#include "OgreOdePrecompiledHeaders.h" #include "OgreOdeEigenSolver.h" using namespace OgreOde; using namespace Ogre; void EigenSolver::DecrSortEigenStuff3 () { Tridiagonal3(); QLAlgorithm(); DecreasingSort(); GuaranteeRotation(); } void EigenSolver::Tridiagonal3 () { const Ogre::Real fM00 = m_kMat[0][0]; Ogre::Real fM01 = m_kMat[0][1]; Real fM02 = m_kMat[0][2]; const Ogre::Real fM11 = m_kMat[1][1]; const Ogre::Real fM12 = m_kMat[1][2]; const Ogre::Real fM22 = m_kMat[2][2]; m_afDiag[0] = fM00; m_afSubd[2] = (Real)0.0; if ( fM02 != (Real)0.0 ) { const Ogre::Real fLength = sqrtf(fM01*fM01+fM02*fM02); const Ogre::Real fInvLength = ((Real)1.0)/fLength; fM01 *= fInvLength; fM02 *= fInvLength; const Ogre::Real fQ = ((Real)2.0)*fM01*fM12+fM02*(fM22-fM11); m_afDiag[1] = fM11+fM02*fQ; m_afDiag[2] = fM22-fM02*fQ; m_afSubd[0] = fLength; m_afSubd[1] = fM12-fM01*fQ; m_kMat[0][0] = (Real)1.0; m_kMat[0][1] = (Real)0.0; m_kMat[0][2] = (Real)0.0; m_kMat[1][0] = (Real)0.0; m_kMat[1][1] = fM01; m_kMat[1][2] = fM02; m_kMat[2][0] = (Real)0.0; m_kMat[2][1] = fM02; m_kMat[2][2] = -fM01; } else { m_afDiag[1] = fM11; m_afDiag[2] = fM22; m_afSubd[0] = fM01; m_afSubd[1] = fM12; m_kMat[0][0] = (Real)1.0; m_kMat[0][1] = (Real)0.0; m_kMat[0][2] = (Real)0.0; m_kMat[1][0] = (Real)0.0; m_kMat[1][1] = (Real)1.0; m_kMat[1][2] = (Real)0.0; m_kMat[2][0] = (Real)0.0; m_kMat[2][1] = (Real)0.0; m_kMat[2][2] = (Real)1.0; } } bool EigenSolver::QLAlgorithm () { const int iMaxIter = 32; for (int i0 = 0; i0 < m_iSize; i0++) { int i1; for (i1 = 0; i1 < iMaxIter; i1++) { int i2; for (i2 = i0; i2 <= m_iSize-2; i2++) { Real fTmp = fabs(m_afDiag[i2]) + fabs(m_afDiag[i2+1]); if ( fabs(m_afSubd[i2]) + fTmp == fTmp ) break; } if ( i2 == i0 ) break; Real fG = (m_afDiag[i0+1] - m_afDiag[i0])/(((Real)2.0) * m_afSubd[i0]); Real fR = sqrtf(fG*fG+(Real)1.0); if ( fG < (Real)0.0 ) fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG-fR); else fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG+fR); Real fSin = (Real)1.0, fCos = (Real)1.0, fP = (Real)0.0; for (int i3 = i2-1; i3 >= i0; i3--) { Real fF = fSin*m_afSubd[i3]; Ogre::Real fB = fCos*m_afSubd[i3]; if ( fabs(fF) >= fabs(fG) ) { fCos = fG/fF; fR = sqrtf(fCos*fCos+(Real)1.0); m_afSubd[i3+1] = fF*fR; fSin = ((Real)1.0)/fR; fCos *= fSin; } else { fSin = fF/fG; fR = sqrtf(fSin*fSin+(Real)1.0); m_afSubd[i3+1] = fG*fR; fCos = ((Real)1.0)/fR; fSin *= fCos; } fG = m_afDiag[i3+1]-fP; fR = (m_afDiag[i3]-fG)*fSin+((Real)2.0)*fB*fCos; fP = fSin*fR; m_afDiag[i3+1] = fG+fP; fG = fCos*fR-fB; for (int i4 = 0; i4 < m_iSize; i4++) { fF = m_kMat[i4][i3+1]; m_kMat[i4][i3+1] = fSin*m_kMat[i4][i3]+fCos*fF; m_kMat[i4][i3] = fCos*m_kMat[i4][i3]-fSin*fF; } } m_afDiag[i0] -= fP; m_afSubd[i0] = fG; m_afSubd[i2] = (Real)0.0; } if ( i1 == iMaxIter ) return false; } return true; } void EigenSolver::DecreasingSort () { // sort eigenvalues in decreasing order, e[0] >= ... >= e[iSize-1] for (int i0 = 0, i1; i0 <= m_iSize-2; i0++) { // locate maximum eigenvalue i1 = i0; Real fMax = m_afDiag[i1]; int i2; for (i2 = i0+1; i2 < m_iSize; i2++) { if ( m_afDiag[i2] > fMax ) { i1 = i2; fMax = m_afDiag[i1]; } } if ( i1 != i0 ) { // swap eigenvalues m_afDiag[i1] = m_afDiag[i0]; m_afDiag[i0] = fMax; // swap eigenvectors for (i2 = 0; i2 < m_iSize; i2++) { Real fTmp = m_kMat[i2][i0]; m_kMat[i2][i0] = m_kMat[i2][i1]; m_kMat[i2][i1] = fTmp; m_bIsRotation = !m_bIsRotation; } } } } void EigenSolver::GuaranteeRotation () { if ( !m_bIsRotation ) { // change sign on the first column for (int iRow = 0; iRow < m_iSize; iRow++) m_kMat[iRow][0] = -m_kMat[iRow][0]; } } void EigenSolver::orthogonalLineFit(unsigned int vertex_count, const Ogre::Vector3* vertices,Vector3& origin,Vector3& direction) { unsigned int i; // compute average of points origin = vertices[0]; for(i = 1; i < vertex_count; ++i) origin += vertices[i]; const Ogre::Real fInvQuantity = 1.0 / vertex_count; origin *= fInvQuantity; // compute sums of products Real fSumXX = 0.0, fSumXY = 0.0, fSumXZ = 0.0; Ogre::Real fSumYY = 0.0, fSumYZ = 0.0, fSumZZ = 0.0; for (i = 0; i < vertex_count; i++) { const Ogre::Vector3 kDiff (vertices[i] - origin); fSumXX += kDiff.x*kDiff.x; fSumXY += kDiff.x*kDiff.y; fSumXZ += kDiff.x*kDiff.z; fSumYY += kDiff.y*kDiff.y; fSumYZ += kDiff.y*kDiff.z; fSumZZ += kDiff.z*kDiff.z; } fSumXX *= fInvQuantity; fSumXY *= fInvQuantity; fSumXZ *= fInvQuantity; fSumYY *= fInvQuantity; fSumYZ *= fInvQuantity; fSumZZ *= fInvQuantity; // setup the eigensolver EigenSolver kES(3); kES(0,0) = fSumYY+fSumZZ; kES(0,1) = -fSumXY; kES(0,2) = -fSumXZ; kES(1,0) = kES(0,1); kES(1,1) = fSumXX+fSumZZ; kES(1,2) = -fSumYZ; kES(2,0) = kES(0,2); kES(2,1) = kES(1,2); kES(2,2) = fSumXX+fSumYY; // compute eigenstuff, smallest eigenvalue is in last position kES.DecrSortEigenStuff3(); // unit-length direction for best-fit line kES.GetEigenvector(2,direction); } Real EigenSolver::SqrDistance(const Ogre::Vector3& rkPoint,const Ogre::Vector3& origin,const Ogre::Vector3& direction) { Vector3 kDiff(rkPoint - origin); const Ogre::Real fSqrLen = direction.squaredLength(); const Ogre::Real fT = kDiff.dotProduct(direction) / fSqrLen; kDiff -= fT*direction; return kDiff.squaredLength(); } void EigenSolver::GenerateOrthonormalBasis (Vector3& rkU, Ogre::Vector3& rkV, Ogre::Vector3& rkW, bool bUnitLengthW) { if ( !bUnitLengthW ) rkW.normalise(); Real fInvLength; if ( fabs(rkW[0]) >= fabs(rkW[1]) ) { // W.x or W.z is the largest magnitude component, swap them fInvLength = 1.0 / sqrtf(rkW[0]*rkW[0] + rkW[2]*rkW[2]); rkU[0] = -rkW[2]*fInvLength; rkU[1] = (Real)0.0; rkU[2] = +rkW[0]*fInvLength; } else { // W.y or W.z is the largest magnitude component, swap them fInvLength = 1.0 / sqrtf(rkW[1]*rkW[1] + rkW[2]*rkW[2]); rkU[0] = (Real)0.0; rkU[1] = +rkW[2]*fInvLength; rkU[2] = -rkW[1]*fInvLength; } rkV = rkW.crossProduct(rkU); } EigenSolver::EigenSolver(int iSize) { assert( iSize >= 2 ); m_iSize = iSize; m_afDiag = new Ogre::Real[m_iSize]; m_afSubd = new Ogre::Real[m_iSize]; // set according to the parity of the number of Householder reflections m_bIsRotation = ((iSize % 2) == 0); } Ogre::Real& EigenSolver::operator() (int iRow, int iCol) { return m_kMat[iRow][iCol]; } EigenSolver::~EigenSolver() { delete[] m_afSubd; delete[] m_afDiag; } void EigenSolver::GetEigenvector (int i, Ogre::Vector3& rkV) const { assert( m_iSize == 3 ); if ( m_iSize == 3 ) { for (int iRow = 0; iRow < m_iSize; iRow++) rkV[iRow] = m_kMat[iRow][i]; } else { rkV = Ogre::Vector3::ZERO; } } void EigenSolver::GaussPointsFit(unsigned int iQuantity,const Ogre::Vector3* akPoint,Vector3 &rkCenter,Vector3 akAxis[3],Real afExtent[3]) { // compute mean of points rkCenter = akPoint[0]; unsigned int i; for (i = 1; i < iQuantity; i++) rkCenter += akPoint[i]; const Ogre::Real fInvQuantity = ((Real)1.0)/iQuantity; rkCenter *= fInvQuantity; // compute covariances of points Ogre::Real fSumXX = (Real)0.0, fSumXY = (Real)0.0, fSumXZ = (Real)0.0; Ogre::Real fSumYY = (Real)0.0, fSumYZ = (Real)0.0, fSumZZ = (Real)0.0; for (i = 0; i < iQuantity; i++) { const Ogre::Vector3 kDiff (akPoint[i] - rkCenter); fSumXX += kDiff.x*kDiff.x; fSumXY += kDiff.x*kDiff.y; fSumXZ += kDiff.x*kDiff.z; fSumYY += kDiff.y*kDiff.y; fSumYZ += kDiff.y*kDiff.z; fSumZZ += kDiff.z*kDiff.z; } fSumXX *= fInvQuantity; fSumXY *= fInvQuantity; fSumXZ *= fInvQuantity; fSumYY *= fInvQuantity; fSumYZ *= fInvQuantity; fSumZZ *= fInvQuantity; // compute eigenvectors for covariance matrix EigenSolver kES(3); kES(0,0) = fSumXX; kES(0,1) = fSumXY; kES(0,2) = fSumXZ; kES(1,0) = fSumXY; kES(1,1) = fSumYY; kES(1,2) = fSumYZ; kES(2,0) = fSumXZ; kES(2,1) = fSumYZ; kES(2,2) = fSumZZ; kES.IncrSortEigenStuff3(); for (i = 0; i < 3; i++) { afExtent[i] = kES.GetEigenvalue(i); kES.GetEigenvector(i,akAxis[i]); } } Real EigenSolver::GetEigenvalue (int i) const { return m_afDiag[i]; } void EigenSolver::IncrSortEigenStuff3 () { Tridiagonal3(); QLAlgorithm(); IncreasingSort(); GuaranteeRotation(); } void EigenSolver::IncreasingSort () { // sort eigenvalues in increasing order, e[0] <= ... <= e[iSize-1] for (int i0 = 0, i1; i0 <= m_iSize-2; i0++) { // locate minimum eigenvalue i1 = i0; Ogre::Real fMin = m_afDiag[i1]; int i2; for (i2 = i0+1; i2 < m_iSize; i2++) { if ( m_afDiag[i2] < fMin ) { i1 = i2; fMin = m_afDiag[i1]; } } if ( i1 != i0 ) { // swap eigenvalues m_afDiag[i1] = m_afDiag[i0]; m_afDiag[i0] = fMin; // swap eigenvectors for (i2 = 0; i2 < m_iSize; i2++) { Ogre::Real fTmp = m_kMat[i2][i0]; m_kMat[i2][i0] = m_kMat[i2][i1]; m_kMat[i2][i1] = fTmp; m_bIsRotation = !m_bIsRotation; } } } }