/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btDiscreteDynamicsWorld.h" //collision detection #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btQuickprof.h" //rigidbody & constraints #include "BulletDynamics/Dynamics/btRigidBody.h" #include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" #include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" //for debug rendering #include "BulletCollision/CollisionShapes/btBoxShape.h" #include "BulletCollision/CollisionShapes/btCapsuleShape.h" #include "BulletCollision/CollisionShapes/btCompoundShape.h" #include "BulletCollision/CollisionShapes/btConeShape.h" #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btCylinderShape.h" #include "BulletCollision/CollisionShapes/btMultiSphereShape.h" #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" #include "BulletCollision/CollisionShapes/btTriangleCallback.h" #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h" #include "LinearMath/btIDebugDraw.h" //vehicle #include "BulletDynamics/Vehicle/btRaycastVehicle.h" #include "BulletDynamics/Vehicle/btVehicleRaycaster.h" #include "BulletDynamics/Vehicle/btWheelInfo.h" //character #include "BulletDynamics/Character/btCharacterControllerInterface.h" #include "LinearMath/btIDebugDraw.h" #include "LinearMath/btQuickprof.h" #include "LinearMath/btMotionState.h" btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration) :btDynamicsWorld(dispatcher,pairCache,collisionConfiguration), m_constraintSolver(constraintSolver), m_gravity(0,-10,0), m_localTime(btScalar(1.)/btScalar(60.)), m_profileTimings(0) { if (!m_constraintSolver) { void* mem = btAlignedAlloc(sizeof(btSequentialImpulseConstraintSolver),16); m_constraintSolver = new (mem) btSequentialImpulseConstraintSolver; m_ownsConstraintSolver = true; } else { m_ownsConstraintSolver = false; } { void* mem = btAlignedAlloc(sizeof(btSimulationIslandManager),16); m_islandManager = new (mem) btSimulationIslandManager(); } m_ownsIslandManager = true; } btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld() { //only delete it when we created it if (m_ownsIslandManager) { m_islandManager->~btSimulationIslandManager(); btAlignedFree( m_islandManager); } if (m_ownsConstraintSolver) { m_constraintSolver->~btConstraintSolver(); btAlignedFree(m_constraintSolver); } } void btDiscreteDynamicsWorld::saveKinematicState(btScalar timeStep) { for (int i=0;igetActivationState() != ISLAND_SLEEPING) { if (body->isKinematicObject()) { //to calculate velocities next frame body->saveKinematicState(timeStep); } } } } } void btDiscreteDynamicsWorld::debugDrawWorld() { BT_PROFILE("debugDrawWorld"); if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints) { int numManifolds = getDispatcher()->getNumManifolds(); btVector3 color(0,0,0); for (int i=0;igetManifoldByIndexInternal(i); //btCollisionObject* obA = static_cast(contactManifold->getBody0()); //btCollisionObject* obB = static_cast(contactManifold->getBody1()); int numContacts = contactManifold->getNumContacts(); for (int j=0;jgetContactPoint(j); getDebugDrawer()->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color); } } } if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb)) { int i; for ( i=0;igetDebugMode() & btIDebugDraw::DBG_DrawWireframe) { btVector3 color(btScalar(255.),btScalar(255.),btScalar(255.)); switch(colObj->getActivationState()) { case ACTIVE_TAG: color = btVector3(btScalar(255.),btScalar(255.),btScalar(255.)); break; case ISLAND_SLEEPING: color = btVector3(btScalar(0.),btScalar(255.),btScalar(0.));break; case WANTS_DEACTIVATION: color = btVector3(btScalar(0.),btScalar(255.),btScalar(255.));break; case DISABLE_DEACTIVATION: color = btVector3(btScalar(255.),btScalar(0.),btScalar(0.));break; case DISABLE_SIMULATION: color = btVector3(btScalar(255.),btScalar(255.),btScalar(0.));break; default: { color = btVector3(btScalar(255.),btScalar(0.),btScalar(0.)); } }; debugDrawObject(colObj->getWorldTransform(),colObj->getCollisionShape(),color); } if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) { btVector3 minAabb,maxAabb; btVector3 colorvec(1,0,0); colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); m_debugDrawer->drawAabb(minAabb,maxAabb,colorvec); } } for ( i=0;im_vehicles.size();i++) { for (int v=0;vgetNumWheels();v++) { btVector3 wheelColor(0,255,255); if (m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_isInContact) { wheelColor.setValue(0,0,255); } else { wheelColor.setValue(255,0,255); } btVector3 wheelPosWS = m_vehicles[i]->getWheelInfo(v).m_worldTransform.getOrigin(); btVector3 axle = btVector3( m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[0][m_vehicles[i]->getRightAxis()], m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[1][m_vehicles[i]->getRightAxis()], m_vehicles[i]->getWheelInfo(v).m_worldTransform.getBasis()[2][m_vehicles[i]->getRightAxis()]); //m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_wheelAxleWS //debug wheels (cylinders) m_debugDrawer->drawLine(wheelPosWS,wheelPosWS+axle,wheelColor); m_debugDrawer->drawLine(wheelPosWS,m_vehicles[i]->getWheelInfo(v).m_raycastInfo.m_contactPointWS,wheelColor); } } } } void btDiscreteDynamicsWorld::clearForces() { ///@todo: iterate over awake simulation islands! for ( int i=0;iclearForces(); } } } ///apply gravity, call this once per timestep void btDiscreteDynamicsWorld::applyGravity() { ///@todo: iterate over awake simulation islands! for ( int i=0;iisActive()) { body->applyGravity(); } } } void btDiscreteDynamicsWorld::synchronizeSingleMotionState(btRigidBody* body) { btAssert(body); if (body->getMotionState() && !body->isStaticOrKinematicObject()) { //we need to call the update at least once, even for sleeping objects //otherwise the 'graphics' transform never updates properly ///@todo: add 'dirty' flag //if (body->getActivationState() != ISLAND_SLEEPING) { btTransform interpolatedTransform; btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(), body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),m_localTime*body->getHitFraction(),interpolatedTransform); body->getMotionState()->setWorldTransform(interpolatedTransform); } } } void btDiscreteDynamicsWorld::synchronizeMotionStates() { BT_PROFILE("synchronizeMotionStates"); { //todo: iterate over awake simulation islands! for ( int i=0;igetDebugMode() & btIDebugDraw::DBG_DrawWireframe) { for ( int i=0;im_vehicles.size();i++) { for (int v=0;vgetNumWheels();v++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicles[i]->updateWheelTransform(v,true); } } } } int btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep) { startProfiling(timeStep); BT_PROFILE("stepSimulation"); int numSimulationSubSteps = 0; if (maxSubSteps) { //fixed timestep with interpolation m_localTime += timeStep; if (m_localTime >= fixedTimeStep) { numSimulationSubSteps = int( m_localTime / fixedTimeStep); m_localTime -= numSimulationSubSteps * fixedTimeStep; } } else { //variable timestep fixedTimeStep = timeStep; m_localTime = timeStep; if (btFuzzyZero(timeStep)) { numSimulationSubSteps = 0; maxSubSteps = 0; } else { numSimulationSubSteps = 1; maxSubSteps = 1; } } //process some debugging flags if (getDebugDrawer()) { gDisableDeactivation = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0; } if (numSimulationSubSteps) { saveKinematicState(fixedTimeStep); applyGravity(); //clamp the number of substeps, to prevent simulation grinding spiralling down to a halt int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps; for (int i=0;isetGravity(gravity); } } } btVector3 btDiscreteDynamicsWorld::getGravity () const { return m_gravity; } void btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body) { removeCollisionObject(body); } void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body) { if (!body->isStaticOrKinematicObject()) { body->setGravity(m_gravity); } if (body->getCollisionShape()) { bool isDynamic = !