/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org Copyright (c) 2000-2006 Torus Knot Software Ltd Also see acknowledgements in Readme.html This program is free software you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or go to http://www.gnu.org/copyleft/lesser.txt. You may alternatively use this source under the terms of a specific version of the OGRE Unrestricted License provided you have obtained such a license from Torus Knot Software Ltd. ----------------------------------------------------------------------------- */ #include "OgreStableHeaders.h" #include "OgreGpuProgram.h" #include "OgreHighLevelGpuProgram.h" #include "OgreGpuProgramManager.h" #include "OgreVector3.h" #include "OgreVector4.h" #include "OgreAutoParamDataSource.h" #include "OgreLight.h" #include "OgreRoot.h" #include "OgreRenderSystem.h" #include "OgreRenderSystemCapabilities.h" #include "OgreStringConverter.h" #include "OgreLogManager.h" namespace Ogre { //----------------------------------------------------------------------------- GpuProgram::CmdType GpuProgram::msTypeCmd; GpuProgram::CmdSyntax GpuProgram::msSyntaxCmd; GpuProgram::CmdSkeletal GpuProgram::msSkeletalCmd; GpuProgram::CmdMorph GpuProgram::msMorphCmd; GpuProgram::CmdPose GpuProgram::msPoseCmd; GpuProgram::CmdVTF GpuProgram::msVTFCmd; GpuProgramParameters::AutoConstantDefinition GpuProgramParameters::AutoConstantDictionary[] = { AutoConstantDefinition(ACT_WORLD_MATRIX, "world_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_WORLD_MATRIX, "inverse_world_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_WORLD_MATRIX, "transpose_world_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_WORLD_MATRIX, "inverse_transpose_world_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_WORLD_MATRIX_ARRAY_3x4, "world_matrix_array_3x4", 12, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_WORLD_MATRIX_ARRAY, "world_matrix_array", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEW_MATRIX, "view_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_VIEW_MATRIX, "inverse_view_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_VIEW_MATRIX, "transpose_view_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_VIEW_MATRIX, "inverse_transpose_view_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_PROJECTION_MATRIX, "projection_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_PROJECTION_MATRIX, "inverse_projection_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_PROJECTION_MATRIX, "transpose_projection_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_PROJECTION_MATRIX, "inverse_transpose_projection_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEWPROJ_MATRIX, "viewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_VIEWPROJ_MATRIX, "inverse_viewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_VIEWPROJ_MATRIX, "transpose_viewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_VIEWPROJ_MATRIX, "inverse_transpose_viewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_WORLDVIEW_MATRIX, "worldview_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_WORLDVIEW_MATRIX, "inverse_worldview_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_WORLDVIEW_MATRIX, "transpose_worldview_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_WORLDVIEW_MATRIX, "inverse_transpose_worldview_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_WORLDVIEWPROJ_MATRIX, "worldviewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_WORLDVIEWPROJ_MATRIX, "inverse_worldviewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TRANSPOSE_WORLDVIEWPROJ_MATRIX, "transpose_worldviewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_TRANSPOSE_WORLDVIEWPROJ_MATRIX, "inverse_transpose_worldviewproj_matrix", 16, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_RENDER_TARGET_FLIPPING, "render_target_flipping", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_FOG_COLOUR, "fog_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_FOG_PARAMS, "fog_params", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SURFACE_AMBIENT_COLOUR, "surface_ambient_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SURFACE_DIFFUSE_COLOUR, "surface_diffuse_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SURFACE_SPECULAR_COLOUR, "surface_specular_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SURFACE_EMISSIVE_COLOUR, "surface_emissive_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SURFACE_SHININESS, "surface_shininess", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_AMBIENT_LIGHT_COLOUR, "ambient_light_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_LIGHT_DIFFUSE_COLOUR, "light_diffuse_colour", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_SPECULAR_COLOUR, "light_specular_colour", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_ATTENUATION, "light_attenuation", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_SPOTLIGHT_PARAMS, "spotlight_params", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION, "light_position", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION_OBJECT_SPACE, "light_position_object_space", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION_VIEW_SPACE, "light_position_view_space", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION, "light_direction", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION_OBJECT_SPACE, "light_direction_object_space", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION_VIEW_SPACE, "light_direction_view_space", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DISTANCE_OBJECT_SPACE, "light_distance_object_space", 1, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POWER_SCALE, "light_power", 1, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIFFUSE_COLOUR_ARRAY, "light_diffuse_colour_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_SPECULAR_COLOUR_ARRAY, "light_specular_colour_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_ATTENUATION_ARRAY, "light_attenuation_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION_ARRAY, "light_position_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION_OBJECT_SPACE_ARRAY, "light_position_object_space_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POSITION_VIEW_SPACE_ARRAY, "light_position_view_space_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION_ARRAY, "light_direction_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION_OBJECT_SPACE_ARRAY, "light_direction_object_space_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DIRECTION_VIEW_SPACE_ARRAY, "light_direction_view_space_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_DISTANCE_OBJECT_SPACE_ARRAY, "light_distance_object_space_array", 1, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_LIGHT_POWER_SCALE_ARRAY, "light_power_array", 1, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_SPOTLIGHT_PARAMS_ARRAY, "spotlight_params_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_DERIVED_AMBIENT_LIGHT_COLOUR, "derived_ambient_light_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_DERIVED_SCENE_COLOUR, "derived_scene_colour", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_DERIVED_LIGHT_DIFFUSE_COLOUR, "derived_light_diffuse_colour", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_DERIVED_LIGHT_SPECULAR_COLOUR, "derived_light_specular_colour", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_DERIVED_LIGHT_DIFFUSE_COLOUR_ARRAY, "derived_light_diffuse_colour_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_DERIVED_LIGHT_SPECULAR_COLOUR_ARRAY, "derived_light_specular_colour_array", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_SHADOW_EXTRUSION_DISTANCE, "shadow_extrusion_distance", 1, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_CAMERA_POSITION, "camera_position", 3, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_CAMERA_POSITION_OBJECT_SPACE, "camera_position_object_space", 3, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_TEXTURE_VIEWPROJ_MATRIX, "texture_viewproj_matrix", 16, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_CUSTOM, "custom", 4, ET_REAL, ACDT_INT), // *** needs to be tested AutoConstantDefinition(ACT_TIME, "time", 1, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_X, "time_0_x", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_COSTIME_0_X, "costime_0_x", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_SINTIME_0_X, "sintime_0_x", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TANTIME_0_X, "tantime_0_x", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_X_PACKED, "time_0_x_packed", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_1, "time_0_1", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_COSTIME_0_1, "costime_0_1", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_SINTIME_0_1, "sintime_0_1", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TANTIME_0_1, "tantime_0_1", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_1_PACKED, "time_0_1_packed", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_2PI, "time_0_2pi", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_COSTIME_0_2PI, "costime_0_2pi", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_SINTIME_0_2PI, "sintime_0_2pi", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TANTIME_0_2PI, "tantime_0_2pi", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_TIME_0_2PI_PACKED, "time_0_2pi_packed", 4, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_FRAME_TIME, "frame_time", 1, ET_REAL, ACDT_REAL), AutoConstantDefinition(ACT_FPS, "fps", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEWPORT_WIDTH, "viewport_width", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEWPORT_HEIGHT, "viewport_height", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_VIEWPORT_WIDTH, "inverse_viewport_width", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_INVERSE_VIEWPORT_HEIGHT, "inverse_viewport_height", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEWPORT_SIZE, "viewport_size", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEW_DIRECTION, "view_direction", 3, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEW_SIDE_VECTOR, "view_side_vector", 3, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_VIEW_UP_VECTOR, "view_up_vector", 3, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_FOV, "fov", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_NEAR_CLIP_DISTANCE, "near_clip_distance", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_FAR_CLIP_DISTANCE, "far_clip_distance", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_PASS_NUMBER, "pass_number", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_PASS_ITERATION_NUMBER, "pass_iteration_number", 1, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_ANIMATION_PARAMETRIC, "animation_parametric", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_TEXEL_OFFSETS, "texel_offsets", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SCENE_DEPTH_RANGE, "scene_depth_range", 4, ET_REAL, ACDT_NONE), AutoConstantDefinition(ACT_SHADOW_SCENE_DEPTH_RANGE, "shadow_scene_depth_range", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_TEXTURE_SIZE, "texture_size", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_INVERSE_TEXTURE_SIZE, "inverse_texture_size", 4, ET_REAL, ACDT_INT), AutoConstantDefinition(ACT_PACKED_TEXTURE_SIZE, "packed_texture_size", 4, ET_REAL, ACDT_INT), }; //--------------------------------------------------------------------- void GpuNamedConstants::generateConstantDefinitionArrayEntries( const String& paramName, const GpuConstantDefinition& baseDef) { // Copy definition for use with arrays GpuConstantDefinition arrayDef = baseDef; arrayDef.arraySize = 1; String arrayName; // Add parameters for array accessors // [0] will refer to the same location, [1+] will increment // only populate others individually up to 16 array slots so as not to get out of hand // paramName[0] version will always exist size_t maxArrayIndex = 1; if (baseDef.arraySize <= 16) maxArrayIndex = baseDef.arraySize; for (size_t i = 0; i < maxArrayIndex; i++) { arrayName = paramName + "[" + StringConverter::toString(i) + "]"; map.insert(GpuConstantDefinitionMap::value_type(arrayName, arrayDef)); // increment location arrayDef.physicalIndex += arrayDef.elementSize; } // note no increment of buffer sizes since this is shared with main array def } //----------------------------------------------------------------------------- GpuProgram::GpuProgram(ResourceManager* creator, const String& name, ResourceHandle handle, const String& group, bool isManual, ManualResourceLoader* loader) :Resource(creator, name, handle, group, isManual, loader), mType(GPT_VERTEX_PROGRAM), mLoadFromFile(true), mSkeletalAnimation(false), mVertexTextureFetch(false), mPassSurfaceAndLightStates(false), mCompileError(false) { } //----------------------------------------------------------------------------- void GpuProgram::setType(GpuProgramType t) { mType = t; } //----------------------------------------------------------------------------- void GpuProgram::setSyntaxCode(const String& syntax) { mSyntaxCode = syntax; } //----------------------------------------------------------------------------- void GpuProgram::setSourceFile(const String& filename) { mFilename = filename; mSource.clear(); mLoadFromFile = true; mCompileError = false; } //----------------------------------------------------------------------------- void GpuProgram::setSource(const String& source) { mSource = source; mFilename.clear(); mLoadFromFile = false; mCompileError = false; } //----------------------------------------------------------------------------- void GpuProgram::loadImpl(void) { if (mLoadFromFile) { // find & load source code DataStreamPtr stream = ResourceGroupManager::getSingleton().openResource( mFilename, mGroup, true, this); mSource = stream->getAsString(); } // Call polymorphic load try { loadFromSource(); } catch (const Exception&) { // will already have been logged StringUtil::StrStreamType str; str << "Gpu program " << mName << " encountered an error " << "during loading and is thus not supported."; LogManager::getSingleton().logMessage(str.str()); mCompileError = true; } } //----------------------------------------------------------------------------- bool GpuProgram::isRequiredCapabilitiesSupported(void) const { const RenderSystemCapabilities* caps = Root::getSingleton().getRenderSystem()->getCapabilities(); // If skeletal animation is being done, we need support for UBYTE4 if (isSkeletalAnimationIncluded() && !caps->hasCapability(RSC_VERTEX_FORMAT_UBYTE4)) { return false; } // Vertex texture fetch required? if (isVertexTextureFetchRequired() && !caps->hasCapability(RSC_VERTEX_TEXTURE_FETCH)) { return false; } return true; } //----------------------------------------------------------------------------- bool GpuProgram::isSupported(void) const { if (mCompileError || !isRequiredCapabilitiesSupported()) return false; return GpuProgramManager::getSingleton().isSyntaxSupported(mSyntaxCode); } //----------------------------------------------------------------------------- GpuProgramParametersSharedPtr GpuProgram::createParameters(void) { // Default implementation simply returns standard parameters. GpuProgramParametersSharedPtr ret = GpuProgramManager::getSingleton().createParameters(); // link shared logical / physical map for low-level use ret->_setLogicalIndexes(&mFloatLogicalToPhysical, &mIntLogicalToPhysical); // Copy in default parameters if present if (!mDefaultParams.isNull()) ret->copyConstantsFrom(*(mDefaultParams.get())); return ret; } //----------------------------------------------------------------------------- GpuProgramParametersSharedPtr GpuProgram::getDefaultParameters(void) { if (mDefaultParams.isNull()) { mDefaultParams = createParameters(); } return mDefaultParams; } //----------------------------------------------------------------------------- void GpuProgram::setupBaseParamDictionary(void) { ParamDictionary* dict = getParamDictionary(); dict->addParameter( ParameterDef("type", "'vertex_program' or 'fragment_program'", PT_STRING), &msTypeCmd); dict->addParameter( ParameterDef("syntax", "Syntax code, e.g. vs_1_1", PT_STRING), &msSyntaxCmd); dict->addParameter( ParameterDef("includes_skeletal_animation", "Whether this vertex program