/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "LinearMath/btIDebugDraw.h" #include "BulletCollision/CollisionDispatch/btGhostObject.h" #include "BulletCollision/CollisionShapes/btMultiSphereShape.h" #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h" #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCollisionWorld.h" #include "LinearMath/btDefaultMotionState.h" #include "btKinematicCharacterController.h" // static helper method static btVector3 getNormalizedVector(const btVector3& v) { btVector3 n = v.normalized(); if (n.length() < SIMD_EPSILON) { n.setValue(0, 0, 0); } return n; } ///@todo Interact with dynamic objects, ///Ride kinematicly animated platforms properly ///More realistic (or maybe just a config option) falling /// -> Should integrate falling velocity manually and use that in stepDown() ///Support jumping ///Support ducking class btKinematicClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback { public: btKinematicClosestNotMeRayResultCallback (btCollisionObject* me) : btCollisionWorld::ClosestRayResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0)) { m_me = me; } virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace) { if (rayResult.m_collisionObject == m_me) return 1.0; return ClosestRayResultCallback::addSingleResult (rayResult, normalInWorldSpace); } protected: btCollisionObject* m_me; }; class btKinematicClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback { public: btKinematicClosestNotMeConvexResultCallback (btCollisionObject* me, const btVector3& up, btScalar minSlopeDot) : btCollisionWorld::ClosestConvexResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0)) , m_me(me) , m_up(up) , m_minSlopeDot(minSlopeDot) { } virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace) { if (convexResult.m_hitCollisionObject == m_me) return btScalar(1.0); btVector3 hitNormalWorld; if (normalInWorldSpace) { hitNormalWorld = convexResult.m_hitNormalLocal; } else { ///need to transform normal into worldspace hitNormalWorld = m_hitCollisionObject->getWorldTransform().getBasis()*convexResult.m_hitNormalLocal; } btScalar dotUp = m_up.dot(hitNormalWorld); if (dotUp < m_minSlopeDot) { return btScalar(1.0); } return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace); } protected: btCollisionObject* m_me; const btVector3 m_up; btScalar m_minSlopeDot; }; /* * Returns the reflection direction of a ray going 'direction' hitting a surface with normal 'normal' * * from: http://www-cs-students.stanford.edu/~adityagp/final/node3.html */ btVector3 btKinematicCharacterController::computeReflectionDirection (const btVector3& direction, const btVector3& normal) { return direction - (btScalar(2.0) * direction.dot(normal)) * normal; } /* * Returns the portion of 'direction' that is parallel to 'normal' */ btVector3 btKinematicCharacterController::parallelComponent (const btVector3& direction, const btVector3& normal) { btScalar magnitude = direction.dot(normal); return normal * magnitude; } /* * Returns the portion of 'direction' that is perpindicular to 'normal' */ btVector3 btKinematicCharacterController::perpindicularComponent (const btVector3& direction, const btVector3& normal) { return direction - parallelComponent(direction, normal); } btKinematicCharacterController::btKinematicCharacterController (btPairCachingGhostObject* ghostObject,btConvexShape* convexShape,btScalar stepHeight, int upAxis) { m_upAxis = upAxis; m_addedMargin = 0.02; m_walkDirection.setValue(0,0,0); m_useGhostObjectSweepTest = true; m_ghostObject = ghostObject; m_stepHeight = stepHeight; m_turnAngle = btScalar(0.0); m_convexShape=convexShape; m_useWalkDirection = true; // use walk direction by default, legacy behavior m_velocityTimeInterval = 0.0; m_verticalVelocity = 0.0; m_verticalOffset = 0.0; m_gravity = 9.8 * 3 ; // 3G acceleration. m_fallSpeed = 55.0; // Terminal velocity of a sky diver in m/s. m_jumpSpeed = 10.0; // ? m_wasOnGround = false; m_wasJumping = false; setMaxSlope(btRadians(45.0)); } btKinematicCharacterController::~btKinematicCharacterController () { } btPairCachingGhostObject* btKinematicCharacterController::getGhostObject() { return m_ghostObject; } bool