(body->isStaticObject() || body->isKinematicObject()); short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter); short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); addCollisionObject(body,collisionFilterGroup,collisionFilterMask); } } void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body, short group, short mask) { if (!body->isStaticOrKinematicObject()) { body->setGravity(m_gravity); } if (body->getCollisionShape()) { addCollisionObject(body,group,mask); } } void btDiscreteDynamicsWorld::updateVehicles(btScalar timeStep) { BT_PROFILE("updateVehicles"); for ( int i=0;iupdateVehicle( timeStep); } } void btDiscreteDynamicsWorld::updateCharacters(btScalar timeStep) { BT_PROFILE("updateCharacters"); for ( int i=0;ipreStep (this); character->playerStep (this,timeStep); } } void btDiscreteDynamicsWorld::updateActivationState(btScalar timeStep) { BT_PROFILE("updateActivationState"); for ( int i=0;iupdateDeactivation(timeStep); if (body->wantsSleeping()) { if (body->isStaticOrKinematicObject()) { body->setActivationState(ISLAND_SLEEPING); } else { if (body->getActivationState() == ACTIVE_TAG) body->setActivationState( WANTS_DEACTIVATION ); if (body->getActivationState() == ISLAND_SLEEPING) { body->setAngularVelocity(btVector3(0,0,0)); body->setLinearVelocity(btVector3(0,0,0)); } } } else { if (body->getActivationState() != DISABLE_DEACTIVATION) body->setActivationState( ACTIVE_TAG ); } } } } void btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint,bool disableCollisionsBetweenLinkedBodies) { m_constraints.push_back(constraint); if (disableCollisionsBetweenLinkedBodies) { constraint->getRigidBodyA().addConstraintRef(constraint); constraint->getRigidBodyB().addConstraintRef(constraint); } } void btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint) { m_constraints.remove(constraint); constraint->getRigidBodyA().removeConstraintRef(constraint); constraint->getRigidBodyB().removeConstraintRef(constraint); } void btDiscreteDynamicsWorld::addVehicle(btRaycastVehicle* vehicle) { m_vehicles.push_back(vehicle); } void btDiscreteDynamicsWorld::removeVehicle(btRaycastVehicle* vehicle) { m_vehicles.remove(vehicle); } void btDiscreteDynamicsWorld::addCharacter(btCharacterControllerInterface* character) { m_characters.push_back(character); } void btDiscreteDynamicsWorld::removeCharacter(btCharacterControllerInterface* character) { m_characters.remove(character); } SIMD_FORCE_INLINE int btGetConstraintIslandId(const btTypedConstraint* lhs) { int islandId; const btCollisionObject& rcolObj0 = lhs->getRigidBodyA(); const btCollisionObject& rcolObj1 = lhs->getRigidBodyB(); islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag(); return islandId; } class btSortConstraintOnIslandPredicate { public: bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) { int rIslandId0,lIslandId0; rIslandId0 = btGetConstraintIslandId(rhs); lIslandId0 = btGetConstraintIslandId(lhs); return lIslandId0 < rIslandId0; } }; void btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo) { BT_PROFILE("solveConstraints"); struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback { btContactSolverInfo& m_solverInfo; btConstraintSolver* m_solver; btTypedConstraint** m_sortedConstraints; int m_numConstraints; btIDebugDraw* m_debugDrawer; btStackAlloc* m_stackAlloc; btDispatcher* m_dispatcher; InplaceSolverIslandCallback( btContactSolverInfo& solverInfo, btConstraintSolver* solver, btTypedConstraint** sortedConstraints, int numConstraints, btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc, btDispatcher* dispatcher) :m_solverInfo(solverInfo), m_solver(solver), m_sortedConstraints(sortedConstraints), m_numConstraints(numConstraints), m_debugDrawer(debugDrawer), m_stackAlloc(stackAlloc), m_dispatcher(dispatcher) { } InplaceSolverIslandCallback& operator=(InplaceSolverIslandCallback& other) { btAssert(0); (void)other; return *this; } virtual void ProcessIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId) { if (islandId<0) { ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher); } else { //also add all non-contact constraints/joints for this island btTypedConstraint** startConstraint = 0; int numCurConstraints = 0; int i; //find the first constraint for this island for (i=0;isolveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher); } } } }; //sorted version of all btTypedConstraint, based on islandId btAlignedObjectArray sortedConstraints; sortedConstraints.resize( m_constraints.size()); int i; for (i=0;iprepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds()); /// solve all the constraints for this island m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),&solverCallback); m_constraintSolver->allSolved(solverInfo, m_debugDrawer, m_stackAlloc); } void btDiscreteDynamicsWorld::calculateSimulationIslands() { BT_PROFILE("calculateSimulationIslands"); getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher()); { int i; int numConstraints = int(m_constraints.size()); for (i=0;i< numConstraints ; i++ ) { btTypedConstraint* constraint = m_constraints[i]; const btRigidBody* colObj0 = &constraint->getRigidBodyA(); const btRigidBody* colObj1 = &constraint->getRigidBodyB(); if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) && ((colObj1) && (!