/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ #include "objects.h" #include "joint.h" #include #include #include #include #include #include #include "lcp.h" //**************************************************************************** // misc defines #define FAST_FACTOR //#define TIMING #define ALLOCA dALLOCA16 //**************************************************************************** // debugging - comparison of various vectors and matrices produced by the // slow and fast versions of the stepper. //#define COMPARE_METHODS #ifdef COMPARE_METHODS #include "testing.h" dMatrixComparison comparator; #endif //**************************************************************************** // special matrix multipliers // this assumes the 4th and 8th rows of B and C are zero. static void Multiply2_p8r (dReal *A, dReal *B, dReal *C, int p, int r, int Askip) { int i,j; dReal sum,*bb,*cc; dIASSERT (p>0 && r>0 && A && B && C); bb = B; for (i=p; i; i--) { cc = C; for (j=r; j; j--) { sum = bb[0]*cc[0]; sum += bb[1]*cc[1]; sum += bb[2]*cc[2]; sum += bb[4]*cc[4]; sum += bb[5]*cc[5]; sum += bb[6]*cc[6]; *(A++) = sum; cc += 8; } A += Askip - r; bb += 8; } } // this assumes the 4th and 8th rows of B and C are zero. static void MultiplyAdd2_p8r (dReal *A, dReal *B, dReal *C, int p, int r, int Askip) { int i,j; dReal sum,*bb,*cc; dIASSERT (p>0 && r>0 && A && B && C); bb = B; for (i=p; i; i--) { cc = C; for (j=r; j; j--) { sum = bb[0]*cc[0]; sum += bb[1]*cc[1]; sum += bb[2]*cc[2]; sum += bb[4]*cc[4]; sum += bb[5]*cc[5]; sum += bb[6]*cc[6]; *(A++) += sum; cc += 8; } A += Askip - r; bb += 8; } } // this assumes the 4th and 8th rows of B are zero. static void Multiply0_p81 (dReal *A, dReal *B, dReal *C, int p) { int i; dIASSERT (p>0 && A && B && C); dReal sum; for (i=p; i; i--) { sum = B[0]*C[0]; sum += B[1]*C[1]; sum += B[2]*C[2]; sum += B[4]*C[4]; sum += B[5]*C[5]; sum += B[6]*C[6]; *(A++) = sum; B += 8; } } // this assumes the 4th and 8th rows of B are zero. static void MultiplyAdd0_p81 (dReal *A, dReal *B, dReal *C, int p) { int i; dIASSERT (p>0 && A && B && C); dReal sum; for (i=p; i; i--) { sum = B[0]*C[0]; sum += B[1]*C[1]; sum += B[2]*C[2]; sum += B[4]*C[4]; sum += B[5]*C[5]; sum += B[6]*C[6]; *(A++) += sum; B += 8; } } // this assumes the 4th and 8th rows of B are zero. static void MultiplyAdd1_8q1 (dReal *A, dReal *B, dReal *C, int q) { int k; dReal sum; dIASSERT (q>0 && A && B && C); sum = 0; for (k=0; k0 && A && B && C); sum = 0; for (k=0; kpos[j] += h * b->lvel[j]; if (b->flags & dxBodyFlagFiniteRotation) { dVector3 irv; // infitesimal rotation vector dQuaternion q; // quaternion for finite rotation if (b->flags & dxBodyFlagFiniteRotationAxis) { // split the angular velocity vector into a component along the finite // rotation axis, and a component orthogonal to it. dVector3 frv,irv; // finite rotation vector dReal k = dDOT (b->finite_rot_axis,b->avel); frv[0] = b->finite_rot_axis[0] * k; frv[1] = b->finite_rot_axis[1] * k; frv[2] = b->finite_rot_axis[2] * k; irv[0] = b->avel[0] - frv[0]; irv[1] = b->avel[1] - frv[1]; irv[2] = b->avel[2] - frv[2]; // make a rotation quaternion q