includes skeletal animation", PT_BOOL), &msSkeletalCmd); dict->addParameter( ParameterDef("includes_morph_animation", "Whether this vertex program includes morph animation", PT_BOOL), &msMorphCmd); dict->addParameter( ParameterDef("includes_pose_animation", "The number of poses this vertex program supports for pose animation", PT_INT), &msPoseCmd); dict->addParameter( ParameterDef("uses_vertex_texture_fetch", "Whether this vertex program requires vertex texture fetch support.", PT_BOOL), &msVTFCmd); } //----------------------------------------------------------------------- const String& GpuProgram::getLanguage(void) const { static const String language = "asm"; return language; } //----------------------------------------------------------------------------- // GpuProgramParameters Methods //----------------------------------------------------------------------------- GpuProgramParameters::GpuProgramParameters() : mFloatLogicalToPhysical(0) , mIntLogicalToPhysical(0) , mNamedConstants(0) , mTransposeMatrices(false) , mIgnoreMissingParams(false) , mActivePassIterationIndex(std::numeric_limits::max()) { } //----------------------------------------------------------------------------- GpuProgramParameters::GpuProgramParameters(const GpuProgramParameters& oth) { *this = oth; } //----------------------------------------------------------------------------- GpuProgramParameters& GpuProgramParameters::operator=(const GpuProgramParameters& oth) { // let compiler perform shallow copies of structures // AutoConstantEntry, RealConstantEntry, IntConstantEntry mFloatConstants = oth.mFloatConstants; mIntConstants = oth.mIntConstants; mAutoConstants = oth.mAutoConstants; mFloatLogicalToPhysical = oth.mFloatLogicalToPhysical; mIntLogicalToPhysical = oth.mIntLogicalToPhysical; mNamedConstants = oth.mNamedConstants; mTransposeMatrices = oth.mTransposeMatrices; mIgnoreMissingParams = oth.mIgnoreMissingParams; mActivePassIterationIndex = oth.mActivePassIterationIndex; return *this; } //--------------------------------------------------------------------- void GpuProgramParameters::_setNamedConstants( const GpuNamedConstants* namedConstants) { mNamedConstants = namedConstants; // Determine any extension to local buffers // Size and reset buffer (fill with zero to make comparison later ok) if (namedConstants->floatBufferSize > mFloatConstants.size()) { mFloatConstants.insert(mFloatConstants.end(), namedConstants->floatBufferSize - mFloatConstants.size(), 0.0f); } if (namedConstants->intBufferSize > mIntConstants.size()) { mIntConstants.insert(mIntConstants.end(), namedConstants->intBufferSize - mIntConstants.size(), 0); } } //--------------------------------------------------------------------- void GpuProgramParameters::_setLogicalIndexes( GpuLogicalBufferStruct* floatIndexMap, GpuLogicalBufferStruct* intIndexMap) { mFloatLogicalToPhysical = floatIndexMap; mIntLogicalToPhysical = intIndexMap; // resize the internal buffers // Note that these will only contain something after the first parameter // set has set some parameters // Size and reset buffer (fill with zero to make comparison later ok) if (floatIndexMap->bufferSize > mFloatConstants.size()) { mFloatConstants.insert(mFloatConstants.end(), floatIndexMap->bufferSize - mFloatConstants.size(), 0.0f); } if (intIndexMap->bufferSize > mIntConstants.size()) { mIntConstants.insert(mIntConstants.end(), intIndexMap->bufferSize - mIntConstants.size(), 0); } } //---------------------------------------------------------------------() void GpuProgramParameters::setConstant(size_t index, const Vector4& vec) { setConstant(index, vec.ptr(), 1); } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, Real val) { setConstant(index, Vector4(val, 0.0f, 0.0f, 0.0f)); } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const Vector3& vec) { setConstant(index, Vector4(vec.x, vec.y, vec.z, 1.0f)); } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const Matrix4& m) { // set as 4x 4-element floats if (mTransposeMatrices) { Matrix4 t = m.transpose(); GpuProgramParameters::setConstant(index, t[0], 4); } else { GpuProgramParameters::setConstant(index, m[0], 4); } } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const Matrix4* pMatrix, size_t numEntries) { if (mTransposeMatrices) { for (size_t i = 0; i < numEntries; ++i) { Matrix4 t = pMatrix[i].transpose(); GpuProgramParameters::setConstant(index, t[0], 4); index += 4; } } else { GpuProgramParameters::setConstant(index, pMatrix[0][0], 4 * numEntries); } } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const ColourValue& colour) { setConstant(index, colour.ptr(), 1); } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const float *val, size_t count) { // Raw buffer size is 4x count size_t rawCount = count * 4; // get physical index assert(mFloatLogicalToPhysical && "GpuProgram hasn't set up the logical -> physical map!"); size_t physicalIndex = _getFloatConstantPhysicalIndex(index, rawCount); // Copy _writeRawConstants(physicalIndex, val, rawCount); } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const double *val, size_t count) { // Raw buffer size is 4x count size_t rawCount = count * 4; // get physical index assert(mFloatLogicalToPhysical && "GpuProgram hasn't set up the logical -> physical map!"); size_t physicalIndex = _getFloatConstantPhysicalIndex(index, rawCount); assert(physicalIndex + rawCount <= mFloatConstants.size()); // Copy manually since cast required for (size_t i = 0; i < rawCount; ++i) { mFloatConstants[physicalIndex + i] = static_cast(val[i]); } } //----------------------------------------------------------------------------- void GpuProgramParameters::setConstant(size_t index, const int *val, size_t count) { // Raw buffer size is 4x count size_t rawCount = count * 4; // get physical index assert(mIntLogicalToPhysical && "GpuProgram hasn't set up the logical -> physical map!"); size_t physicalIndex = _getIntConstantPhysicalIndex(index, rawCount); // Copy _writeRawConstants(physicalIndex, val, rawCount); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, const Vector4& vec, size_t count) { // remember, raw content access uses raw float count rather than float4 // write either the number requested (for packed types) or up to 4 _writeRawConstants(physicalIndex, vec.ptr(), std::min(count, (size_t)4)); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, Real val) { _writeRawConstants(physicalIndex, &val, 1); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, int val) { _writeRawConstants(physicalIndex, &val, 1); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, const Vector3& vec) { _writeRawConstants(physicalIndex, vec.ptr(), 3); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, const Matrix4& m) { // remember, raw content access uses raw float count rather than float4 if (mTransposeMatrices) { Matrix4 t = m.transpose(); _writeRawConstants(physicalIndex, t[0], 16); } else { _writeRawConstants(physicalIndex, m[0], 16); } } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, const Matrix4* pMatrix, size_t numEntries) { // remember, raw content access uses raw float count rather than float4 if (mTransposeMatrices) { for (size_t i = 0; i < numEntries; ++i) { Matrix4 t = pMatrix[i].transpose(); _writeRawConstants(physicalIndex, t[0], 16); physicalIndex += 16; } } else { _writeRawConstants(physicalIndex, pMatrix[0][0], 16 * numEntries); } } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstant(size_t physicalIndex, const ColourValue& colour, size_t count) { // write either the number requested (for packed types) or up to 4 _writeRawConstants(physicalIndex, colour.ptr(), std::min(count, (size_t)4)); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstants(size_t physicalIndex, const double* val, size_t count) { assert(physicalIndex + count <= mFloatConstants.size()); for (size_t i = 0; i < count; ++i) { mFloatConstants[physicalIndex+i] = static_cast(val[i]); } } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstants(size_t physicalIndex, const float* val, size_t count) { assert(physicalIndex + count <= mFloatConstants.size()); memcpy(&mFloatConstants[physicalIndex], val, sizeof(float) * count); } //----------------------------------------------------------------------------- void GpuProgramParameters::_writeRawConstants(size_t physicalIndex, const int* val, size_t count) { assert(physicalIndex + count <= mIntConstants.size()); memcpy(&mIntConstants[physicalIndex], val, sizeof(int) * count); } //----------------------------------------------------------------------------- void GpuProgramParameters::_readRawConstants(size_t physicalIndex, size_t count, float* dest) { assert(physicalIndex + count <= mFloatConstants.size()); memcpy(dest, &mFloatConstants[physicalIndex], sizeof(float) * count); } //----------------------------------------------------------------------------- void GpuProgramParameters::_readRawConstants(size_t physicalIndex, size_t count, int* dest) { assert(physicalIndex + count <= mIntConstants.size()); memcpy(dest, &mIntConstants[physicalIndex], sizeof(int) * count); } //----------------------------------------------------------------------------- size_t GpuProgramParameters::_getFloatConstantPhysicalIndex( size_t logicalIndex, size_t requestedSize) { if (!mFloatLogicalToPhysical) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This is not a low-level parameter parameter object", "GpuProgramParameters::_getFloatConstantPhysicalIndex"); size_t physicalIndex; OGRE_LOCK_MUTEX(mFloatLogicalToPhysical->mutex) GpuLogicalIndexUseMap::iterator logi = mFloatLogicalToPhysical->map.find(logicalIndex); if (logi == mFloatLogicalToPhysical->map.end()) { if (requestedSize) { physicalIndex = mFloatConstants.size(); // Expand at buffer end mFloatConstants.insert(mFloatConstants.end(), requestedSize, 0.0f); // Record extended size for future GPU params re-using this information mFloatLogicalToPhysical->bufferSize = mFloatConstants.size(); // low-level programs will not know about mapping ahead of time, so // populate it. Other params objects will be able to just use this // accepted mapping since the constant structure will be the same // Set up a mapping for all items in the count size_t currPhys = physicalIndex; size_t count = requestedSize / 4; for (size_t logicalNum = 0; logicalNum < count; ++logicalNum) { mFloatLogicalToPhysical->map.insert( GpuLogicalIndexUseMap::value_type( logicalIndex + logicalNum, GpuLogicalIndexUse(currPhys, requestedSize))); currPhys += 4; } } else { // no match & ignore return std::numeric_limits::max(); } } else { physicalIndex = logi->second.physicalIndex; // check size if (logi->second.currentSize < requestedSize) { // init buffer entry wasn't big enough; could be a mistake on the part // of the original use, or perhaps a variable length we can't predict // until first actual runtime use e.g. world matrix array size_t insertCount = requestedSize - logi->second.currentSize; FloatConstantList::iterator insertPos = mFloatConstants.begin(); std::advance(insertPos, physicalIndex); mFloatConstants.insert(insertPos, insertCount, 0.0f); // shift all physical positions after this one for (GpuLogicalIndexUseMap::iterator i = mFloatLogicalToPhysical->map.begin(); i != mFloatLogicalToPhysical->map.end(); ++i) { if (i->second.physicalIndex > physicalIndex) i->second.physicalIndex += insertCount; } for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex > physicalIndex) i->physicalIndex += insertCount; } } } return physicalIndex; } //----------------------------------------------------------------------------- size_t GpuProgramParameters::_getIntConstantPhysicalIndex( size_t logicalIndex, size_t requestedSize) { if (!mIntLogicalToPhysical) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This is not a low-level parameter parameter object", "GpuProgramParameters::_getIntConstantPhysicalIndex"); size_t physicalIndex; OGRE_LOCK_MUTEX(mIntLogicalToPhysical->mutex) GpuLogicalIndexUseMap::iterator logi = mIntLogicalToPhysical->map.find(logicalIndex); if (logi == mIntLogicalToPhysical->map.end()) { if (requestedSize) { physicalIndex = mIntConstants.size(); // Expand at buffer end mIntConstants.insert(mIntConstants.end(), requestedSize, 0); // Record extended size for future GPU params re-using this information mIntLogicalToPhysical->bufferSize = mIntConstants.size(); // low-level programs will not know about mapping ahead of time, so // populate it. Other params objects will be able to just use this // accepted mapping since the constant structure will be the same // Set up a mapping for all items in the count size_t currPhys = physicalIndex; size_t count = requestedSize / 4; for (size_t logicalNum = 0; logicalNum < count; ++logicalNum) { mIntLogicalToPhysical->map.insert( GpuLogicalIndexUseMap::value_type( logicalIndex + logicalNum, GpuLogicalIndexUse(currPhys, requestedSize))); currPhys += 4; } } else { // no match return std::numeric_limits::max(); } } else { physicalIndex = logi->second.physicalIndex; // check size if (logi->second.currentSize < requestedSize) { // init buffer entry wasn't big enough; could be a mistake on the part // of the original use, or perhaps a variable length we can't predict // until first actual runtime use e.g. world matrix array size_t insertCount = requestedSize - logi->second.currentSize; IntConstantList::iterator insertPos = mIntConstants.begin(); std::advance(insertPos, physicalIndex); mIntConstants.insert(insertPos, insertCount, 0); // shift all physical positions after this one for (GpuLogicalIndexUseMap::iterator i = mIntLogicalToPhysical->map.begin(); i != mIntLogicalToPhysical->map.end(); ++i) { if (i->second.physicalIndex > physicalIndex) i->second.physicalIndex += insertCount; } for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex > physicalIndex) i->physicalIndex += insertCount; } } } return physicalIndex; } //----------------------------------------------------------------------------- size_t GpuProgramParameters::getFloatLogicalIndexForPhysicalIndex(size_t physicalIndex) { // perhaps build a reverse map of this sometime (shared in GpuProgram) for (GpuLogicalIndexUseMap::iterator i = mFloatLogicalToPhysical->map.begin(); i != mFloatLogicalToPhysical->map.end(); ++i) { if (i->second.physicalIndex == physicalIndex) return i->first; } return std::numeric_limits::max(); } //----------------------------------------------------------------------------- size_t GpuProgramParameters::getIntLogicalIndexForPhysicalIndex(size_t physicalIndex) { // perhaps build a reverse map of this sometime (shared in GpuProgram) for (GpuLogicalIndexUseMap::iterator i = mIntLogicalToPhysical->map.begin(); i != mIntLogicalToPhysical->map.end(); ++i) { if (i->second.physicalIndex == physicalIndex) return i->first; } return std::numeric_limits::max(); } //----------------------------------------------------------------------------- GpuConstantDefinitionIterator GpuProgramParameters::getConstantDefinitionIterator(void) const { if (!mNamedConstants) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This params object is not based on a program with named parameters.", "GpuProgramParameters::getConstantDefinitionIterator"); return GpuConstantDefinitionIterator(mNamedConstants->map.begin(), mNamedConstants->map.end()); } //----------------------------------------------------------------------------- const GpuNamedConstants& GpuProgramParameters::getConstantDefinitions() const { if (!mNamedConstants) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This params object is not based on a program with named parameters.", "GpuProgramParameters::getConstantDefinitionIterator"); return *mNamedConstants; } //----------------------------------------------------------------------------- const GpuConstantDefinition& GpuProgramParameters::getConstantDefinition(const String& name) const { if (!mNamedConstants) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This params object is not based on a program with named parameters.", "GpuProgramParameters::getConstantDefinitionIterator"); // locate, and throw exception if not found const GpuConstantDefinition* def = _findNamedConstantDefinition(name, true); return *def; } //----------------------------------------------------------------------------- const