(colObj1)->isStaticOrKinematicObject()))) { if (colObj0->isActive() || colObj1->isActive()) { getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(), (colObj1)->getIslandTag()); } } } } //Store the island id in each body getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld()); } #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" class btClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback { btCollisionObject* m_me; btScalar m_allowedPenetration; btOverlappingPairCache* m_pairCache; public: btClosestNotMeConvexResultCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache) : btCollisionWorld::ClosestConvexResultCallback(fromA,toA), m_allowedPenetration(0.0f), m_me(me), m_pairCache(pairCache) { } virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace) { if (convexResult.m_hitCollisionObject == m_me) return 1.0f; //ignore result if there is no contact response if(!convexResult.m_hitCollisionObject->hasContactResponse()) return 1.0f; btVector3 linVelA,linVelB; linVelA = m_convexToWorld-m_convexFromWorld; linVelB = btVector3(0,0,0);//toB.getOrigin()-fromB.getOrigin(); btVector3 relativeVelocity = (linVelA-linVelB); //don't report time of impact for motion away from the contact normal (or causes minor penetration) if (convexResult.m_hitNormalLocal.dot(relativeVelocity)>=-m_allowedPenetration) return 1.f; return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace); } virtual bool needsCollision(btBroadphaseProxy* proxy0) const { //don't collide with itself if (proxy0->m_clientObject == m_me) return false; ///don't do CCD when the collision filters are not matching if (!ClosestConvexResultCallback::needsCollision(proxy0)) return false; ///don't do CCD when there are already contact points (touching contact/penetration) btAlignedObjectArray manifoldArray; btBroadphasePair* collisionPair = m_pairCache->findPair(m_me->getBroadphaseHandle(),proxy0); if (collisionPair) { if (collisionPair->m_algorithm) { manifoldArray.resize(0); collisionPair->m_algorithm->getAllContactManifolds(manifoldArray); for (int j=0;jgetNumContacts()>0) return false; } } } return true; } }; ///internal debugging variable. this value shouldn't be too high int gNumClampedCcdMotions=0; //#include "stdio.h" void btDiscreteDynamicsWorld::integrateTransforms(btScalar timeStep) { BT_PROFILE("integrateTransforms"); btTransform predictedTrans; for ( int i=0;isetHitFraction(1.f); if (body->isActive() && (!body->isStaticOrKinematicObject())) { body->predictIntegratedTransform(timeStep, predictedTrans); btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2(); if (body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion) { BT_PROFILE("CCD motion clamping"); if (body->getCollisionShape()->isConvex()) { gNumClampedCcdMotions++; btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache()); btConvexShape* convexShape = static_cast(body->getCollisionShape()); btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast(body->getCollisionShape()); sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup; sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask; convexSweepTest(&tmpSphere,body->getWorldTransform(),predictedTrans,sweepResults); if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f)) { body->setHitFraction(sweepResults.m_closestHitFraction); body->predictIntegratedTransform(timeStep*body->getHitFraction(), predictedTrans); body->setHitFraction(0.f); // printf("clamped integration to hit fraction = %f\n",fraction); } } } body->proceedToTransform( predictedTrans); } } } } void btDiscreteDynamicsWorld::predictUnconstraintMotion(btScalar timeStep) { BT_PROFILE("predictUnconstraintMotion"); for ( int i=0;iisStaticOrKinematicObject()) { body->integrateVelocities( timeStep); //damping body->applyDamping(timeStep); body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform()); } } } } void