that corresponds to frv * h. // compare this with the full-finite-rotation case below. h *= REAL(0.5); dReal theta = k * h; q[0] = dCos(theta); dReal s = sinc(theta) * h; q[1] = frv[0] * s; q[2] = frv[1] * s; q[3] = frv[2] * s; } else { // make a rotation quaternion q that corresponds to w * h dReal wlen = dSqrt (b->avel[0]*b->avel[0] + b->avel[1]*b->avel[1] + b->avel[2]*b->avel[2]); h *= REAL(0.5); dReal theta = wlen * h; q[0] = dCos(theta); dReal s = sinc(theta) * h; q[1] = b->avel[0] * s; q[2] = b->avel[1] * s; q[3] = b->avel[2] * s; } // do the finite rotation dQuaternion q2; dQMultiply0 (q2,q,b->q); for (j=0; j<4; j++) b->q[j] = q2[j]; // do the infitesimal rotation if required if (b->flags & dxBodyFlagFiniteRotationAxis) { dReal dq[4]; dWtoDQ (irv,b->q,dq); for (j=0; j<4; j++) b->q[j] += h * dq[j]; } } else { // the normal way - do an infitesimal rotation dReal dq[4]; dWtoDQ (b->avel,b->q,dq); for (j=0; j<4; j++) b->q[j] += h * dq[j]; } // normalize the quaternion and convert it to a rotation matrix dNormalize4 (b->q); dQtoR (b->q,b->R); // notify all attached geoms that this body has moved for (dxGeom *geom = b->geom; geom; geom = dGeomGetBodyNext (geom)) dGeomMoved (geom); } //**************************************************************************** // the slow, but sure way // note that this does not do any joint feedback! // given lists of bodies and joints that form an island, perform a first // order timestep. // // `body' is the body array, `nb' is the size of the array. // `_joint' is the body array, `nj' is the size of the array. void dInternalStepIsland_x1 (dxWorld *world, dxBody * const *body, int nb, dxJoint * const *_joint, int nj, dReal stepsize) { int i,j,k; int n6 = 6*nb; # ifdef TIMING dTimerStart("preprocessing"); # endif // number all bodies in the body list - set their tag values for (i=0; itag = i; // make a local copy of the joint array, because we might want to modify it. // (the "dxJoint *const*" declaration says we're allowed to modify the joints // but not the joint array, because the caller might need it unchanged). dxJoint **joint = (dxJoint**) ALLOCA (nj * sizeof(dxJoint*)); memcpy (joint,_joint,nj * sizeof(dxJoint*)); // for all bodies, compute the inertia tensor and its inverse in the global // frame, and compute the rotational force and add it to the torque // accumulator. // @@@ check computation of rotational force. dReal *I = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); dReal *invI = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); //dSetZero (I,3*nb*4); //dSetZero (invI,3*nb*4); for (i=0; imass.I,body[i]->R); dMULTIPLY0_333 (I+i*12,body[i]->R,tmp); // compute inverse inertia tensor in global frame dMULTIPLY2_333 (tmp,body[i]->invI,body[i]->R); dMULTIPLY0_333 (invI+i*12,body[i]->R,tmp); // compute rotational force dMULTIPLY0_331 (tmp,I+i*12,body[i]->avel); dCROSS (body[i]->tacc,-=,body[i]->avel,tmp); } // add the gravity force to all bodies for (i=0; iflags & dxBodyNoGravity)==0) { body[i]->facc[0] += body[i]->mass.mass * world->gravity[0]; body[i]->facc[1] += body[i]->mass.mass * world->gravity[1]; body[i]->facc[2] += body[i]->mass.mass * world->gravity[2]; } } // get m = total constraint dimension, nub = number of unbounded variables. // create constraint offset array and number-of-rows array for all joints. // the constraints are re-ordered as follows: the purely unbounded // constraints, the mixed unbounded + LCP constraints, and last the purely // LCP constraints. // // joints with m=0 are inactive and are removed from the joints array // entirely, so that the code that follows does not consider them. int m = 0; dxJoint::Info1 *info = (dxJoint::Info1*) ALLOCA (nj*sizeof(dxJoint::Info1)); int *ofs = (int*) ALLOCA (nj*sizeof(int)); for (i=0, j=0; jvtable->getInfo1 (joint[j],info+i); dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m); if (info[i].m > 0) { joint[i] = joint[j]; i++; } } nj = i; // the purely unbounded constraints for (i=0; i 0 && info[i].nub < info[i].m) { ofs[i] = m; m += info[i].m; } // the purely LCP constraints for (i=0; iinvMass; MM[nskip+1] = body[i]->invMass; MM[2*nskip+2] = body[i]->invMass; MM += 3*nskip+3; for (j=0; j<3; j++) for (k=0; k<3; k++) { MM[j*nskip+k] = invI[i*12+j*4+k]; } } // assemble some body vectors: fe = external forces, v = velocities dReal *fe = (dReal*) ALLOCA (n6 * sizeof(dReal)); dReal *v = (dReal*) ALLOCA (n6 * sizeof(dReal)); //dSetZero (fe,n6); //dSetZero (v,n6); for (i=0; ifacc[j]; for (j=0; j<3; j++) fe[i*6+3+j] = body[i]->tacc[j]; for (j=0; j<3; j++) v[i*6+j] = body[i]->lvel[j]; for (j=0; j<3; j++) v[i*6+3+j] = body[i]->avel[j]; } // this will be set to the velocity update dReal *vnew = (dReal*) ALLOCA (n6 * sizeof(dReal)); dSetZero (vnew,n6); // if there are constraints, compute cforce if (m > 0) { // create a constraint equation right hand side vector `c', a constraint // force mixing vector `cfm', and LCP low and high bound vectors, and an // 'findex' vector. dReal *c = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *cfm = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *lo = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *hi = (dReal*) ALLOCA (m*sizeof(dReal)); int *findex = (int*) alloca (m*sizeof(int)); dSetZero (c,m); dSetValue (cfm,m,world->global_cfm); dSetValue (lo,m,-dInfinity); dSetValue (hi,m, dInfinity); for (i=0; iglobal_erp; for (i=0; inode[0].body->tag; Jinfo.J1a = Jinfo.J1l + 3; if (joint[i]->node[1].body) { Jinfo.J2l = J + nskip*ofs[i] + 6*joint[i]->node[1].body->tag; Jinfo.J2a = Jinfo.J2l + 3; } else { Jinfo.J2l = 0; Jinfo.J2a = 0; } Jinfo.c = c + ofs[i]; Jinfo.cfm = cfm + ofs[i]; Jinfo.lo = lo + ofs[i]; Jinfo.hi = hi + ofs[i]; Jinfo.findex = findex + ofs[i]; joint[i]->vtable->getInfo2 (joint[i],&Jinfo); // adjust returned findex values for global index numbering for (j=0; j= 0) findex[ofs[i] + j] += ofs[i]; } } // compute A = J*invM*J' # ifdef TIMING dTimerNow ("compute A"); # endif dReal *JinvM = (dReal*) ALLOCA (m*nskip*sizeof(dReal)); //dSetZero (JinvM,m*nskip); dMultiply0 (JinvM,J,invM,m,n6,n6); int mskip = dPAD(m); dReal *A = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); //dSetZero (A,m*mskip); dMultiply2 (A,JinvM,J,m,n6,m); // add cfm to the diagonal of A for (i=0; ilvel[j] = vnew[i*6+j]; for (j=0; j<3; j++) body[i]->avel[j] = vnew[i*6+3+j]; } // update the position and orientation from the new linear/angular velocity // (over the given timestep) # ifdef TIMING dTimerNow ("update position"); # endif for (i=0; ifacc[0] = 0; body[i]->facc[1] = 0; body[i]->facc[2] = 0; body[i]->facc[3] = 0; body[i]->tacc[0] = 0; body[i]->tacc[1] = 0; body[i]->tacc[2] = 0; body[i]->tacc[3] = 0; } # ifdef TIMING dTimerEnd(); if (m > 0) dTimerReport (stdout,1); # endif } //**************************************************************************** // an optimized version of dInternalStepIsland1() void dInternalStepIsland_x2 (dxWorld *world, dxBody * const *body, int nb, dxJoint * const *_joint, int nj, dReal stepsize) { int i,j,k; # ifdef TIMING dTimerStart("preprocessing"); # endif dReal stepsize1 = dRecip(stepsize); // number all bodies in the body list - set their tag values for (i=0; itag = i; // make a local copy of the joint array, because we might want to modify it. // (the "dxJoint *const*" declaration says we're allowed to modify the joints // but not the joint array, because the caller might need it unchanged). dxJoint **joint = (dxJoint**) ALLOCA (nj * sizeof(dxJoint*)); memcpy (joint,_joint,nj * sizeof(dxJoint*)); // for all bodies, compute the inertia tensor and its inverse in the global // frame, and compute the rotational force and add it to the torque // accumulator. I and invI are vertically stacked 3x4 matrices, one per body. // @@@ check computation of rotational force. dReal *I = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); dReal *invI = (dReal*) ALLOCA (3*nb*4 * sizeof(dReal)); //dSetZero (I,3*nb*4); //dSetZero (invI,3*nb*4); for (i=0; imass.I,body[i]->R); dMULTIPLY0_333 (I+i*12,body[i]->R,tmp); // compute inverse inertia tensor in global frame dMULTIPLY2_333 (tmp,body[i]->invI,body[i]->R); dMULTIPLY0_333 (invI+i*12,body[i]->R,tmp); // compute rotational force dMULTIPLY0_331 (tmp,I+i*12,body[i]->avel); dCROSS (body[i]->tacc,-=,body[i]->avel,tmp); } // add the gravity force to all bodies for (i=0; iflags & dxBodyNoGravity)==0) { body[i]->facc[0] += body[i]->mass.mass * world->gravity[0]; body[i]->facc[1] += body[i]->mass.mass * world->gravity[1]; body[i]->facc[2] += body[i]->mass.mass * world->gravity[2]; } } // get m = total constraint dimension, nub = number of unbounded variables. // create constraint offset array and number-of-rows array for all joints. // the constraints are re-ordered as follows: the purely unbounded // constraints, the mixed unbounded + LCP constraints, and last the purely // LCP constraints. this assists the LCP solver to put all unbounded // variables at the start for a quick factorization. // // joints with m=0 are inactive and are removed from the joints array // entirely, so that the code that follows does not consider them. // also number all active joints in the joint list (set their tag values). // inactive joints receive a tag value of -1. int m = 0; dxJoint::Info1 *info = (dxJoint::Info1*) ALLOCA (nj*sizeof(dxJoint::Info1)); int *ofs = (int*) ALLOCA (nj*sizeof(int)); for (i=0, j=0; jvtable->getInfo1 (joint[j],info+i); dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m); if (info[i].m > 0) { joint[i] = joint[j]; joint[i]->tag = i; i++; } else { joint[j]->tag = -1; } } nj = i; // the purely unbounded constraints for (i=0; i 0 && info[i].nub < info[i].m) { ofs[i] = m; m += info[i].m; } // the purely LCP constraints for (i=0; i 0) { // create a constraint equation right hand side vector `c', a constraint // force mixing vector `cfm', and LCP low and high bound vectors, and an // 'findex' vector. dReal *c = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *cfm = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *lo = (dReal*) ALLOCA (m*sizeof(dReal)); dReal *hi = (dReal*) ALLOCA (m*sizeof(dReal)); int *findex = (int*) alloca (m*sizeof(int)); dSetZero (c,m); dSetValue (cfm,m,world->global_cfm); dSetValue (lo,m,-dInfinity); dSetValue (hi,m, dInfinity); for (i=0; iglobal_erp; for (i=0; ivtable->getInfo2 (joint[i],&Jinfo); // adjust returned findex values for global index numbering for (j=0; j= 0) findex[ofs[i] + j] += ofs[i]; } } // compute A = J*invM*J'. first compute JinvM = J*invM. this has the same // format as J so we just go through the constraints in J multiplying by // the appropriate scalars and matrices. # ifdef TIMING dTimerNow ("compute A"); # endif dReal *JinvM = (dReal*) ALLOCA (2*m*8*sizeof(dReal)); dSetZero (JinvM,2*m*8); for (i=0; inode[0].body->tag; dReal body_invMass = body[b]->invMass; dReal *body_invI = invI + b*12; dReal *Jsrc = J + 2*8*ofs[i]; dReal *Jdst = JinvM + 2*8*ofs[i]; for (j=info[i].m-1; j>=0; j--) { for (k=0; k<3; k++) Jdst[k] = Jsrc[k] * body_invMass; dMULTIPLY0_133 (Jdst+4,Jsrc+4,body_invI); Jsrc += 8; Jdst += 8; } if (joint[i]->node[1].body) { b = joint[i]->node[1].body->tag; body_invMass = body[b]->invMass; body_invI = invI + b*12; for (j=info[i].m-1; j>=0; j--) { for (k=0; k<3; k++) Jdst[k] = Jsrc[k] * body_invMass; dMULTIPLY0_133 (Jdst+4,Jsrc+4,body_invI); Jsrc += 8; Jdst += 8; } } } // now compute A = JinvM * J'. A's rows and columns are grouped by joint, // i.e. in the same way as the rows of J. block (i,j) of A is only nonzero // if joints i and j have at least one body in common. this fact suggests // the algorithm used to fill A: // // for b = all bodies // n = number of joints attached to body b // for i = 1..n // for j = i+1..n // ii = actual joint number for i // jj = actual joint number for j // // (ii,jj) will be set to all pairs of joints around body b // compute blockwise: A(ii,jj) += JinvM(ii) * J(jj)' // // this algorithm catches all pairs of joints that have at least one body // in common. it does not compute the diagonal blocks of A however - // another similar algorithm does that. int mskip = dPAD(m); dReal *A = (dReal*) ALLOCA (m*mskip*sizeof(dReal)); dSetZero (A,m*mskip); for (i=0; ifirstjoint; n1; n1=n1->next) { for (dxJointNode *n2=n1->next; n2; n2=n2->next) { // get joint numbers and ensure ofs[j1] >= ofs[j2] int j1 = n1->joint->tag; int j2 = n2->joint->tag; if (ofs[j1] < ofs[j2]) { int tmp = j1; j1 = j2; j2 = tmp; } // if either joint was tagged as -1 then it is an inactive (m=0) // joint that should not be considered if (j1==-1 || j2==-1) continue; // determine if body i is the 1st or 2nd body of joints j1 and j2 int jb1 = (joint[j1]->node[1].body == body[i]); int jb2 = (joint[j2]->node[1].body == body[i]); // jb1/jb2 must be 0 for joints with only one body dIASSERT(joint[j1]->node[1].body || jb1==0); dIASSERT(joint[j2]->node[1].body || jb2==0); // set block of A MultiplyAdd2_p8r (A + ofs[j1]*mskip + ofs[j2], JinvM + 2*8*ofs[j1] + jb1*8*info[j1].m, J + 2*8*ofs[j2] + jb2*8*info[j2].m, info[j1].m,info[j2].m, mskip); } } } // compute diagonal blocks of A for (i=0; inode[1].body) { MultiplyAdd2_p8r (A + ofs[i]*(mskip+1), JinvM + 2*8*ofs[i] + 8*info[i].m, J + 2*8*ofs[i] + 8*info[i].m, info[i].m,info[i].m, mskip); } } // add cfm to the diagonal of A for (i=0; iinvMass; dReal *body_invI = invI + i*12; for (j=0; j<3; j++) tmp1[i*8+j] = body[i]->facc[j] * body_invMass + body[i]->lvel[j] * stepsize1; dMULTIPLY0_331 (tmp1 + i*8 + 4,body_invI,body[i]->tacc); for (j=0; j<3; j++) tmp1[i*8+4+j] += body[i]->avel[j] * stepsize1; } // put J*tmp1 into rhs dReal *rhs = (dReal*) ALLOCA (m * sizeof(dReal)); //dSetZero (rhs,m); for (i=0; inode[0].body->tag, info[i].m); if (joint[i]->node[1].body) { MultiplyAdd0_p81 (rhs+ofs[i],JJ + 8*info[i].m, tmp1 + 8*joint[i]->node[1].body->tag, info[i].m); } } // complete rhs for (i=0; inode[0].body; dxBody* b2 = joint[i]->node[1].body; dJointFeedback *fb = joint[i]->feedback; /******************** breakable joint contribution ***********************/ // this saves us a few dereferences dxJointBreakInfo *jBI = joint[i]->breakInfo; // we need joint feedback if the joint is breakable or if the user // requested feedback. if (jBI||fb) { // we need feedback on the amount of force that this joint is // applying to the bodies. we use a slightly slower computation // that splits out the force components and puts them in the // feedback structure. dJointFeedback temp_fb; // temporary storage for joint feedback dReal data1[8],data2[8]; Multiply1_8q1 (data1, JJ, lambda+ofs[i], info[i].m); dReal *cf1 = cforce + 8*b1->tag; cf1[0] += (temp_fb.f1[0] = data1[0]); cf1[1] += (temp_fb.f1[1] = data1[1]); cf1[2] += (temp_fb.f1[2] = data1[2]); cf1[4] += (temp_fb.t1[0] = data1[4]); cf1[5] += (temp_fb.t1[1] = data1[5]); cf1[6] += (temp_fb.t1[2] = data1[6]); if (b2) { Multiply1_8q1 (data2, JJ + 8*info[i].m, lambda+ofs[i], info[i].m); dReal *cf2 = cforce + 8*b2->tag; cf2[0] += (temp_fb.f2[0] = data2[0]); cf2[1] += (temp_fb.f2[1] = data2[1]); cf2[2] += (temp_fb.f2[2] = data2[2]); cf2[4] += (temp_fb.t2[0] = data2[4]); cf2[5] += (temp_fb.t2[1] = data2[5]); cf2[6] += (temp_fb.t2[2] = data2[6]); } // if the user requested so we must copy the feedback information to // the feedback struct that the user suplied. if (fb) { // copy temp_fb to fb fb->f1[0] = temp_fb.f1[0]; fb->f1[1] = temp_fb.f1[1]; fb->f1[2] = temp_fb.f1[2]; fb->t1[0] = temp_fb.t1[0]; fb->t1[1] = temp_fb.t1[1]; fb->t1[2] = temp_fb.t1[2]; if (b2) { fb->f2[0] = temp_fb.f2[0]; fb->f2[1] = temp_fb.f2[1]; fb->f2[2] = temp_fb.f2[2]; fb->t2[0] = temp_fb.t2[0]; fb->t2[1] = temp_fb.t2[1]; fb->t2[2] = temp_fb.t2[2]; } } // if the joint is breakable we need to check the breaking