/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2006 Torus Knot Software Ltd Also see acknowledgements in Readme.html This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or go to http://www.gnu.org/copyleft/lesser.txt. ----------------------------------------------------------------------------- */ #include "OgreStableHeaders.h" #include "OgreCommon.h" #include "OgreSceneManager.h" #include "OgreLight.h" #include "OgreShadowCameraSetupPlaneOptimal.h" #include "OgreNumerics.h" #include "OgreCamera.h" #include "OgreViewport.h" namespace Ogre { // -------------------------------------------------------------------- Matrix4 PlaneOptimalShadowCameraSetup::computeConstrainedProjection( const Vector4& pinhole, const std::vector& fpoint, const std::vector& constraint) const { // NOTE: will assume the z coordinates should be decided such that // the first 3 points (in fpoint) will have post projective // z coordinates of about +1 and the 4th (in fpoint) will have a // post projective z coordinate of about -1. // TODO: could use SVD to avoid arbitrarily choosing one // matrix element to be 1.0 (and thereby fix the scale). Matrix4 ret; int i; bool incrPrecision = false; // use to control numerical solving if(fpoint.size() < 4 || constraint.size() < 4) { return Matrix4::IDENTITY; } // allocate memory PreciseReal **mat = NULL; PreciseReal **backmat = NULL; { mat = new PreciseReal*[11]; if(incrPrecision) backmat = new PreciseReal*[11]; for(i=0; i<11; i++) { mat[i] = new PreciseReal[11]; if(incrPrecision) backmat[i] = new PreciseReal[11]; } } // set up linear system to solve for all rows of projective matrix // except for the 3rd which corresponds to mapping of z values // we choose a nonzero element of the last row to set to the arbitrary // constant 1.0. int nzind = 3; PreciseReal col[11]; PreciseReal backcol[11]; // fill in light position constraints mat[0][0] = pinhole.x; mat[0][1] = pinhole.y; mat[0][2] = pinhole.z; mat[0][3] = pinhole.w; for(i=4; i<11; i++) mat[0][i] = 0.0; col[0] = 0.0; for(i=0; i<11; i++) mat[1][i] = 0.0; mat[1][4] = pinhole.x; mat[1][5] = pinhole.y; mat[1][6] = pinhole.z; mat[1][7] = pinhole.w; col[1] = 0.0; PreciseReal larr[4]; larr[0] = pinhole.x; larr[1] = pinhole.y; larr[2] = pinhole.z; larr[3] = pinhole.w; for(i=0; i<8; i++) mat[2][i] = 0.0; int ind = 8; for(i=0; i<4; i++) { if(nzind == i) continue; mat[2][ind++] = larr[i]; } col[2] = -larr[nzind]; // fill in all the other constraints int row=3; for(i=0; i<4; i++) { int j; larr[0] = fpoint[i].x; larr[1] = fpoint[i].y; larr[2] = fpoint[i].z; larr[3] = fpoint[i].w; // lexel s coordinate constraint for(j=0; j<4; j++) mat[row][j] = larr[j]; for(j=4; j<8; j++) mat[row][j] = 0.0; ind=8; for(j=0; j<4; j++) { if(nzind==j) continue; mat[row][ind++] = larr[j] * (-constraint[i].x); } col[row] = larr[nzind] * constraint[i].x; ++row; // lexel t coordinate constraint for(j=0; j<4; j++) mat[row][j] = 0.0; for(j=4; j<8; j++) mat[row][j] = larr[j-4]; ind=8; for(j=0; j<4; j++) { if(nzind==j) continue; mat[row][ind++] = larr[j] * (-constraint[i].y); } col[row] = larr[nzind] * constraint[i].y; ++row; } // copy the matrix and vector for later computation if(incrPrecision) { for (i=0; i<11; i++) { for(int j=0; j<11; j++) backmat[i][j] = mat[i][j]; backcol[i] = col[i]; } } // solve for the matrix elements if(!NumericSolver::solveNxNLinearSysDestr(11, mat, col)) { // error solving for projective matrix (rows 1,2,4) } // get a little more precision if(incrPrecision) { for (int k=0; k<3; k++) { PreciseReal nvec[11]; for(i=0; i<11; i++) { int j; nvec[i] = backmat[i][0] * col[0]; mat[i][0] = backmat[i][0]; for(j=1; j<11; j++) { nvec[i] += backmat[i][j] * col[j]; mat[i][j] = backmat[i][j]; } nvec[i] -= backcol[i]; } if(!NumericSolver::solveNxNLinearSysDestr(11, mat, nvec)) { // error solving for increased precision rows 1,2,4 } for(i=0; i<11; i++) col[i] -= nvec[i]; } } PreciseReal row4[4]; ind = 8; for(i=0; i<4; i++) { if (i == nzind) row4[i] = 1.0; else row4[i] = col[ind++]; } // now solve for the 3rd row which affects depth precision PreciseReal zrow[4]; // we want the affine skew such that isoplanes of constant depth are parallel to // the world plane of interest // NOTE: recall we perturbed the last fpoint off the plane, so we'll again modify // this one since we want 3 points on the plane = far plane, and 1 on the near plane int nearind = 3; for(i=0; i<3; i++) { mat[i][0] = fpoint[i].x; mat[i][1] = fpoint[i].y; mat[i][2] = fpoint[i].z; mat[i][3] = 1.0; zrow[i] = (row4[0] * fpoint[i].x + row4[1] * fpoint[i].y + row4[2] * fpoint[i].z + row4[3]) * 0.99 ; } mat[3][0] = fpoint[nearind].x; mat[3][1] = fpoint[nearind].y; mat[3][2] = fpoint[nearind].z; mat[3][3] = 1.0; zrow[3] = -row4[0] * fpoint[nearind].x - row4[1] * fpoint[nearind].y - row4[2] * fpoint[nearind].z - row4[3] ; // solve for the z