/* this is code that was once useful but has now been obseleted. this file should not be compiled as part of ODE! */ //*************************************************************************** // intersect a line segment with a plane extern "C" int dClipLineToBox (const dVector3 p1, const dVector3 p2, const dVector3 p, const dMatrix3 R, const dVector3 side) { // compute the start and end of the line (p1 and p2) relative to the box. // we will do all subsequent computations in this box-relative coordinate // system. we have to do a translation and rotation for each point. dVector3 tmp,s,e; tmp[0] = p1[0] - p[0]; tmp[1] = p1[1] - p[1]; tmp[2] = p1[2] - p[2]; dMULTIPLY1_331 (s,R,tmp); tmp[0] = p2[0] - p[0]; tmp[1] = p2[1] - p[1]; tmp[2] = p2[2] - p[2]; dMULTIPLY1_331 (e,R,tmp); // compute the vector 'v' from the start point to the end point dVector3 v; v[0] = e[0] - s[0]; v[1] = e[1] - s[1]; v[2] = e[2] - s[2]; // a point on the line is defined by the parameter 't'. t=0 corresponds // to the start of the line, t=1 corresponds to the end of the line. // we will clip the line to the box by finding the range of t where a // point on the line is inside the box. the currently known bounds for // t and tlo..thi. dReal tlo=0,thi=1; // clip in the X/Y/Z direction for (int i=0; i<3; i++) { // first adjust s,e for the current t range. this is redundant for the // first iteration, but never mind. e[i] = s[i] + thi*v[i]; s[i] = s[i] + tlo*v[i]; // compute where t intersects the positive and negative sides. dReal tp = ( side[i] - s[i])/v[i]; // @@@ handle case where denom=0 dReal tm = (-side[i] - s[i])/v[i]; // handle 9 intersection cases if (s[i] <= -side[i]) { tlo = tm; if (e[i] <= -side[i]) return 0; else if (e[i] >= side[i]) thi = tp; } else if (s[i] <= side[i]) { if (e[i] <= -side[i]) thi = tm; else if (e[i] >= side[i]) thi = tp; } else { tlo = tp; if (e[i] <= -side[i]) thi = tm; else if (e[i] >= side[i]) return 0; } } //... @@@ AT HERE @@@ return 1; } //*************************************************************************** // a nice try at C-B collision. unfortunately it doesn't work. the logic // for testing for line-box intersection is correct, but unfortunately the // closest-point distance estimates are often too large. as a result contact // points are placed incorrectly. int dCollideCB (const dxGeom *o1, const dxGeom *o2, int flags, dContactGeom *contact, int skip) { int i; dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->_class->num == dCCylinderClass); dIASSERT (o2->_class->num == dBoxClass); contact->g1 = const_cast (o1); contact->g2 = const_cast (o2); dxCCylinder *cyl = (dxCCylinder*) CLASSDATA(o1); dxBox *box = (dxBox*) CLASSDATA(o2); // get p1,p2 = cylinder axis endpoints, get radius dVector3 p1,p2; dReal clen = cyl->lz * REAL(0.5); p1[0] = o1->pos[0] + clen * o1->R[2]; p1[1] = o1->pos[1] + clen * o1->R[6]; p1[2] = o1->pos[2] + clen * o1->R[10]; p2[0] = o1->pos[0] - clen * o1->R[2]; p2[1] = o1->pos[1] - clen * o1->R[6]; p2[2] = o1->pos[2] - clen * o1->R[10]; dReal radius = cyl->radius; // copy out box center, rotation matrix, and side array dReal *c = o2->pos; dReal *R = o2->R; dReal *side = box->side; // compute the start and end of the line (p1 and p2) relative to the box. // we will do all subsequent computations in this box-relative coordinate // system. we have to do a translation and rotation for each point. dVector3 tmp3,s,e; tmp3[0] = p1[0] - c[0]; tmp3[1] = p1[1] - c[1]; tmp3[2] = p1[2] - c[2]; dMULTIPLY1_331 (s,R,tmp3); tmp3[0] = p2[0] - c[0]; tmp3[1] = p2[1] - c[1]; tmp3[2] = p2[2] - c[2]; dMULTIPLY1_331 (e,R,tmp3); // compute the vector 'v' from the start point to the end point dVector3 v; v[0] = e[0] - s[0]; v[1] = e[1] - s[1]; v[2] = e[2] - s[2]; // compute the half-sides of the box dReal S0 = side[0] * REAL(0.5); dReal S1 = side[1] * REAL(0.5); dReal S2 = side[2] * REAL(0.5); // compute the size of the bounding box around the line segment dReal B0 = dFabs (v[0]); dReal B1 = dFabs (v[1]); dReal B2 = dFabs (v[2]); // for all 6 separation axes, measure the penetration depth. if any depth is // less than 0 then the objects don't penetrate at all so we can just // return 0. find the axis with the smallest depth, and record its normal. // note: normalR is set to point to a column of R if that is the smallest // depth normal so far. otherwise normalR is 0 and normalC is set to a // vector relative to the box. invert_normal is 1 if the sign of the normal // should be flipped. dReal depth,trial_depth,tmp,length; const dReal *normalR=0; dVector3 normalC; int invert_normal = 0; int code = 0; // 0=no contact, 1-3=face contact, 4-6=edge contact depth = dInfinity; // look at face-normal axes #undef TEST #define TEST(center,depth_expr,norm,contact_code) \ tmp = (center); \ trial_depth = radius + REAL(0.5) * ((depth_expr) - dFabs(tmp)); \ if (trial_depth < 0) return 0; \ if (trial_depth < depth) { \ depth = trial_depth; \ normalR = (norm); \ invert_normal = (tmp < 0); \ code = contact_code; \ } TEST (s[0]+e[0], side[0] + B0, R+0, 1); TEST (s[1]+e[1], side[1] + B1, R+1, 2); TEST (s[2]+e[2], side[2] + B2, R+2, 3); // look at v x box-edge axes #undef TEST #define TEST(box_radius,line_offset,nx,ny,nz,contact_code) \ tmp = (line_offset); \ trial_depth = (box_radius) - dFabs(tmp); \ length = dSqrt ((nx)*(nx) + (ny)*(ny) + (nz)*(nz)); \ if (length > 0) { \ length = dRecip(length); \ trial_depth = trial_depth * length + radius; \ if (trial_depth < 0) return 0; \ if (trial_depth < depth) { \ depth = trial_depth; \ normalR = 0; \ normalC[0] = (nx)*length; \ normalC[1] = (ny)*length; \ normalC[2] = (nz)*length; \ invert_normal = (tmp < 0); \ code = contact_code; \ } \ } TEST (B2*S1+B1*S2,v[1]*s[2]-v[2]*s[1], 0,-v[2],v[1], 4); TEST (B2*S0+B0*S2,v[2]*s[0]-v[0]*s[2], v[2],0,-v[0], 5); TEST (B1*S0+B0*S1,v[0]*s[1]-v[1]*s[0], -v[1],v[0],0, 6); #undef TEST // if we get to this point, the box and ccylinder interpenetrate. // compute the normal in global coordinates. dReal *normal = contact[0].normal; if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } // set the depth contact[0].depth = depth; if (code == 0) { return 0; // should never get here } else if (code >= 4) { // handle edge contacts // find an endpoint q1 on the intersecting edge of the box dVector3 q1; dReal sign[3]; for (i=0; i<3; i++) q1[i] = c[i]; sign[0] = (dDOT14(normal,R+0) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) q1[i] += sign[0] * S0 * R[i*4]; sign[1] = (dDOT14(normal,R+1) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) q1[i] += sign[1] * S1 * R[i*4+1]; sign[2] = (dDOT14(normal,R+2) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) q1[i] += sign[2] * S2 * R[i*4+2]; // find the other endpoint q2 of the intersecting edge dVector3 q2; for (i=0; i<3; i++) q2[i] = q1[i] - R[code-4 + i*4] * (sign[code-4] * side[code-4]); // determine the closest point between the box edge and the line segment dVector3 cp1,cp2; dClosestLineSegmentPoints (q1,q2, p1,p2, cp1,cp2); for (i=0; i<3; i++) contact[0].pos[i] = cp1[i] - REAL(0.5)*normal[i]*depth; return 1; } else { // handle face contacts. // @@@ temporary: make deepest vertex on the line the contact point. // @@@ this kind of works, but we sometimes need two contact points for // @@@ stability. // compute 'v' in global coordinates dVector3 gv; for (i=0; i<3; i++) gv[i] = p2[i] - p1[i]; if (dDOT (normal,gv) > 0) { for (i=0; i<3; i++) contact[0].pos[i] = p1[i] + (depth*REAL(0.5)-radius)*normal[i]; } else { for (i=0; i<3; i++) contact[0].pos[i] = p2[i] + (depth*REAL(0.5)-radius)*normal[i]; } return 1; } } //*************************************************************************** // this function works, it's just not being used for anything at the moment: // given a box (R,side), `R' is the rotation matrix for the box, and `side' // is a vector of x/y/z side lengths, return the size of the interval of the // box projected along the given axis. if the axis has unit length then the // return value will be the actual diameter, otherwise the result will be // scaled by the axis length. static inline dReal boxDiameter (const dMatrix3 R, const dVector3 side, const dVector3 axis) { dVector3 q; dMULTIPLY1_331 (q,R,axis); // transform axis to body-relative return dFabs(q[0])*side[0] + dFabs(q[1])*side[1] + dFabs(q[2])*side[2]; } //*************************************************************************** // the old capped cylinder to capped cylinder collision code. this fails to // detect cap-to-cap contact points when the cylinder axis are aligned, but // other that that it is pretty robust. // this returns at most one contact point when the two cylinder's axes are not // aligned, and at most two (for stability) when they are aligned. // the algorithm minimizes the distance between two "sample spheres" that are // positioned along the cylinder axes according to: // sphere1 = pos1 + alpha1 * axis1 // sphere2 = pos2 + alpha2 * axis2 // alpha1 and alpha2 are limited to +/- half the length of the cylinders. // the algorithm works by finding a solution that has both alphas free, or // a solution that has one or both alphas fixed to the ends of the cylinder. int dCollideCCylinderCCylinder (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { int i; const dReal tolerance = REAL(1e-5); dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCCylinderClass); dIASSERT (o2->type == dCCylinderClass); dxCCylinder *cyl1 = (dxCCylinder*) o1; dxCCylinder *cyl2 = (dxCCylinder*) o2; contact->g1 = o1; contact->g2 = o2; // copy out some variables, for convenience dReal lz1 = cyl1->lz * REAL(0.5); dReal lz2 = cyl2->lz * REAL(0.5); dReal *pos1 = o1->pos; dReal *pos2 = o2->pos; dReal axis1[3],axis2[3]; axis1[0] = o1->R[2]; axis1[1] = o1->R[6]; axis1[2] = o1->R[10]; axis2[0] = o2->R[2]; axis2[1] = o2->R[6]; axis2[2] = o2->R[10]; dReal alpha1,alpha2,sphere1[3],sphere2[3]; int fix1 = 0; // 0 if alpha1 is free, +/-1 to fix at +/- lz1 int fix2 = 0; // 0 if alpha2 is free, +/-1 to fix at +/- lz2 for (int count=0; count<9; count++) { // find a trial solution by fixing or not fixing the alphas if (fix1) { if (fix2) { // alpha1 and alpha2 are fixed, so the solution is easy if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; } else { // fix alpha1 but let alpha2 be free if (fix1 > 0) alpha1 = lz1; else alpha1 = -lz1; for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; alpha2 = (axis2[0]*(sphere1[0]-pos2[0]) + axis2[1]*(sphere1[1]-pos2[1]) + axis2[2]*(sphere1[2]-pos2[2])); for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; } } else { if (fix2) { // fix alpha2 but let alpha1 be free if (fix2 > 0) alpha2 = lz2; else alpha2 = -lz2; for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; alpha1 = (axis1[0]*(sphere2[0]-pos1[0]) + axis1[1]*(sphere2[1]-pos1[1]) + axis1[2]*(sphere2[2]-pos1[2])); for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; } else { // let alpha1 and alpha2 be free // compute determinant of d(d^2)\d(alpha) jacobian dReal a1a2 = dDOT (axis1,axis2); dReal det = REAL(1.0)-a1a2*a1a2; if (det < tolerance) { // the cylinder axes (almost) parallel, so we will generate up to two // contacts. the solution matrix is rank deficient so alpha1 and // alpha2 are related by: // alpha2 = alpha1 + (pos1-pos2)'*axis1 (if axis1==axis2) // or alpha2 = -(alpha1 + (pos1-pos2)'*axis1) (if axis1==-axis2) // first compute where the two cylinders overlap in alpha1 space: if (a1a2 < 0) { axis2[0] = -axis2[0]; axis2[1] = -axis2[1]; axis2[2] = -axis2[2]; } dReal q[3]; for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i]; dReal k = dDOT (axis1,q); dReal a1lo = -lz1; dReal a1hi = lz1; dReal a2lo = -lz2 - k; dReal a2hi = lz2 - k; dReal lo = (a1lo > a2lo) ? a1lo : a2lo; dReal hi = (a1hi < a2hi) ? a1hi : a2hi; if (lo <= hi) { int num_contacts = flags & NUMC_MASK; if (num_contacts >= 2 && lo < hi) { // generate up to two contacts. if one of those contacts is // not made, fall back on the one-contact strategy. for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i]; int n1 = dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius,contact); if (n1) { for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i]; dContactGeom *c2 = CONTACT(contact,skip); int n2 = dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius, c2); if (n2) { c2->g1 = o1; c2->g2 = o2; return 2; } } } // just one contact to generate, so put it in the middle of // the range alpha1 = (lo + hi) * REAL(0.5); alpha2 = alpha1 + k; for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; return dCollideSpheres (sphere1,cyl1->radius, sphere2,cyl2->radius,contact); } else return 0; } det = REAL(1.0)/det; dReal delta[3]; for (i=0; i<3; i++) delta[i] = pos1[i] - pos2[i]; dReal q1 = dDOT (delta,axis1); dReal q2 = dDOT (delta,axis2); alpha1 = det*(a1a2*q2-q1); alpha2 = det*(q2-a1a2*q1); for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i]; for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i]; } } // if the alphas are outside their allowed ranges then fix them and // try again if (fix1==0) { if (alpha1 < -lz1) { fix1 = -1; continue; } if (alpha1 > lz1) { fix1 = 1; continue; } } if (fix2==0) { if (alpha2 < -lz2) { fix2 = -1; continue; } if (alpha2 > lz2) { fix2 = 1; continue; } } // unfix the alpha variables if the local distance gradient indicates // that we are not yet at the minimum dReal tmp[3]; for (i=0; i<3; i++) tmp[i] = sphere1[i] - sphere2[i]; if (fix1) { dReal gradient = dDOT (tmp,axis1); if ((fix1 > 0 && gradient > 0) || (fix1 < 0 && gradient < 0)) { fix1 = 0; continue; } } if (fix2) { dReal gradient = -dDOT (tmp,axis2); if ((fix2 > 0 && gradient > 0) || (fix2 < 0 && gradient < 0)) { fix2 = 0; continue; } } return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact); } // if we go through the loop too much, then give up. we should NEVER get to // this point (i hope). dMessage (0,"dCollideCC(): too many iterations"); return 0; }