btKinematicCharacterController::recoverFromPenetration ( btCollisionWorld* collisionWorld) { bool penetration = false; collisionWorld->getDispatcher()->dispatchAllCollisionPairs(m_ghostObject->getOverlappingPairCache(), collisionWorld->getDispatchInfo(), collisionWorld->getDispatcher()); m_currentPosition = m_ghostObject->getWorldTransform().getOrigin(); btScalar maxPen = btScalar(0.0); for (int i = 0; i < m_ghostObject->getOverlappingPairCache()->getNumOverlappingPairs(); i++) { m_manifoldArray.resize(0); btBroadphasePair* collisionPair = &m_ghostObject->getOverlappingPairCache()->getOverlappingPairArray()[i]; if (collisionPair->m_algorithm) collisionPair->m_algorithm->getAllContactManifolds(m_manifoldArray); for (int j=0;jgetBody0() == m_ghostObject ? btScalar(-1.0) : btScalar(1.0); for (int p=0;pgetNumContacts();p++) { const btManifoldPoint&pt = manifold->getContactPoint(p); btScalar dist = pt.getDistance(); if (dist < 0.0) { if (dist < maxPen) { maxPen = dist; m_touchingNormal = pt.m_normalWorldOnB * directionSign;//?? } m_currentPosition += pt.m_normalWorldOnB * directionSign * dist * btScalar(0.2); penetration = true; } else { //printf("touching %f\n", dist); } } //manifold->clearManifold(); } } btTransform newTrans = m_ghostObject->getWorldTransform(); newTrans.setOrigin(m_currentPosition); m_ghostObject->setWorldTransform(newTrans); // printf("m_touchingNormal = %f,%f,%f\n",m_touchingNormal[0],m_touchingNormal[1],m_touchingNormal[2]); return penetration; } void btKinematicCharacterController::stepUp ( btCollisionWorld* world) { // phase 1: up btTransform start, end; m_targetPosition = m_currentPosition + getUpAxisDirections()[m_upAxis] * (m_stepHeight + (m_verticalOffset > 0.f?m_verticalOffset:0.f)); start.setIdentity (); end.setIdentity (); /* FIXME: Handle penetration properly */ start.setOrigin (m_currentPosition + getUpAxisDirections()[m_upAxis] * (m_convexShape->getMargin() + m_addedMargin)); end.setOrigin (m_targetPosition); btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, -getUpAxisDirections()[m_upAxis], btScalar(0.7071)); callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup; callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask; if (m_useGhostObjectSweepTest) { m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, world->getDispatchInfo().m_allowedCcdPenetration); } else { world->convexSweepTest (m_convexShape, start, end, callback); } if (callback.hasHit()) { // Only modify the position if the hit was a slope and not a wall or ceiling. if(callback.m_hitNormalWorld.dot(getUpAxisDirections()[m_upAxis]) > 0.0) { // we moved up only a fraction of the step height m_currentStepOffset = m_stepHeight * callback.m_closestHitFraction; m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); } m_verticalVelocity = 0.0; m_verticalOffset = 0.0; } else { m_currentStepOffset = m_stepHeight; m_currentPosition = m_targetPosition; } } void btKinematicCharacterController::updateTargetPositionBasedOnCollision (const btVector3& hitNormal, btScalar tangentMag, btScalar normalMag) { btVector3 movementDirection = m_targetPosition - m_currentPosition; btScalar movementLength = movementDirection.length(); if (movementLength>SIMD_EPSILON) { movementDirection.normalize(); btVector3 reflectDir = computeReflectionDirection (movementDirection, hitNormal); reflectDir.normalize(); btVector3 parallelDir, perpindicularDir; parallelDir = parallelComponent (reflectDir, hitNormal); perpindicularDir = perpindicularComponent (reflectDir, hitNormal); m_targetPosition = m_currentPosition; if (0)//tangentMag != 0.0) { btVector3 parComponent = parallelDir * btScalar (tangentMag*movementLength); // printf("parComponent=%f,%f,%f\n",parComponent[0],parComponent[1],parComponent[2]); m_targetPosition += parComponent; } if (normalMag != 0.0) { btVector3 perpComponent = perpindicularDir * btScalar (normalMag*movementLength); // printf("perpComponent=%f,%f,%f\n",perpComponent[0],perpComponent[1],perpComponent[2]); m_targetPosition += perpComponent; } } else { // printf("movementLength don't normalize a zero vector\n"); } } void btKinematicCharacterController::stepForwardAndStrafe ( btCollisionWorld* collisionWorld, const