GpuConstantDefinition* GpuProgramParameters::_findNamedConstantDefinition(const String& name, bool throwExceptionIfNotFound) const { if (!mNamedConstants) { if (throwExceptionIfNotFound) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "Named constants have not been initialised, perhaps a compile error.", "GpuProgramParameters::_findNamedConstantDefinition"); return 0; } GpuConstantDefinitionMap::const_iterator i = mNamedConstants->map.find(name); if (i == mNamedConstants->map.end()) { if (throwExceptionIfNotFound) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "Parameter called " + name + " does not exist. ", "GpuProgramParameters::_findNamedConstantDefinition"); return 0; } else { return &(i->second); } } //----------------------------------------------------------------------------- void GpuProgramParameters::setAutoConstant(size_t index, AutoConstantType acType, size_t extraInfo) { // Get auto constant definition for sizing const AutoConstantDefinition* autoDef = getAutoConstantDefinition(acType); // round up to nearest multiple of 4 size_t sz = autoDef->elementCount; if (sz % 4 > 0) { sz += 4 - (sz % 4); } size_t physicalIndex = _getFloatConstantPhysicalIndex(index, sz); _setRawAutoConstant(physicalIndex, acType, extraInfo); } //----------------------------------------------------------------------------- void GpuProgramParameters::_setRawAutoConstant(size_t physicalIndex, AutoConstantType acType, size_t extraInfo, size_t elementSize) { // update existing index if it exists bool found = false; for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex == physicalIndex) { i->paramType = acType; i->data = extraInfo; i->elementCount = elementSize; found = true; break; } } if (!found) mAutoConstants.push_back(AutoConstantEntry(acType, physicalIndex, extraInfo, elementSize)); } //----------------------------------------------------------------------------- void GpuProgramParameters::_setRawAutoConstantReal(size_t physicalIndex, AutoConstantType acType, Real rData, size_t elementSize) { // update existing index if it exists bool found = false; for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex == physicalIndex) { i->paramType = acType; i->fData = rData; i->elementCount = elementSize; found = true; break; } } if (!found) mAutoConstants.push_back(AutoConstantEntry(acType, physicalIndex, rData, elementSize)); } //----------------------------------------------------------------------------- void GpuProgramParameters::clearAutoConstant(size_t index) { size_t physicalIndex = _getFloatConstantPhysicalIndex(index, 0); if (physicalIndex != std::numeric_limits::max()) { // update existing index if it exists for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex == physicalIndex) { mAutoConstants.erase(i); break; } } } } //----------------------------------------------------------------------------- void GpuProgramParameters::clearNamedAutoConstant(const String& name) { const GpuConstantDefinition* def = _findNamedConstantDefinition(name); if (def) { // Autos are always floating point if (def->isFloat()) { for (AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { if (i->physicalIndex == def->physicalIndex) { mAutoConstants.erase(i); break; } } } } } //----------------------------------------------------------------------------- void GpuProgramParameters::clearAutoConstants(void) { mAutoConstants.clear(); } //----------------------------------------------------------------------------- GpuProgramParameters::AutoConstantIterator GpuProgramParameters::getAutoConstantIterator(void) const { return AutoConstantIterator(mAutoConstants.begin(), mAutoConstants.end()); } //----------------------------------------------------------------------------- void GpuProgramParameters::setAutoConstantReal(size_t index, AutoConstantType acType, Real rData) { // Get auto constant definition for sizing const AutoConstantDefinition* autoDef = getAutoConstantDefinition(acType); // round up to nearest multiple of 4 size_t sz = autoDef->elementCount; if (sz % 4 > 0) { sz += 4 - (sz % 4); } size_t physicalIndex = _getFloatConstantPhysicalIndex(index, sz); _setRawAutoConstantReal(physicalIndex, acType, rData); } //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- void GpuProgramParameters::_updateAutoParamsNoLights(const AutoParamDataSource& source) { if (!hasAutoConstants()) return; // abort early if no autos Vector3 vec3; Vector4 vec4; size_t index; size_t numMatrices; const Matrix4* pMatrix; size_t m; mActivePassIterationIndex = std::numeric_limits::max(); // Autoconstant index is not a physical index AutoConstantList::const_iterator i, iend; iend = mAutoConstants.end(); for (i = mAutoConstants.begin(); i != iend; ++i) { switch(i->paramType) { case ACT_WORLD_MATRIX: _writeRawConstant(i->physicalIndex, source.getWorldMatrix()); break; case ACT_INVERSE_WORLD_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseWorldMatrix()); break; case ACT_TRANSPOSE_WORLD_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeWorldMatrix()); break; case ACT_INVERSE_TRANSPOSE_WORLD_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeWorldMatrix()); break; case ACT_WORLD_MATRIX_ARRAY_3x4: // Loop over matrices pMatrix = source.getWorldMatrixArray(); numMatrices = source.getWorldMatrixCount(); index = i->physicalIndex; for (m = 0; m < numMatrices; ++m) { _writeRawConstants(index, (*pMatrix)[0], 12); index += 12; ++pMatrix; } break; case ACT_WORLD_MATRIX_ARRAY: _writeRawConstant(i->physicalIndex, source.getWorldMatrixArray(), source.getWorldMatrixCount()); break; case ACT_VIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getViewMatrix()); break; case ACT_INVERSE_VIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseViewMatrix()); break; case ACT_TRANSPOSE_VIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeViewMatrix()); break; case ACT_INVERSE_TRANSPOSE_VIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeViewMatrix()); break; case ACT_PROJECTION_MATRIX: _writeRawConstant(i->physicalIndex, source.getProjectionMatrix()); break; case ACT_INVERSE_PROJECTION_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseProjectionMatrix()); break; case ACT_TRANSPOSE_PROJECTION_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeProjectionMatrix()); break; case ACT_INVERSE_TRANSPOSE_PROJECTION_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeProjectionMatrix()); break; case ACT_VIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getViewProjectionMatrix()); break; case ACT_INVERSE_VIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseViewProjMatrix()); break; case ACT_TRANSPOSE_VIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeViewProjMatrix()); break; case ACT_INVERSE_TRANSPOSE_VIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeViewProjMatrix()); break; case ACT_WORLDVIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getWorldViewMatrix()); break; case ACT_INVERSE_WORLDVIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseWorldViewMatrix()); break; case ACT_TRANSPOSE_WORLDVIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeWorldViewMatrix()); break; case ACT_INVERSE_TRANSPOSE_WORLDVIEW_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeWorldViewMatrix()); break; case ACT_WORLDVIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getWorldViewProjMatrix()); break; case ACT_INVERSE_WORLDVIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseWorldViewProjMatrix()); break; case ACT_TRANSPOSE_WORLDVIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getTransposeWorldViewProjMatrix()); break; case ACT_INVERSE_TRANSPOSE_WORLDVIEWPROJ_MATRIX: _writeRawConstant(i->physicalIndex, source.getInverseTransposeWorldViewProjMatrix()); break; case ACT_RENDER_TARGET_FLIPPING: _writeRawConstant(i->physicalIndex, source.getCurrentRenderTarget()->requiresTextureFlipping() ? -1.f : +1.f); break; // NB ambient light still here because it's not related to a specific light case ACT_AMBIENT_LIGHT_COLOUR: _writeRawConstant(i->physicalIndex, source.getAmbientLightColour(), i->elementCount); break; case ACT_DERIVED_AMBIENT_LIGHT_COLOUR: _writeRawConstant(i->physicalIndex, source.getDerivedAmbientLightColour(), i->elementCount); break; case ACT_DERIVED_SCENE_COLOUR: _writeRawConstant(i->physicalIndex, source.getDerivedSceneColour(), i->elementCount); break; case ACT_FOG_COLOUR: _writeRawConstant(i->physicalIndex, source.getFogColour()); break; case ACT_FOG_PARAMS: _writeRawConstant(i->physicalIndex, source.getFogParams(), i->elementCount); break; case ACT_SURFACE_AMBIENT_COLOUR: _writeRawConstant(i->physicalIndex, source.getSurfaceAmbientColour(), i->elementCount); break; case ACT_SURFACE_DIFFUSE_COLOUR: _writeRawConstant(i->physicalIndex, source.getSurfaceDiffuseColour(), i->elementCount); break; case ACT_SURFACE_SPECULAR_COLOUR: _writeRawConstant(i->physicalIndex, source.getSurfaceSpecularColour(), i->elementCount); break; case ACT_SURFACE_EMISSIVE_COLOUR: _writeRawConstant(i->physicalIndex, source.getSurfaceEmissiveColour(), i->elementCount); break; case ACT_SURFACE_SHININESS: _writeRawConstant(i->physicalIndex, source.getSurfaceShininess()); break; case ACT_CAMERA_POSITION: _writeRawConstant(i->physicalIndex, source.getCameraPosition(), i->elementCount); break; case ACT_CAMERA_POSITION_OBJECT_SPACE: _writeRawConstant(i->physicalIndex, source.getCameraPositionObjectSpace(), i->elementCount); break; case ACT_TIME: _writeRawConstant(i->physicalIndex, source.getTime() * i->fData); break; case ACT_TIME_0_X: _writeRawConstant(i->physicalIndex, source.getTime_0_X(i->fData)); break; case ACT_COSTIME_0_X: _writeRawConstant(i->physicalIndex, source.getCosTime_0_X(i->fData)); break; case ACT_SINTIME_0_X: _writeRawConstant(i->physicalIndex, source.getSinTime_0_X(i->fData)); break; case ACT_TANTIME_0_X: _writeRawConstant(i->physicalIndex, source.getTanTime_0_X(i->fData)); break; case ACT_TIME_0_X_PACKED: _writeRawConstant(i->physicalIndex, source.getTime_0_X_packed(i->fData), i->elementCount); break; case ACT_TIME_0_1: _writeRawConstant(i->physicalIndex, source.getTime_0_1(i->fData)); break; case ACT_COSTIME_0_1: _writeRawConstant(i->physicalIndex, source.getCosTime_0_1(i->fData)); break; case ACT_SINTIME_0_1: _writeRawConstant(i->physicalIndex, source.getSinTime_0_1(i->fData)); break; case ACT_TANTIME_0_1: _writeRawConstant(i->physicalIndex, source.getTanTime_0_1(i->fData)); break; case ACT_TIME_0_1_PACKED: _writeRawConstant(i->physicalIndex, source.getTime_0_1_packed(i->fData), i->elementCount); break; case ACT_TIME_0_2PI: _writeRawConstant(i->physicalIndex, source.getTime_0_2Pi(i->fData)); break; case ACT_COSTIME_0_2PI: _writeRawConstant(i->physicalIndex, source.getCosTime_0_2Pi(i->fData)); break; case ACT_SINTIME_0_2PI: _writeRawConstant(i->physicalIndex, source.getSinTime_0_2Pi(i->fData)); break; case ACT_TANTIME_0_2PI: _writeRawConstant(i->physicalIndex, source.getTanTime_0_2Pi(i->fData)); break; case ACT_TIME_0_2PI_PACKED: _writeRawConstant(i->physicalIndex, source.getTime_0_2Pi_packed(i->fData), i->elementCount); break; case ACT_FRAME_TIME: _writeRawConstant(i->physicalIndex, source.getFrameTime() * i->fData); break; case ACT_FPS: _writeRawConstant(i->physicalIndex, source.getFPS()); break; case ACT_VIEWPORT_WIDTH: _writeRawConstant(i->physicalIndex, source.getViewportWidth()); break; case ACT_VIEWPORT_HEIGHT: _writeRawConstant(i->physicalIndex, source.getViewportHeight()); break; case ACT_INVERSE_VIEWPORT_WIDTH: _writeRawConstant(i->physicalIndex, source.getInverseViewportWidth()); break; case ACT_INVERSE_VIEWPORT_HEIGHT: _writeRawConstant(i->physicalIndex, source.getInverseViewportHeight()); break; case ACT_VIEWPORT_SIZE: _writeRawConstant(i->physicalIndex, Vector4( source.getViewportWidth(), source.getViewportHeight(), source.getInverseViewportWidth(), source.getInverseViewportHeight()), i->elementCount); break; case ACT_TEXEL_OFFSETS: { RenderSystem* rsys = Root::getSingleton().getRenderSystem(); _writeRawConstant(i->physicalIndex, Vector4( rsys->getHorizontalTexelOffset(), rsys->getVerticalTexelOffset(), rsys->getHorizontalTexelOffset() * source.getInverseViewportWidth(), rsys->getVerticalTexelOffset() * source.getInverseViewportHeight()), i->elementCount); } break; case ACT_TEXTURE_SIZE: _writeRawConstant(i->physicalIndex, source.getTextureSize(i->data), i->elementCount); break; case ACT_INVERSE_TEXTURE_SIZE: _writeRawConstant(i->physicalIndex, source.getInverseTextureSize(i->data), i->elementCount); break; case ACT_PACKED_TEXTURE_SIZE: _writeRawConstant(i->physicalIndex, source.getPackedTextureSize(i->data), i->elementCount); break; case ACT_SCENE_DEPTH_RANGE: _writeRawConstant(i->physicalIndex, source.getSceneDepthRange(), i->elementCount); break; case ACT_VIEW_DIRECTION: _writeRawConstant(i->physicalIndex, source.getViewDirection()); break; case ACT_VIEW_SIDE_VECTOR: _writeRawConstant(i->physicalIndex, source.getViewSideVector()); break; case ACT_VIEW_UP_VECTOR: _writeRawConstant(i->physicalIndex, source.getViewUpVector()); break; case ACT_FOV: _writeRawConstant(i->physicalIndex, source.getFOV()); break; case ACT_NEAR_CLIP_DISTANCE: _writeRawConstant(i->physicalIndex, source.getNearClipDistance()); break; case ACT_FAR_CLIP_DISTANCE: _writeRawConstant(i->physicalIndex, source.getFarClipDistance()); break; case ACT_PASS_NUMBER: _writeRawConstant(i->physicalIndex, (float)source.getPassNumber()); break; case ACT_PASS_ITERATION_NUMBER: _writeRawConstant(i->physicalIndex, 0.0f); mActivePassIterationIndex = i->physicalIndex; break; case ACT_CUSTOM: case ACT_ANIMATION_PARAMETRIC: source.getCurrentRenderable()->_updateCustomGpuParameter(*i, this); break; default: break; } } } //----------------------------------------------------------------------------- void GpuProgramParameters::_updateAutoParamsLightsOnly(const AutoParamDataSource& source) { if (!hasAutoConstants()) return; // abort early if no autos Vector3 vec3; Vector4 vec4; Matrix3 m3; AutoConstantList::const_iterator i, iend; iend = mAutoConstants.end(); for (i = mAutoConstants.begin(); i != iend; ++i) { switch(i->paramType) { case ACT_LIGHT_DIFFUSE_COLOUR: _writeRawConstant(i->physicalIndex, source.getLight(i->data).getDiffuseColour(), i->elementCount); break; case ACT_LIGHT_SPECULAR_COLOUR: _writeRawConstant(i->physicalIndex, source.getLight(i->data).getSpecularColour(), i->elementCount); break; case ACT_LIGHT_POSITION: // Get as 4D vector, works for directional lights too // Use element count in case uniform slot is smaller _writeRawConstant(i->physicalIndex, source.getLight(i->data).getAs4DVector(), i->elementCount); break; case ACT_LIGHT_DIRECTION: vec3 = source.getLight(i->data).getDerivedDirection(); // Set as 4D vector for compatibility // Use element count in case uniform slot is smaller _writeRawConstant(i->physicalIndex, Vector4(vec3.x, vec3.y, vec3.z, 1.0f), i->elementCount); break; case ACT_LIGHT_POSITION_OBJECT_SPACE: _writeRawConstant(i->physicalIndex, source.getInverseWorldMatrix().transformAffine( source.getLight(i->data).getAs4DVector()), i->elementCount); break; case ACT_LIGHT_DIRECTION_OBJECT_SPACE: // We need the inverse of the inverse transpose source.getInverseTransposeWorldMatrix().inverse().extract3x3Matrix(m3); vec3 = m3 * source.getLight(i->data).getDerivedDirection(); vec3.normalise(); // Set as 4D vector for compatibility _writeRawConstant(i->physicalIndex, Vector4(vec3.x, vec3.y, vec3.z, 0.0f), i->elementCount); break; case ACT_LIGHT_POSITION_VIEW_SPACE: _writeRawConstant(i->physicalIndex, source.getViewMatrix().transformAffine(source.getLight(i->data).getAs4DVector()), i->elementCount); break; case ACT_LIGHT_DIRECTION_VIEW_SPACE: source.getInverseTransposeViewMatrix().extract3x3Matrix(m3); // inverse transpose in case of scaling vec3 = m3 * source.getLight(i->data).getDerivedDirection(); vec3.normalise(); // Set as 4D vector for compatibility _writeRawConstant(i->physicalIndex, Vector4(vec3.x, vec3.y, vec3.z, 0.0f),i->elementCount); break; case ACT_LIGHT_DISTANCE_OBJECT_SPACE: vec3 = source.getInverseWorldMatrix().transformAffine(source.getLight(i->data).getDerivedPosition()); _writeRawConstant(i->physicalIndex, vec3.length()); break; case ACT_SHADOW_EXTRUSION_DISTANCE: _writeRawConstant(i->physicalIndex, source.getShadowExtrusionDistance()); break; case