec ) { mExtent = EXTENT_FINITE; mMinimum = vec; } inline void setMinimum( Real x, Real y, Real z ) { mExtent = EXTENT_FINITE; mMinimum.x = x; mMinimum.y = y; mMinimum.z = z; } /** Changes one of the components of the minimum corner of the box used to resize only one dimension of the box */ inline void setMinimumX(Real x) { mMinimum.x = x; } inline void setMinimumY(Real y) { mMinimum.y = y; } inline void setMinimumZ(Real z) { mMinimum.z = z; } /** Sets the maximum corner of the box. */ inline void setMaximum( const Vector3& vec ) { mExtent = EXTENT_FINITE; mMaximum = vec; } inline void setMaximum( Real x, Real y, Real z ) { mExtent = EXTENT_FINITE; mMaximum.x = x; mMaximum.y = y; mMaximum.z = z; } /** Changes one of the components of the maximum corner of the box used to resize only one dimension of the box */ inline void setMaximumX( Real x ) { mMaximum.x = x; } inline void setMaximumY( Real y ) { mMaximum.y = y; } inline void setMaximumZ( Real z ) { mMaximum.z = z; } /** Sets both minimum and maximum extents at once. */ inline void setExtents( const Vector3& min, const Vector3& max ) { assert( (min.x <= max.x && min.y <= max.y && min.z <= max.z) && "The minimum corner of the box must be less than or equal to maximum corner" ); mExtent = EXTENT_FINITE; mMinimum = min; mMaximum = max; } inline void setExtents( Real mx, Real my, Real mz, Real Mx, Real My, Real Mz ) { assert( (mx <= Mx && my <= My && mz <= Mz) && "The minimum corner of the box must be less than or equal to maximum corner" ); mExtent = EXTENT_FINITE; mMinimum.x = mx; mMinimum.y = my; mMinimum.z = mz; mMaximum.x = Mx; mMaximum.y = My; mMaximum.z = Mz; } /** Returns a pointer to an array of 8 corner points, useful for collision vs. non-aligned objects. @remarks If the order of these corners is important, they are as follows: The 4 points of the minimum Z face (note that because Ogre uses right-handed coordinates, the minimum Z is at the 'back' of the box) starting with the minimum point of all, then anticlockwise around this face (if you are looking onto the face from outside the box). Then the 4 points of the maximum Z face, starting with maximum point of all, then anticlockwise around this face (looking onto the face from outside the box). Like this:
           1-------2
          /|      /|
         / |     / |
        5-------4  |
        |  0----|--3
        | /     | /
        |/      |/
        6-------7
		
*/ inline const Vector3* getAllCorners(void) const { assert( (mExtent == EXTENT_FINITE) && "Can't get corners of a null or infinite AAB" ); // The order of these items is, using right-handed co-ordinates: // Minimum Z face, starting with Min(all), then anticlockwise // around face (looking onto the face) // Maximum Z face, starting with Max(all), then anticlockwise // around face (looking onto the face) // Only for optimization/compatibility. if (!mCorners) mCorners = OGRE_ALLOC_T(Vector3, 8, MEMCATEGORY_SCENE_CONTROL); mCorners[0] = mMinimum; mCorners[1].x = mMinimum.x; mCorners[1].y = mMaximum.y; mCorners[1].z = mMinimum.z; mCorners[2].x = mMaximum.x; mCorners[2].y = mMaximum.y; mCorners[2].z = mMinimum.z; mCorners[3].x = mMaximum.x; mCorners[3].y = mMinimum.y; mCorners[3].z = mMinimum.z; mCorners[4] = mMaximum; mCorners[5].x = mMinimum.x; mCorners[5].y = mMaximum.y; mCorners[5].z = mMaximum.z; mCorners[6].x = mMinimum.x; mCorners[6].y = mMinimum.y; mCorners[6].z = mMaximum.z; mCorners[7].x = mMaximum.x; mCorners[7].y = mMinimum.y; mCorners[7].z = mMaximum.z; return mCorners; } /** Gets the position of one of the corners */ Vector3 getCorner(CornerEnum cornerToGet) const { switch(cornerToGet) { case FAR_LEFT_BOTTOM: return mMinimum; case FAR_LEFT_TOP: return Vector3(mMinimum.x, mMaximum.y, mMinimum.z); case FAR_RIGHT_TOP: return Vector3(mMaximum.x, mMaximum.y, mMinimum.z); case FAR_RIGHT_BOTTOM: return Vector3(mMaximum.x, mMinimum.y, mMinimum.z); case NEAR_RIGHT_BOTTOM: return Vector3(mMaximum.x, mMinimum.y, mMaximum.z); case NEAR_LEFT_BOTTOM: return Vector3(mMinimum.x, mMinimum.y, mMaximum.z); case NEAR_LEFT_TOP: return Vector3(mMinimum.x, mMaximum.y, mMaximum.z); case NEAR_RIGHT_TOP: return mMaximum; default: return Vector3(); } } _OgreExport friend std::ostream& operator<<( std::ostream& o, const AxisAlignedBox &aab ) { switch (aab.mExtent) { case EXTENT_NULL: o << "AxisAlignedBox(null)"; return o; case EXTENT_FINITE: o << "AxisAlignedBox(min=" << aab.mMinimum << ", max=" << aab.mMaximum << ")"; return o; case EXTENT_INFINITE: o << "AxisAlignedBox(infinite)"; return o; default: // shut up compiler assert( false && "Never reached" ); return o; } } /** Merges the passed in box into the current box. The result is the box which encompasses both. */ void merge( const AxisAlignedBox& rhs ) { // Do nothing if rhs null, or this is infinite if ((rhs.mExtent == EXTENT_NULL) || (mExtent == EXTENT_INFINITE)) { return; } // Otherwise if rhs is infinite, make this infinite, too else if (rhs.mExtent == EXTENT_INFINITE) { mExtent = EXTENT_INFINITE; } // Otherwise if current null, just take rhs else if (mExtent == EXTENT_NULL) { setExtents(rhs.mMinimum, rhs.mMaximum); } // Otherwise merge else { Vector3 min = mMinimum; Vector3 max = mMaximum; max.makeCeil(rhs.mMaximum); min.makeFloor(rhs.mMinimum); setExtents(min, max); } } /** Extends the box to encompass the specified point (if needed). */ inline void merge( const Vector3& point ) { switch (mExtent) { case EXTENT_NULL: // if null, use this point setExtents(point, point); return; case EXTENT_FINITE: mMaximum.makeCeil(point); mMinimum.makeFloor(point); return; case EXTENT_INFINITE: // if infinite, makes no difference return; } assert( false && "Never reached" ); } /** Transforms the box according to the matrix supplied. @remarks By calling this method you get the axis-aligned box which surrounds the transformed version of this box. Therefore each corner of the box is transformed by the matrix, then the extents are mapped back onto the axes to produce another AABB. Useful when you have a local AABB for an object which is then transformed. */ inline void transform( const Matrix4& matrix ) { // Do nothing if current null or infinite if( mExtent != EXTENT_FINITE ) return; Vector3 oldMin, oldMax, currentCorner; // Getting the old values so that we can use the existing merge method. oldMin = mMinimum; oldMax = mMaximum; // reset setNull(); // We sequentially compute the corners in the following order : // 0, 6, 5, 1, 2, 4 ,7 , 3 // This sequence allows us to only change one member at a time to get at all corners. // For each one, we transform it using the matrix // Which gives the resulting point and merge the resulting point. // First corner // min min min currentCorner = oldMin; merge( matrix * currentCorner ); // min,min,max currentCorner.z = oldMax.z; merge( matrix * currentCorner ); // min max max currentCorner.y = oldMax.y; merge( matrix * currentCorner ); // min max min currentCorner.z = oldMin.z; merge( matrix * currentCorner ); // max max min currentCorner.x = oldMax.x; merge( matrix * currentCorner ); // max max max currentCorner.z = oldMax.z; merge( matrix * currentCorner ); // max min max currentCorner.y = oldMin.y; merge( matrix * currentCorner ); // max min min currentCorner.z = oldMin.z; merge( matrix * currentCorner ); } /** Transforms the box according to the affine matrix supplied. @remarks By calling this method you get the axis-aligned box which surrounds the transformed version of this box. Therefore each corner of the box is transformed by the matrix, then the extents are mapped back onto the axes to produce another AABB. Useful when you have a local AABB for an object which is then transformed. @note The matrix must be an affine matrix. @see Matrix4::isAffine. */ void transformAffine(const Matrix4& m) { assert(m.isAffine()); // Do nothing if current null or infinite if ( mExtent != EXTENT_FINITE ) return; Vector3 centre = getCenter(); Vector3 halfSize = getHalfSize(); Vector3 newCentre = m.transformAffine(centre); Vector3 newHalfSize( Math::Abs(m[0][0]) * halfSize.x + Math::Abs(m[0][1]) * halfSize.y + Math::Abs(m[0][2]) * halfSize.z, Math::Abs(m[1][0]) * halfSize.x + Math::Abs(m[1][1]) * halfSize.y + Math::Abs(m[1][2]) * halfSize.z, Math::Abs(m[2][0]) * halfSize.x + Math::Abs(m[2][1]) * halfSize.y + Math::Abs(m[2][2]) * halfSize.z); setExtents(newCentre - newHalfSize, newCentre + newHalfSize); } /** Sets the box to a 'null' value i.e. not a box. */ inline void setNull() { mExtent = EXTENT_NULL; } /** Returns true if the box is null i.e. empty. */ inline bool isNull(void) const { return (mExtent == EXTENT_NULL); } /** Returns true if the box is finite. */ bool isFinite(void) const { return (mExtent == EXTENT_FINITE); } /** Sets the box to 'infinite' */ inline void setInfinite() { mExtent = EXTENT_INFINITE; } /** Returns true if the box is infinite. */ bool isInfinite(void) const { return (mExtent == EXTENT_INFINITE); } /** Returns whether or not this box intersects another. */ inline bool intersects(const AxisAlignedBox& b2) const { // Early-fail for nulls if (this->isNull() || b2.isNull()) return false; // Early-success for infinites if (this->isInfinite() || b2.isInfinite()) return true; // Use up to 6 separating planes if (mMaximum.x < b2.mMinimum.x) return false; if (mMaximum.y < b2.mMinimum.y) return false; if (mMaximum.z < b2.mMinimum.z) return false; if (mMinimum.x > b2.mMaximum.x) return false; if (mMinimum.y > b2.mMaximum.y) return false; if (mMinimum.z > b2.mMaximum.z) return false; // otherwise, must be intersecting return true; } /// Calculate the area of intersection of this box and another inline AxisAlignedBox intersection(const AxisAlignedBox& b2) const { if (this->isNull() || b2.isNull()) { return AxisAlignedBox(); } else if (this->isInfinite()) { return b2; } else if (b2.isInfinite()) { return *this; } Vector3 intMin = mMinimum; Vector3 intMax = mMaximum; intMin.makeCeil(b2.getMinimum()); intMax.makeFloor(b2.getMaximum()); // Check intersection isn't null if (intMin.x < intMax.x && intMin.y < intMax.y && intMin.z < intMax.z) { return AxisAlignedBox(intMin, intMax); } return AxisAlignedBox(); } /// Calculate the volume of this box Real volume(void) const { switch (mExtent) { case EXTENT_NULL: return 0.0f; case EXTENT_FINITE: { Vector3 diff = mMaximum - mMinimum; return diff.x * diff.y * diff.z; } case EXTENT_INFINITE: return Math::POS_INFINITY; default: // shut up compiler assert( false && "Never reached" ); return 0.0f; } } /** Scales the AABB by the vector given. */ inline void scale(const Vector3& s) { // Do nothing if current null or infinite if (mExtent != EXTENT_FINITE) return; // NB assumes centered on origin Vector3 min = mMinimum * s; Vector3 max = mMaximum * s; setExtents(min, max); } /** Tests whether this box intersects a sphere. */ bool intersects(const Sphere& s) const { return Math::intersects(s, *this); } /** Tests