/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* Hinge Constraint by Dirk Gregorius. Limits added by Marcus Hennix at Starbreeze Studios */ #ifndef HINGECONSTRAINT_H #define HINGECONSTRAINT_H #include "LinearMath/btVector3.h" #include "btJacobianEntry.h" #include "btTypedConstraint.h" class btRigidBody; /// hinge constraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space /// axis defines the orientation of the hinge axis class btHingeConstraint : public btTypedConstraint { #ifdef IN_PARALLELL_SOLVER public: #endif btJacobianEntry m_jac[3]; //3 orthogonal linear constraints btJacobianEntry m_jacAng[3]; //2 orthogonal angular constraints+ 1 for limit/motor btTransform m_rbAFrame; // constraint axii. Assumes z is hinge axis. btTransform m_rbBFrame; btScalar m_motorTargetVelocity; btScalar m_maxMotorImpulse; btScalar m_limitSoftness; btScalar m_biasFactor; btScalar m_relaxationFactor; btScalar m_lowerLimit; btScalar m_upperLimit; btScalar m_kHinge; btScalar m_limitSign; btScalar m_correction; btScalar m_accLimitImpulse; bool m_angularOnly; bool m_enableAngularMotor; bool m_solveLimit; public: btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, btVector3& axisInA,btVector3& axisInB); btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA); btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame); btHingeConstraint(btRigidBody& rbA,const btTransform& rbAFrame); btHingeConstraint(); virtual void buildJacobian(); virtual void solveConstraint(btScalar timeStep); void updateRHS(btScalar timeStep); const btRigidBody& getRigidBodyA() const { return m_rbA; } const btRigidBody& getRigidBodyB() const { return m_rbB; } void setAngularOnly(bool angularOnly) { m_angularOnly = angularOnly; } void enableAngularMotor(bool enableMotor,btScalar targetVelocity,btScalar maxMotorImpulse) { m_enableAngularMotor = enableMotor; m_motorTargetVelocity = targetVelocity; m_maxMotorImpulse = maxMotorImpulse; } void setLimit(btScalar low,btScalar high,btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f) { m_lowerLimit = low; m_upperLimit = high; m_limitSoftness = _softness; m_biasFactor = _biasFactor; m_relaxationFactor = _relaxationFactor; } btScalar getLowerLimit() const { return m_lowerLimit; } btScalar getUpperLimit() const { return m_upperLimit; } btScalar getHingeAngle(); const btTransform& getAFrame() { return m_rbAFrame; }; const btTransform& getBFrame() { return m_rbBFrame; }; inline int getSolveLimit() { return m_solveLimit; } inline btScalar getLimitSign() { return m_limitSign; } inline bool getAngularOnly() { return m_angularOnly; } inline bool getEnableAngularMotor() { return m_enableAngularMotor; } inline btScalar getMotorTargetVelosity() { return m_motorTargetVelocity; } inline btScalar getMaxMotorImpulse() { return m_maxMotorImpulse; } }; #endif //HINGECONSTRAINT_H