conditions if (jBI) { dReal relCF1[3]; dReal relCT1[3]; // multiply the force and torque vectors by the rotation matrix of body 1 dMULTIPLY1_331 (&relCF1[0],b1->R,&temp_fb.f1[0]); dMULTIPLY1_331 (&relCT1[0],b1->R,&temp_fb.t1[0]); if (jBI->flags & dJOINT_BREAK_AT_B1_FORCE) { // check if the force is to high for (int i = 0; i < 3; i++) { if (relCF1[i] > jBI->b1MaxF[i]) { jBI->flags |= dJOINT_BROKEN; goto doneCheckingBreaks; } } } if (jBI->flags & dJOINT_BREAK_AT_B1_TORQUE) { // check if the torque is to high for (int i = 0; i < 3; i++) { if (relCT1[i] > jBI->b1MaxT[i]) { jBI->flags |= dJOINT_BROKEN; goto doneCheckingBreaks; } } } if (b2) { dReal relCF2[3]; dReal relCT2[3]; // multiply the force and torque vectors by the rotation matrix of body 2 dMULTIPLY1_331 (&relCF2[0],b2->R,&temp_fb.f2[0]); dMULTIPLY1_331 (&relCT2[0],b2->R,&temp_fb.t2[0]); if (jBI->flags & dJOINT_BREAK_AT_B2_FORCE) { // check if the force is to high for (int i = 0; i < 3; i++) { if (relCF2[i] > jBI->b2MaxF[i]) { jBI->flags |= dJOINT_BROKEN; goto doneCheckingBreaks; } } } if (jBI->flags & dJOINT_BREAK_AT_B2_TORQUE) { // check if the torque is to high for (int i = 0; i < 3; i++) { if (relCT2[i] > jBI->b2MaxT[i]) { jBI->flags |= dJOINT_BROKEN; goto doneCheckingBreaks; } } } } doneCheckingBreaks: ; } } /*************************************************************************/ else { // no feedback is required, let's compute cforce the faster way MultiplyAdd1_8q1 (cforce + 8*b1->tag,JJ, lambda+ofs[i], info[i].m); if (b2) { MultiplyAdd1_8q1 (cforce + 8*b2->tag, JJ + 8*info[i].m, lambda+ofs[i], info[i].m); } } } } // compute the velocity update # ifdef TIMING dTimerNow ("compute velocity update"); # endif // add fe to cforce for (i=0; ifacc[j]; for (j=0; j<3; j++) cforce[i*8+4+j] += body[i]->tacc[j]; } // multiply cforce by stepsize for (i=0; i < nb*8; i++) cforce[i] *= stepsize; // add invM * cforce to the body velocity for (i=0; iinvMass; dReal *body_invI = invI + i*12; for (j=0; j<3; j++) body[i]->lvel[j] += body_invMass * cforce[i*8+j]; dMULTIPLYADD0_331 (body[i]->avel,body_invI,cforce+i*8+4); } // update the position and orientation from the new linear/angular velocity // (over the given timestep) # ifdef TIMING dTimerNow ("update position"); # endif for (i=0; ilvel[j]; for (j=0; j<3; j++) tmp_vnew[i*6+3+j] = body[i]->avel[j]; } comparator.nextMatrix (tmp_vnew,nb*6,1,0,"vnew"); # endif # ifdef TIMING dTimerNow ("tidy up"); # endif // zero all force accumulators for (i=0; ifacc[0] = 0; body[i]->facc[1] = 0; body[i]->facc[2] = 0; body[i]->facc[3] = 0; body[i]->tacc[0] = 0; body[i]->tacc[1] = 0; body[i]->tacc[2] = 0; body[i]->tacc[3] = 0; } # ifdef TIMING dTimerEnd(); if (m > 0) dTimerReport (stdout,1); # endif } //**************************************************************************** void dInternalStepIsland (dxWorld *world, dxBody * const *body, int nb, dxJoint * const *joint, int nj, dReal stepsize) { # ifndef COMPARE_METHODS dInternalStepIsland_x2 (world,body,nb,joint,nj,stepsize); # endif # ifdef COMPARE_METHODS int i; // save body state dxBody *state = (dxBody*) ALLOCA (nb*sizeof(dxBody)); for (i=0; i