whether this box intersects a plane. */ bool intersects(const Plane& p) const { return Math::intersects(p, *this); } /** Tests whether the vector point is within this box. */ bool intersects(const Vector3& v) const { switch (mExtent) { case EXTENT_NULL: return false; case EXTENT_FINITE: return(v.x >= mMinimum.x && v.x <= mMaximum.x && v.y >= mMinimum.y && v.y <= mMaximum.y && v.z >= mMinimum.z && v.z <= mMaximum.z); case EXTENT_INFINITE: return true; default: // shut up compiler assert( false && "Never reached" ); return false; } } /// Gets the centre of the box Vector3 getCenter(void) const { assert( (mExtent == EXTENT_FINITE) && "Can't get center of a null or infinite AAB" ); return Vector3( (mMaximum.x + mMinimum.x) * 0.5f, (mMaximum.y + mMinimum.y) * 0.5f, (mMaximum.z + mMinimum.z) * 0.5f); } /// Gets the size of the box Vector3 getSize(void) const { switch (mExtent) { case EXTENT_NULL: return Vector3::ZERO; case EXTENT_FINITE: return mMaximum - mMinimum; case EXTENT_INFINITE: return Vector3( Math::POS_INFINITY, Math::POS_INFINITY, Math::POS_INFINITY); default: // shut up compiler assert( false && "Never reached" ); return Vector3::ZERO; } } /// Gets the half-size of the box Vector3 getHalfSize(void) const { switch (mExtent) { case EXTENT_NULL: return Vector3::ZERO; case EXTENT_FINITE: return (mMaximum - mMinimum) * 0.5; case EXTENT_INFINITE: return Vector3( Math::POS_INFINITY, Math::POS_INFINITY, Math::POS_INFINITY); default: // shut up compiler assert( false && "Never reached" ); return Vector3::ZERO; } } /** Tests whether the given point contained by this box. */ bool contains(const Vector3& v) const { if (isNull()) return false; if (isInfinite()) return true; return mMinimum.x <= v.x && v.x <= mMaximum.x && mMinimum.y <= v.y && v.y <= mMaximum.y && mMinimum.z <= v.z && v.z <= mMaximum.z; } /** Returns the squared minimum distance between a given point and any part of the box. * This is faster than distance since avoiding a squareroot, so use if you can. */ Real squaredDistance(const Vector3& v) const { if (this->contains(v)) return 0; else { Vector3 maxDist(0,0,0); if (v.x < mMinimum.x) maxDist.x = mMinimum.x - v.x; else if (v.x > mMaximum.x) maxDist.x = v.x - mMaximum.x; if (v.y < mMinimum.y) maxDist.y = mMinimum.y - v.y; else if (v.y > mMaximum.y) maxDist.y = v.y - mMaximum.y; if (v.z < mMinimum.z) maxDist.z = mMinimum.z - v.z; else if (v.z > mMaximum.z) maxDist.z = v.z - mMaximum.z; return maxDist.squaredLength(); } } /** Returns the minimum distance between a given point and any part of the box. */ Real distance (const Vector3& v) const { return Ogre::Math::Sqrt(squaredDistance(v)); } /** Tests whether another box contained by this box. */ bool contains(const AxisAlignedBox& other) const { if (other.isNull() || this->isInfinite()) return true; if (this->isNull() || other.isInfinite()) return false; return this->mMinimum.x <= other.mMinimum.x && this->mMinimum.y <= other.mMinimum.y && this->mMinimum.z <= other.mMinimum.z && other.mMaximum.x <= this->mMaximum.x && other.mMaximum.y <= this->mMaximum.y && other.mMaximum.z <= this->mMaximum.z; } /** Tests 2 boxes for equality. */ bool operator== (const AxisAlignedBox& rhs) const { if (this->mExtent != rhs.mExtent) return false; if (!this->isFinite()) return true; return this->mMinimum == rhs.mMinimum && this->mMaximum == rhs.mMaximum; } /** Tests 2 boxes for inequality. */ bool operator!= (const AxisAlignedBox& rhs) const { return !(*this == rhs); } // special values static const AxisAlignedBox BOX_NULL; static const AxisAlignedBox BOX_INFINITE; }; /** @} */ /** @} */ } // namespace Ogre #endif