btVector3& walkMove) { // printf("m_normalizedDirection=%f,%f,%f\n", // m_normalizedDirection[0],m_normalizedDirection[1],m_normalizedDirection[2]); // phase 2: forward and strafe btTransform start, end; m_targetPosition = m_currentPosition + walkMove; start.setIdentity (); end.setIdentity (); btScalar fraction = 1.0; btScalar distance2 = (m_currentPosition-m_targetPosition).length2(); // printf("distance2=%f\n",distance2); if (m_touchingContact) { if (m_normalizedDirection.dot(m_touchingNormal) > btScalar(0.0)) { updateTargetPositionBasedOnCollision (m_touchingNormal); } } int maxIter = 10; while (fraction > btScalar(0.01) && maxIter-- > 0) { start.setOrigin (m_currentPosition); end.setOrigin (m_targetPosition); btVector3 sweepDirNegative(m_currentPosition - m_targetPosition); btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, sweepDirNegative, btScalar(0.0)); callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup; callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask; btScalar margin = m_convexShape->getMargin(); m_convexShape->setMargin(margin + m_addedMargin); if (m_useGhostObjectSweepTest) { m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration); } else { collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration); } m_convexShape->setMargin(margin); fraction -= callback.m_closestHitFraction; if (callback.hasHit()) { // we moved only a fraction btScalar hitDistance; hitDistance = (callback.m_hitPointWorld - m_currentPosition).length(); // m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); updateTargetPositionBasedOnCollision (callback.m_hitNormalWorld); btVector3 currentDir = m_targetPosition - m_currentPosition; distance2 = currentDir.length2(); if (distance2 > SIMD_EPSILON) { currentDir.normalize(); /* See Quake2: "If velocity is against original velocity, stop ead to avoid tiny oscilations in sloping corners." */ if (currentDir.dot(m_normalizedDirection) <= btScalar(0.0)) { break; } } else { // printf("currentDir: don't normalize a zero vector\n"); break; } } else { // we moved whole way m_currentPosition = m_targetPosition; } // if (callback.m_closestHitFraction == 0.f) // break; } } void btKinematicCharacterController::stepDown ( btCollisionWorld* collisionWorld, btScalar dt) { btTransform start, end; // phase 3: down /*btScalar additionalDownStep = (m_wasOnGround && !onGround()) ? m_stepHeight : 0.0; btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + additionalDownStep); btScalar downVelocity = (additionalDownStep == 0.0 && m_verticalVelocity<0.0?-m_verticalVelocity:0.0) * dt; btVector3 gravity_drop = getUpAxisDirections()[m_upAxis] * downVelocity; m_targetPosition -= (step_drop + gravity_drop);*/ btScalar downVelocity = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt; if(downVelocity > 0.0 && downVelocity < m_stepHeight && (m_wasOnGround || !m_wasJumping)) { downVelocity = m_stepHeight; } btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity); m_targetPosition -= step_drop; start.setIdentity (); end.setIdentity (); start.setOrigin (m_currentPosition); end.setOrigin (m_targetPosition); btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine); callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup; callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask; if (m_useGhostObjectSweepTest) { m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration); } else { collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration); } if (callback.hasHit()) { // we dropped a fraction of the height -> hit floor m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); m_verticalVelocity = 0.0; m_verticalOffset = 0.0; m_wasJumping = false; } else { // we dropped the full height m_currentPosition = m_targetPosition; } } void btKinematicCharacterController::setWalkDirection ( const btVector3& walkDirection ) { m_useWalkDirection = true; m_walkDirection = walkDirection; m_normalizedDirection = getNormalizedVector(m_walkDirection); } void btKinematicCharacterController::setVelocityForTimeInterval ( const btVector3& velocity, btScalar timeInterval ) { // printf("setVelocity!