btDiscreteDynamicsWorld::startProfiling(btScalar timeStep) { (void)timeStep; #ifndef BT_NO_PROFILE CProfileManager::Reset(); #endif //BT_NO_PROFILE } class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback { btIDebugDraw* m_debugDrawer; btVector3 m_color; btTransform m_worldTrans; public: DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color) : m_debugDrawer(debugDrawer), m_color(color), m_worldTrans(worldTrans) { } virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) { processTriangle(triangle,partId,triangleIndex); } virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex) { (void)partId; (void)triangleIndex; btVector3 wv0,wv1,wv2; wv0 = m_worldTrans*triangle[0]; wv1 = m_worldTrans*triangle[1]; wv2 = m_worldTrans*triangle[2]; m_debugDrawer->drawLine(wv0,wv1,m_color); m_debugDrawer->drawLine(wv1,wv2,m_color); m_debugDrawer->drawLine(wv2,wv0,m_color); } }; void btDiscreteDynamicsWorld::debugDrawSphere(btScalar radius, const btTransform& transform, const btVector3& color) { btVector3 start = transform.getOrigin(); const btVector3 xoffs = transform.getBasis() * btVector3(radius,0,0); const btVector3 yoffs = transform.getBasis() * btVector3(0,radius,0); const btVector3 zoffs = transform.getBasis() * btVector3(0,0,radius); // XY getDebugDrawer()->drawLine(start-xoffs, start+yoffs, color); getDebugDrawer()->drawLine(start+yoffs, start+xoffs, color); getDebugDrawer()->drawLine(start+xoffs, start-yoffs, color); getDebugDrawer()->drawLine(start-yoffs, start-xoffs, color); // XZ getDebugDrawer()->drawLine(start-xoffs, start+zoffs, color); getDebugDrawer()->drawLine(start+zoffs, start+xoffs, color); getDebugDrawer()->drawLine(start+xoffs, start-zoffs, color); getDebugDrawer()->drawLine(start-zoffs, start-xoffs, color); // YZ getDebugDrawer()->drawLine(start-yoffs, start+zoffs, color); getDebugDrawer()->drawLine(start+zoffs, start+yoffs, color); getDebugDrawer()->drawLine(start+yoffs, start-zoffs, color); getDebugDrawer()->drawLine(start-zoffs, start-yoffs, color); } void btDiscreteDynamicsWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color) { // Draw a small simplex at the center of the object { btVector3 start = worldTransform.getOrigin(); getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(1,0,0), btVector3(1,0,0)); getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(0,1,0), btVector3(0,1,0)); getDebugDrawer()->drawLine(start, start+worldTransform.getBasis() * btVector3(0,0,1), btVector3(0,0,1)); } if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { const btCompoundShape* compoundShape = static_cast(shape); for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* colShape = compoundShape->getChildShape(i); debugDrawObject(worldTransform*childTrans,colShape,color); } } else { switch (shape->getShapeType()) { case SPHERE_SHAPE_PROXYTYPE: { const btSphereShape* sphereShape = static_cast(shape); btScalar radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin debugDrawSphere(radius, worldTransform, color); break; } case MULTI_SPHERE_SHAPE_PROXYTYPE: { const btMultiSphereShape* multiSphereShape = static_cast(shape); for (int i = multiSphereShape->getSphereCount()-1; i>=0;i--) { btTransform childTransform = worldTransform; childTransform.getOrigin() += multiSphereShape->getSpherePosition(i); debugDrawSphere(multiSphereShape->getSphereRadius(i), childTransform, color); } break; } case CAPSULE_SHAPE_PROXYTYPE: { const btCapsuleShape* capsuleShape = static_cast(shape); btScalar radius = capsuleShape->getRadius(); btScalar halfHeight = capsuleShape->getHalfHeight(); int upAxis = capsuleShape->getUpAxis(); btVector3 capStart(0.f,0.f,0.f); capStart[upAxis] = -halfHeight; btVector3 capEnd(0.f,0.f,0.f); capEnd[upAxis] = halfHeight; // Draw the ends { btTransform childTransform = worldTransform; childTransform.getOrigin() = worldTransform * capStart; debugDrawSphere(radius, childTransform, color); } { btTransform childTransform = worldTransform; childTransform.getOrigin() = worldTransform * capEnd; debugDrawSphere(radius, childTransform, color); } // Draw some additional lines btVector3 start = worldTransform.getOrigin(); capStart[(upAxis+1)%3] = radius; capEnd[(upAxis+1)%3] = radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color); capStart[(upAxis+1)%3] = -radius; capEnd[(upAxis+1)%3] = -radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color); capStart[(upAxis+1)%3] = 0.f; capEnd[(upAxis+1)%3] = 0.f; capStart[(upAxis+2)%3] = radius; capEnd[(upAxis+2)%3] = radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color); capStart[(upAxis+2)%3] = -radius; capEnd[(upAxis+2)%3] = -radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * capStart,start+worldTransform.getBasis() * capEnd, color); break; } case CONE_SHAPE_PROXYTYPE: { const btConeShape* coneShape = static_cast(shape); btScalar radius = coneShape->getRadius();//+coneShape->getMargin(); btScalar height = coneShape->getHeight();//+coneShape->getMargin(); btVector3 start = worldTransform.getOrigin(); int upAxis= coneShape->getConeUpIndex(); btVector3 offsetHeight(0,0,0); offsetHeight[upAxis] = height * btScalar(0.5); btVector3 offsetRadius(0,0,0); offsetRadius[(upAxis+1)%3] = radius; btVector3 offset2Radius(0,0,0); offset2Radius[(upAxis+2)%3] = radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight+offset2Radius),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight),start+worldTransform.getBasis() * (-offsetHeight-offset2Radius),color); break; } case CYLINDER_SHAPE_PROXYTYPE: { const btCylinderShape* cylinder = static_cast(shape); int upAxis = cylinder->getUpAxis(); btScalar radius = cylinder->getRadius(); btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis]; btVector3 start = worldTransform.getOrigin(); btVector3 offsetHeight(0,0,0); offsetHeight[upAxis] = halfHeight; btVector3 offsetRadius(0,0,0); offsetRadius[(upAxis+1)%3] = radius; getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight+offsetRadius),start+worldTransform.getBasis() * (-offsetHeight+offsetRadius),color); getDebugDrawer()->drawLine(start+worldTransform.getBasis() * (offsetHeight-offsetRadius),start+worldTransform.getBasis() * (-offsetHeight-offsetRadius),color); break; } case STATIC_PLANE_PROXYTYPE: { const btStaticPlaneShape* staticPlaneShape = static_cast(shape); btScalar planeConst = staticPlaneShape->getPlaneConstant(); const btVector3& planeNormal = staticPlaneShape->getPlaneNormal(); btVector3 planeOrigin = planeNormal * planeConst; btVector3 vec0,vec1; btPlaneSpace1(planeNormal,vec0,vec1); btScalar vecLen = 100.f; btVector3 pt0 = planeOrigin + vec0*vecLen; btVector3 pt1 = planeOrigin - vec0*vecLen; btVector3 pt2 = planeOrigin + vec1*vecLen; btVector3 pt3 = planeOrigin - vec1*vecLen; getDebugDrawer()->drawLine(worldTransform*pt0,worldTransform*pt1,color); getDebugDrawer()->drawLine(worldTransform*pt2,worldTransform*pt3,color); break; } default: { if (shape->isConcave()) { btConcaveShape* concaveMesh = (btConcaveShape*) shape; ///@todo pass camera, for some culling? no -> we are not a graphics lib btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30)); btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax); } if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE) { btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape; //todo: pass camera for some culling btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30)); btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); //DebugDrawcallback drawCallback; DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax); } /// for polyhedral shapes if (shape->isPolyhedral()) { btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape; int i; for (i=0;igetNumEdges();i++) { btVector3 a,b; polyshape->getEdge(i,a,b); btVector3 wa = worldTransform * a; btVector3 wb = worldTransform * b; getDebugDrawer()->drawLine(wa,wb,color); } } } } } } void btDiscreteDynamicsWorld::setConstraintSolver(btConstraintSolver* solver) { if (m_ownsConstraintSolver) { btAlignedFree( m_constraintSolver); } m_ownsConstraintSolver = false; m_constraintSolver = solver; } btConstraintSolver* btDiscreteDynamicsWorld::getConstraintSolver() { return m_constraintSolver; } int btDiscreteDynamicsWorld::getNumConstraints() const { return int(m_constraints.size()); } btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) { return m_constraints[index]; } const btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) const { return m_constraints[index]; }