ACT_SHADOW_SCENE_DEPTH_RANGE: _writeRawConstant(i->physicalIndex, source.getShadowSceneDepthRange(i->data)); break; case ACT_LIGHT_POWER_SCALE: _writeRawConstant(i->physicalIndex, source.getLight(i->data).getPowerScale()); break; case ACT_LIGHT_ATTENUATION: { // range, const, linear, quad const Light& l = source.getLight(i->data); vec4.x = l.getAttenuationRange(); vec4.y = l.getAttenuationConstant(); vec4.z = l.getAttenuationLinear(); vec4.w = l.getAttenuationQuadric(); _writeRawConstant(i->physicalIndex, vec4, i->elementCount); break; } case ACT_SPOTLIGHT_PARAMS: { // inner, outer, fallof, isSpot const Light& l = source.getLight(i->data); if (l.getType() == Light::LT_SPOTLIGHT) { vec4.x = Math::Cos(l.getSpotlightInnerAngle().valueRadians() * 0.5); vec4.y = Math::Cos(l.getSpotlightOuterAngle().valueRadians() * 0.5); vec4.z = l.getSpotlightFalloff(); vec4.w = 1.0f; } else { // Use safe values which result in no change to point & dir light calcs // The spot factor applied to the usual lighting calc is // pow((dot(spotDir, lightDir) - y) / (x - y), z) // Therefore if we set z to 0.0f then the factor will always be 1 // since pow(anything, 0) == 1 // However we also need to ensure we don't overflow because of the division // therefore set x = 1 and y = 0 so divisor doesn't change scale vec4.x = 1.0f; vec4.y = 0.0f; vec4.z = 0.0f; // since the main op is pow(.., vec4.z), this will result in 1.0 vec4.w = 1.0f; } _writeRawConstant(i->physicalIndex, vec4, i->elementCount); break; } case ACT_LIGHT_DIFFUSE_COLOUR_ARRAY: for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getDiffuseColour(), i->elementCount); break; case ACT_LIGHT_SPECULAR_COLOUR_ARRAY: for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getSpecularColour(), i->elementCount); break; case ACT_LIGHT_POSITION_ARRAY: // Get as 4D vector, works for directional lights too for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getAs4DVector(), i->elementCount); break; case ACT_LIGHT_DIRECTION_ARRAY: for (size_t l = 0; l < i->data; ++l) { vec3 = source.getLight(l).getDerivedDirection(); // Set as 4D vector for compatibility _writeRawConstant(i->physicalIndex + l*i->elementCount, Vector4(vec3.x, vec3.y, vec3.z, 0.0f), i->elementCount); } break; case ACT_LIGHT_POSITION_OBJECT_SPACE_ARRAY: for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getInverseWorldMatrix().transformAffine( source.getLight(l).getAs4DVector()), i->elementCount); break; case ACT_LIGHT_DIRECTION_OBJECT_SPACE_ARRAY: // We need the inverse of the inverse transpose source.getInverseTransposeWorldMatrix().inverse().extract3x3Matrix(m3); for (size_t l = 0; l < i->data; ++l) { vec3 = m3 * source.getLight(l).getDerivedDirection(); vec3.normalise(); _writeRawConstant(i->physicalIndex + l*i->elementCount, Vector4(vec3.x, vec3.y, vec3.z, 0.0f), i->elementCount); } break; case ACT_LIGHT_POSITION_VIEW_SPACE_ARRAY: for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getViewMatrix().transformAffine( source.getLight(l).getAs4DVector()), i->elementCount); break; case ACT_LIGHT_DIRECTION_VIEW_SPACE_ARRAY: source.getInverseTransposeViewMatrix().extract3x3Matrix(m3); for (size_t l = 0; l < i->data; ++l) { vec3 = m3 * source.getLight(l).getDerivedDirection(); vec3.normalise(); // Set as 4D vector for compatibility _writeRawConstant(i->physicalIndex + l*i->elementCount, Vector4(vec3.x, vec3.y, vec3.z, 0.0f), i->elementCount); } break; case ACT_LIGHT_DISTANCE_OBJECT_SPACE_ARRAY: for (size_t l = 0; l < i->data; ++l) { vec3 = source.getInverseWorldMatrix().transformAffine(source.getLight(l).getDerivedPosition()); _writeRawConstant(i->physicalIndex + l*i->elementCount, vec3.length()); } break; case ACT_LIGHT_POWER_SCALE_ARRAY: for (size_t l = 0; l < i->data; ++l) _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getPowerScale()); break; case ACT_LIGHT_ATTENUATION_ARRAY: for (size_t l = 0; l < i->data; ++l) { // range, const, linear, quad const Light& light = source.getLight(l); vec4.x = light.getAttenuationRange(); vec4.y = light.getAttenuationConstant(); vec4.z = light.getAttenuationLinear(); vec4.w = light.getAttenuationQuadric(); _writeRawConstant(i->physicalIndex + l*i->elementCount, vec4, i->elementCount); } break; case ACT_SPOTLIGHT_PARAMS_ARRAY: { for (size_t l = 0 ; l < i->data; ++l) { // inner, outer, fallof, isSpot const Light& light = source.getLight(l); if (light.getType() == Light::LT_SPOTLIGHT) { vec4.x = Math::Cos(light.getSpotlightInnerAngle().valueRadians() * 0.5); vec4.y = Math::Cos(light.getSpotlightOuterAngle().valueRadians() * 0.5); vec4.z = light.getSpotlightFalloff(); vec4.w = 1.0f; } else { // Set angles to full circle for generality vec4.x = vec4.y = 1.0f; // reduce outer angle slightly to avoid divide by zero vec4.y -= 1e-5f; vec4.z = vec4.w = 0.0f; } _writeRawConstant(i->physicalIndex + l*i->elementCount, vec4, i->elementCount); } break; } case ACT_DERIVED_LIGHT_DIFFUSE_COLOUR: _writeRawConstant(i->physicalIndex, source.getLight(i->data).getDiffuseColour() * source.getSurfaceDiffuseColour(), i->elementCount); break; case ACT_DERIVED_LIGHT_SPECULAR_COLOUR: _writeRawConstant(i->physicalIndex, source.getLight(i->data).getSpecularColour() * source.getSurfaceSpecularColour(), i->elementCount); break; case ACT_DERIVED_LIGHT_DIFFUSE_COLOUR_ARRAY: for (size_t l = 0; l < i->data; ++l) { _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getDiffuseColour() * source.getSurfaceDiffuseColour(), i->elementCount); } break; case ACT_DERIVED_LIGHT_SPECULAR_COLOUR_ARRAY: for (size_t l = 0; l < i->data; ++l) { _writeRawConstant(i->physicalIndex + l*i->elementCount, source.getLight(l).getSpecularColour() * source.getSurfaceSpecularColour(), i->elementCount); } break; case ACT_TEXTURE_VIEWPROJ_MATRIX: // can also be updated in lights _writeRawConstant(i->physicalIndex, source.getTextureViewProjMatrix(i->data)); break; default: // do nothing break; } } } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, Real val) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, val); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, int val) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, val); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const Vector4& vec) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, vec, def->elementSize); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const Vector3& vec) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, vec); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const Matrix4& m) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, m); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const Matrix4* m, size_t numEntries) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, m, numEntries); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const float *val, size_t count, size_t multiple) { size_t rawCount = count * multiple; // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstants(def->physicalIndex, val, rawCount); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const double *val, size_t count, size_t multiple) { size_t rawCount = count * multiple; // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstants(def->physicalIndex, val, rawCount); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const ColourValue& colour) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstant(def->physicalIndex, colour, def->elementSize); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstant(const String& name, const int *val, size_t count, size_t multiple) { size_t rawCount = count * multiple; // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _writeRawConstants(def->physicalIndex, val, rawCount); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedAutoConstant(const String& name, AutoConstantType acType, size_t extraInfo) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _setRawAutoConstant(def->physicalIndex, acType, extraInfo, def->elementSize); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedAutoConstantReal(const String& name, AutoConstantType acType, Real rData) { // look up, and throw an exception if we're not ignoring missing const GpuConstantDefinition* def = _findNamedConstantDefinition(name, !mIgnoreMissingParams); if (def) _setRawAutoConstantReal(def->physicalIndex, acType, rData, def->elementSize); } //--------------------------------------------------------------------------- void GpuProgramParameters::setConstantFromTime(size_t index, Real factor) { setAutoConstantReal(index, ACT_TIME, factor); } //--------------------------------------------------------------------------- void GpuProgramParameters::setNamedConstantFromTime(const String& name, Real factor) { setNamedAutoConstantReal(name, ACT_TIME, factor); } //--------------------------------------------------------------------------- GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::getAutoConstantEntry(const size_t index) { if (index < mAutoConstants.size()) { return &(mAutoConstants[index]); } else { return NULL; } } //--------------------------------------------------------------------------- const GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::findFloatAutoConstantEntry(size_t logicalIndex) { if (!mFloatLogicalToPhysical) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This is not a low-level parameter parameter object", "GpuProgramParameters::findFloatAutoConstantEntry"); return _findRawAutoConstantEntryFloat( _getFloatConstantPhysicalIndex(logicalIndex, 0)); } //--------------------------------------------------------------------------- const GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::findIntAutoConstantEntry(size_t logicalIndex) { if (!mIntLogicalToPhysical) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This is not a low-level parameter parameter object", "GpuProgramParameters::findIntAutoConstantEntry"); return _findRawAutoConstantEntryInt( _getIntConstantPhysicalIndex(logicalIndex, 0)); } //--------------------------------------------------------------------------- const GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::findAutoConstantEntry(const String& paramName) { if (!mNamedConstants) OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, "This params object is not based on a program with named parameters.", "GpuProgramParameters::findAutoConstantEntry"); const GpuConstantDefinition& def = getConstantDefinition(paramName); if (def.isFloat()) { return _findRawAutoConstantEntryFloat(def.physicalIndex); } else { return _findRawAutoConstantEntryInt(def.physicalIndex); } } //--------------------------------------------------------------------------- const GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::_findRawAutoConstantEntryFloat(size_t physicalIndex) { for(AutoConstantList::iterator i = mAutoConstants.begin(); i != mAutoConstants.end(); ++i) { AutoConstantEntry& ac = *i; // should check that auto is float and not int so that physicalIndex // doesn't have any ambiguity // However, all autos are float I think so no need if (ac.physicalIndex == physicalIndex) return ∾ } return 0; } //--------------------------------------------------------------------------- const GpuProgramParameters::AutoConstantEntry* GpuProgramParameters::_findRawAutoConstantEntryInt(size_t physicalIndex) { // No autos are float? return 0; } //--------------------------------------------------------------------------- void GpuProgramParameters::copyConstantsFrom(const GpuProgramParameters& source) { // Pull buffers & auto constant list over directly mFloatConstants = source.getFloatConstantList(); mIntConstants = source.getIntConstantList(); mAutoConstants = source.getAutoConstantList(); } //----------------------------------------------------------------------- const GpuProgramParameters::AutoConstantDefinition* GpuProgramParameters::getAutoConstantDefinition(const String& name) { // find a constant definition that matches name by iterating through the // constant definition array bool nameFound = false; size_t i = 0; const size_t numDefs = getNumAutoConstantDefinitions(); while (!nameFound && (i < numDefs)) { if (name == AutoConstantDictionary[i].name) nameFound = true; else ++i; } if (nameFound) return &AutoConstantDictionary[i]; else return 0; } //----------------------------------------------------------------------- const GpuProgramParameters::AutoConstantDefinition* GpuProgramParameters::getAutoConstantDefinition(const size_t idx) { if (idx < getNumAutoConstantDefinitions()) { // verify index is equal to acType // if they are not equal then the dictionary was not setup properly assert(idx == static_cast(AutoConstantDictionary[idx].acType)); return &AutoConstantDictionary[idx]; } else return 0; } //----------------------------------------------------------------------- size_t GpuProgramParameters::getNumAutoConstantDefinitions(void) { return sizeof(AutoConstantDictionary)/sizeof(AutoConstantDefinition); } //----------------------------------------------------------------------- void GpuProgramParameters::incPassIterationNumber(void) { if (mActivePassIterationIndex != std::numeric_limits::max()) { // This is a physical index ++mFloatConstants[mActivePassIterationIndex]; } } //----------------------------------------------------------------------- //----------------------------------------------------------------------- String GpuProgram::CmdType::doGet(const void* target) const { const GpuProgram* t = static_cast(target); if (t->getType() == GPT_VERTEX_PROGRAM) { return "vertex_program"; } else { return "fragment_program"; } } void GpuProgram::CmdType::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); if (val == "vertex_program") { t->setType(GPT_VERTEX_PROGRAM); } else { t->setType(GPT_FRAGMENT_PROGRAM); } } //----------------------------------------------------------------------- String GpuProgram::CmdSyntax::doGet(const void* target) const { const GpuProgram* t = static_cast(target); return t->getSyntaxCode(); } void GpuProgram::CmdSyntax::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); t->setSyntaxCode(val); } //----------------------------------------------------------------------- String GpuProgram::CmdSkeletal::doGet(const void* target) const { const GpuProgram* t = static_cast(target); return StringConverter::toString(t->isSkeletalAnimationIncluded()); } void GpuProgram::CmdSkeletal::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); t->setSkeletalAnimationIncluded(StringConverter::parseBool(val)); } //----------------------------------------------------------------------- String GpuProgram::CmdMorph::doGet(const void* target) const { const GpuProgram* t = static_cast(target); return StringConverter::toString(t->isMorphAnimationIncluded()); } void GpuProgram::CmdMorph::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); t->setMorphAnimationIncluded(StringConverter::parseBool(val)); } //----------------------------------------------------------------------- String GpuProgram::CmdPose::doGet(const void* target) const { const GpuProgram* t = static_cast(target); return StringConverter::toString(t->getNumberOfPosesIncluded()); } void GpuProgram::CmdPose::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); t->setPoseAnimationIncluded(StringConverter::parseUnsignedInt(val)); } //----------------------------------------------------------------------- String GpuProgram::CmdVTF::doGet(const void* target) const { const GpuProgram* t = static_cast(target); return StringConverter::toString(t->isVertexTextureFetchRequired()); } void GpuProgram::CmdVTF::doSet(void* target, const String& val) { GpuProgram* t = static_cast(target); t->setVertexTextureFetchRequired(StringConverter::parseBool(val)); } //----------------------------------------------------------------------- GpuProgramPtr& GpuProgramPtr::operator=(const HighLevelGpuProgramPtr& r) { // Can assign direct if (pRep == r.getPointer()) return *this; release(); // lock & copy other mutex pointer OGRE_MUTEX_CONDITIONAL(r.OGRE_AUTO_MUTEX_NAME) { OGRE_LOCK_MUTEX(*r.OGRE_AUTO_MUTEX_NAME) OGRE_COPY_AUTO_SHARED_MUTEX(r.OGRE_AUTO_MUTEX_NAME) pRep = r.getPointer(); pUseCount = r.useCountPointer(); if (pUseCount) { ++(*pUseCount); } } else { // RHS must be a null pointer assert(r.isNull() && "RHS must be null if it has no mutex!"); setNull(); } return *this; } }