row of the matrix if(!NumericSolver::solveNxNLinearSysDestr(4, mat, zrow)) { // error solving for projective matrix (row 3) } // set projective texture matrix ret = Matrix4( col[0], col[1], col[2], col[3], col[4], col[5], col[6], col[7], zrow[0], zrow[1], zrow[2], zrow[3], row4[0], row4[1], row4[2], row4[3] ); // check for clip Vector4 testCoord = ret * fpoint[0]; if(testCoord.w < 0.0) ret = ret * (-1.0); // free memory for (i=0; i<11; i++) { if (mat[i]) delete [] mat[i]; if (incrPrecision) delete [] backmat[i]; } delete [] mat; if(incrPrecision) delete [] backmat; return ret; } // -------------------------------------------------------------------- /// Construct object to consider a specified plane of interest PlaneOptimalShadowCameraSetup::PlaneOptimalShadowCameraSetup(MovablePlane* plane) { m_plane = plane; } /// Destructor PlaneOptimalShadowCameraSetup::~PlaneOptimalShadowCameraSetup() {} /// Implements the plane optimal shadow camera setup algorithm void PlaneOptimalShadowCameraSetup::getShadowCamera (const SceneManager *sm, const Camera *cam, const Viewport *vp, const Light *light, Camera *texCam) const { // get the plane transformed by the parent node(s) // Also, make sure the plane is normalized Plane worldPlane = m_plane->_getDerivedPlane(); worldPlane.normalise(); // get camera's projection matrix Matrix4 camProjection = cam->getProjectionMatrix() * cam->getViewMatrix(); // get the world points to constrain std::vector vhull; cam->forwardIntersect(worldPlane, &vhull); if (vhull.size() < 4) return; // make sure the last point is a finite point (not point at infinity) if (vhull[3].w == 0.0) { int finiteIndex = -1; for (uint loopIndex = 0; loopIndex < vhull.size(); loopIndex++) { if (vhull[loopIndex].w != 0.0) { finiteIndex = loopIndex; break; } } if (finiteIndex == -1) { // there are no finite points, which means camera doesn't see plane of interest. // so we don't care what the shadow map matrix is // We'll map points off the shadow map so they aren't even stored Matrix4 crazyMat(0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 1.0); texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); texCam->setCustomProjectionMatrix(true, crazyMat); return; } // swap finite point to last point std::swap(vhull[3], vhull[finiteIndex]); } vhull.resize(4); // get the post-projective coordinate constraints std::vector constraint; for (int i=0; i<4; i++) { Vector4 postProjPt = camProjection * vhull[i]; postProjPt *= 1.0 / postProjPt.w; constraint.push_back(Vector2(postProjPt.x, postProjPt.y)); } // perturb one point so we don't have coplanarity const Vector4& pinhole = light->getAs4DVector(); const Vector4& oldPt = vhull.back(); Vector4 newPt; if (pinhole.w == 0) { // It's directional light static const Real NEAR_SCALE = 100.0; newPt = oldPt + (pinhole * (cam->getNearClipDistance() * NEAR_SCALE)); } else { // It's point or spotlight Vector4 displacement = oldPt - pinhole; Vector3 displace3 = Vector3(displacement.x, displacement.y, displacement.z); Real dotProd = fabs(displace3.dotProduct(worldPlane.normal)); static const Real NEAR_FACTOR = 0.05; newPt = pinhole + (displacement * (cam->getNearClipDistance() * NEAR_FACTOR / dotProd)); } vhull.back() = newPt; // solve for the matrix that stabilizes the plane Matrix4 customMatrix = computeConstrainedProjection(pinhole, vhull, constraint); if (pinhole.w == 0) { // TODO: factor into view and projection pieces. // Note: In fact, it's unnecessary to factor into view and projection pieces, // but if we do, we will more according with academic requirement :) texCam->setCustomViewMatrix(true, Matrix4::IDENTITY); texCam->setCustomProjectionMatrix(true, customMatrix); return; } Vector3 tempPos = Vector3(pinhole.x, pinhole.y, pinhole.z); // factor into view and projection pieces Matrix4 translation(1.0, 0.0, 0.0, tempPos.x, 0.0, 1.0, 0.0, tempPos.y, 0.0, 0.0, 1.0, tempPos.z, 0.0, 0.0, 0.0, 1.0); Matrix4 invTranslation(1.0, 0.0, 0.0, -tempPos.x, 0.0, 1.0, 0.0, -tempPos.y, 0.0, 0.0, 1.0, -tempPos.z, 0.0, 0.0, 0.0, 1.0); Matrix4 tempMatrix = customMatrix * translation; Vector3 zRow(-tempMatrix[3][0], -tempMatrix[3][1], -tempMatrix[3][2]); zRow.normalise(); Vector3 up; if (zRow.y == 1.0) up = Vector3(1,0,0); else up = Vector3(0,1,0); Vector3 xDir = up.crossProduct(zRow); xDir.normalise(); up = zRow.crossProduct(xDir); Matrix4 rotation(xDir.x, up.x, zRow.x, 0.0, xDir.y, up.y, zRow.y, 0.0, xDir.z, up.z, zRow.z, 0.0, 0.0, 0.0, 0.0, 1.0 ); Matrix4 customProj = tempMatrix * rotation; Matrix4 customView = rotation.transpose() * invTranslation; // note: now customProj * (0,0,0,1)^t = (0, 0, k, 0)^t for k some constant // note: also customProj's 4th row is (0, 0, c, 0) for some negative c. // set the shadow map camera texCam->setCustomViewMatrix(true, customView); texCam->setCustomProjectionMatrix(true, customProj); } }