\n"); // printf(" interval: %f\n", timeInterval); // printf(" velocity: (%f, %f, %f)\n", // velocity.x(), velocity.y(), velocity.z()); m_useWalkDirection = false; m_walkDirection = velocity; m_normalizedDirection = getNormalizedVector(m_walkDirection); m_velocityTimeInterval = timeInterval; } void btKinematicCharacterController::reset () { } void btKinematicCharacterController::warp (const btVector3& origin) { btTransform xform; xform.setIdentity(); xform.setOrigin (origin); m_ghostObject->setWorldTransform (xform); } void btKinematicCharacterController::preStep ( btCollisionWorld* collisionWorld) { int numPenetrationLoops = 0; m_touchingContact = false; while (recoverFromPenetration (collisionWorld)) { numPenetrationLoops++; m_touchingContact = true; if (numPenetrationLoops > 4) { //printf("character could not recover from penetration = %d\n", numPenetrationLoops); break; } } m_currentPosition = m_ghostObject->getWorldTransform().getOrigin(); m_targetPosition = m_currentPosition; // printf("m_targetPosition=%f,%f,%f\n",m_targetPosition[0],m_targetPosition[1],m_targetPosition[2]); } #include void btKinematicCharacterController::playerStep ( btCollisionWorld* collisionWorld, btScalar dt) { // printf("playerStep(): "); // printf(" dt = %f", dt); // quick check... if (!m_useWalkDirection && m_velocityTimeInterval <= 0.0) { // printf("\n"); return; // no motion } m_wasOnGround = onGround(); // Update fall velocity. m_verticalVelocity -= m_gravity * dt; if(m_verticalVelocity > 0.0 && m_verticalVelocity > m_jumpSpeed) { m_verticalVelocity = m_jumpSpeed; } if(m_verticalVelocity < 0.0 && btFabs(m_verticalVelocity) > btFabs(m_fallSpeed)) { m_verticalVelocity = -btFabs(m_fallSpeed); } m_verticalOffset = m_verticalVelocity * dt; btTransform xform; xform = m_ghostObject->getWorldTransform (); // printf("walkDirection(%f,%f,%f)\n",walkDirection[0],walkDirection[1],walkDirection[2]); // printf("walkSpeed=%f\n",walkSpeed); stepUp (collisionWorld); if (m_useWalkDirection) { stepForwardAndStrafe (collisionWorld, m_walkDirection); } else { //printf(" time: %f", m_velocityTimeInterval); // still have some time left for moving! btScalar dtMoving = (dt < m_velocityTimeInterval) ? dt : m_velocityTimeInterval; m_velocityTimeInterval -= dt; // how far will we move while we are moving? btVector3 move = m_walkDirection * dtMoving; //printf(" dtMoving: %f", dtMoving); // okay, step stepForwardAndStrafe(collisionWorld, move); } stepDown (collisionWorld, dt); // printf("\n"); xform.setOrigin (m_currentPosition); m_ghostObject->setWorldTransform (xform); } void btKinematicCharacterController::setFallSpeed (btScalar fallSpeed) { m_fallSpeed = fallSpeed; } void btKinematicCharacterController::setJumpSpeed (btScalar jumpSpeed) { m_jumpSpeed = jumpSpeed; } void btKinematicCharacterController::setMaxJumpHeight (btScalar maxJumpHeight) { m_maxJumpHeight = maxJumpHeight; } bool btKinematicCharacterController::canJump () const { return onGround(); } void btKinematicCharacterController::jump () { if (!canJump()) return; m_verticalVelocity = m_jumpSpeed; m_wasJumping = true; #if 0 currently no jumping. btTransform xform; m_rigidBody->getMotionState()->getWorldTransform (xform); btVector3 up = xform.getBasis()[1]; up.normalize (); btScalar magnitude = (btScalar(1.0)/m_rigidBody->getInvMass()) * btScalar(8.0); m_rigidBody->applyCentralImpulse (up * magnitude); #endif } void btKinematicCharacterController::setGravity(btScalar gravity) { m_gravity = gravity; } btScalar btKinematicCharacterController::getGravity() const { return m_gravity; } void btKinematicCharacterController::setMaxSlope(btScalar slopeRadians) { m_maxSlopeRadians = slopeRadians; m_maxSlopeCosine = btCos(slopeRadians); } btScalar btKinematicCharacterController::getMaxSlope() const { return m_maxSlopeRadians; } bool btKinematicCharacterController::onGround () const { return m_verticalVelocity == 0.0 && m_verticalOffset == 0.0; } btVector3* btKinematicCharacterController::getUpAxisDirections() { static btVector3 sUpAxisDirection[3] = { btVector3(1.0f, 0.0f, 0.0f), btVector3(0.0f, 1.0f, 0.0f), btVector3(0.0f, 0.0f, 1.0f) }; return sUpAxisDirection; } void btKinematicCharacterController::debugDraw(btIDebugDraw* debugDrawer) { }