/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef BT_SOLVER_BODY_H #define BT_SOLVER_BODY_H class btRigidBody; #include "LinearMath/btVector3.h" #include "LinearMath/btMatrix3x3.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btAlignedAllocator.h" #include "LinearMath/btTransformUtil.h" ///btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance. ATTRIBUTE_ALIGNED16 (struct) btSolverBody { BT_DECLARE_ALIGNED_ALLOCATOR(); btVector3 m_angularVelocity; float m_angularFactor; float m_invMass; float m_friction; btRigidBody* m_originalBody; btVector3 m_linearVelocity; btVector3 m_centerOfMassPosition; btVector3 m_pushVelocity; btVector3 m_turnVelocity; SIMD_FORCE_INLINE void getVelocityInLocalPoint(const btVector3& rel_pos, btVector3& velocity ) const { velocity = m_linearVelocity + m_angularVelocity.cross(rel_pos); } //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) { if (m_invMass) { m_linearVelocity += linearComponent*impulseMagnitude; m_angularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); } } SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) { if (m_invMass) { m_pushVelocity += linearComponent*impulseMagnitude; m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor); } } void writebackVelocity() { if (m_invMass) { m_originalBody->setLinearVelocity(m_linearVelocity); m_originalBody->setAngularVelocity(m_angularVelocity); //m_originalBody->setCompanionId(-1); } } void writebackVelocity(btScalar timeStep) { if (m_invMass) { m_originalBody->setLinearVelocity(m_linearVelocity); m_originalBody->setAngularVelocity(m_angularVelocity); //correct the position/orientation based on push/turn recovery btTransform newTransform; btTransformUtil::integrateTransform(m_originalBody->getWorldTransform(),m_pushVelocity,m_turnVelocity,timeStep,newTransform); m_originalBody->setWorldTransform(newTransform); //m_originalBody->setCompanionId(-1); } } void readVelocity() { if (m_invMass) { m_linearVelocity = m_originalBody->getLinearVelocity(); m_angularVelocity = m_originalBody->getAngularVelocity(); } } }; #endif //BT_SOLVER_BODY_H