/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2010 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef BT_TYPED_CONSTRAINT_H #define BT_TYPED_CONSTRAINT_H class btRigidBody; #include "LinearMath/btScalar.h" #include "btSolverConstraint.h" class btSerializer; //Don't change any of the existing enum values, so add enum types at the end for serialization compatibility enum btTypedConstraintType { POINT2POINT_CONSTRAINT_TYPE=3, HINGE_CONSTRAINT_TYPE, CONETWIST_CONSTRAINT_TYPE, D6_CONSTRAINT_TYPE, SLIDER_CONSTRAINT_TYPE, CONTACT_CONSTRAINT_TYPE, D6_SPRING_CONSTRAINT_TYPE, MAX_CONSTRAINT_TYPE }; enum btConstraintParams { BT_CONSTRAINT_ERP=1, BT_CONSTRAINT_STOP_ERP, BT_CONSTRAINT_CFM, BT_CONSTRAINT_STOP_CFM }; #if 1 #define btAssertConstrParams(_par) btAssert(_par) #else #define btAssertConstrParams(_par) #endif ///TypedConstraint is the baseclass for Bullet constraints and vehicles class btTypedConstraint : public btTypedObject { int m_userConstraintType; union { int m_userConstraintId; void* m_userConstraintPtr; }; btScalar m_breakingImpulseThreshold; bool m_isEnabled; bool m_needsFeedback; btTypedConstraint& operator=(btTypedConstraint& other) { btAssert(0); (void) other; return *this; } protected: btRigidBody& m_rbA; btRigidBody& m_rbB; btScalar m_appliedImpulse; btScalar m_dbgDrawSize; ///internal method used by the constraint solver, don't use them directly btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact); static btRigidBody& getFixedBody(); public: virtual ~btTypedConstraint() {}; btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA); btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB); struct btConstraintInfo1 { int m_numConstraintRows,nub; }; struct btConstraintInfo2 { // integrator parameters: frames per second (1/stepsize), default error // reduction parameter (0..1). btScalar fps,erp; // for the first and second body, pointers to two (linear and angular) // n*3 jacobian sub matrices, stored by rows. these matrices will have // been initialized to 0 on entry. if the second body is zero then the // J2xx pointers may be 0. btScalar *m_J1linearAxis,*m_J1angularAxis,*m_J2linearAxis,*m_J2angularAxis; // elements to jump from one row to the next in J's int rowskip; // right hand sides of the equation J*v = c + cfm * lambda. cfm is the // "constraint force mixing" vector. c is set to zero on entry, cfm is // set to a constant value (typically very small or zero) value on entry. btScalar *m_constraintError,*cfm; // lo and hi limits for variables (set to -/+ infinity on entry). btScalar *m_lowerLimit,*m_upperLimit; // findex vector for variables. see the LCP solver interface for a // description of what this does. this is set to -1 on entry. // note that the returned indexes are relative to the first index of // the constraint. int *findex; // number of solver iterations int m_numIterations; //damping of the velocity btScalar m_damping; }; ///internal method used by the constraint solver, don't use them directly virtual void buildJacobian() {}; ///internal method used by the constraint solver, don't use them directly virtual void setupSolverConstraint(btConstraintArray& ca, int solverBodyA,int solverBodyB, btScalar timeStep) { (void)ca; (void)solverBodyA; (void)solverBodyB; (void)timeStep; } ///internal method used by the constraint solver, don't use them directly virtual void getInfo1 (btConstraintInfo1* info)=0; ///internal method used by the constraint solver, don't use them directly virtual void getInfo2 (btConstraintInfo2* info)=0; ///internal method used by the constraint solver, don't use them directly void internalSetAppliedImpulse(btScalar appliedImpulse) { m_appliedImpulse = appliedImpulse; } ///internal method used by the constraint solver, don't use them directly btScalar internalGetAppliedImpulse() { return m_appliedImpulse; } btScalar getBreakingImpulseThreshold() const { return m_breakingImpulseThreshold; } void setBreakingImpulseThreshold(btScalar threshold) { m_breakingImpulseThreshold = threshold; } bool isEnabled() const { return m_isEnabled; } void setEnabled(bool enabled) { m_isEnabled=enabled; } ///internal method used by the constraint solver, don't use them directly virtual void solveConstraintObsolete(btRigidBody& /*bodyA*/,btRigidBody& /*bodyB*/,btScalar /*timeStep*/) {}; const btRigidBody& getRigidBodyA() const { return m_rbA; } const btRigidBody& getRigidBodyB() const { return m_rbB; } btRigidBody& getRigidBodyA() { return m_rbA; } btRigidBody& getRigidBodyB() { return m_rbB; } int getUserConstraintType() const { return m_userConstraintType ; } void setUserConstraintType(int userConstraintType) { m_userConstraintType = userConstraintType; }; void setUserConstraintId(int uid) { m_userConstraintId = uid; } int getUserConstraintId() const { return m_userConstraintId; } void setUserConstraintPtr(void* ptr) { m_userConstraintPtr = ptr; } void* getUserConstraintPtr() { return m_userConstraintPtr; } int getUid() const { return m_userConstraintId; } bool needsFeedback() const { return m_needsFeedback; } ///enableFeedback will allow to read the applied linear and angular impulse ///use getAppliedImpulse, getAppliedLinearImpulse and getAppliedAngularImpulse to read feedback information void enableFeedback(bool needsFeedback) { m_needsFeedback = needsFeedback; } ///getAppliedImpulse is an estimated total applied impulse. ///This feedback could be used to determine breaking constraints or playing sounds. btScalar getAppliedImpulse() const { btAssert(m_needsFeedback); return m_appliedImpulse; } btTypedConstraintType getConstraintType () const { return btTypedConstraintType(m_objectType); } void setDbgDrawSize(btScalar dbgDrawSize) { m_dbgDrawSize = dbgDrawSize; } btScalar getDbgDrawSize() { return m_dbgDrawSize; } ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). ///If no axis is provided, it uses the default axis for this constraint. virtual void setParam(int num, btScalar value, int axis = -1) = 0; ///return the local value of parameter virtual btScalar getParam(int num, int axis = -1) const = 0; virtual int calculateSerializeBufferSize() const; ///fills the dataBuffer and returns the struct name (and 0 on failure) virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; }; // returns angle in range [-SIMD_2_PI, SIMD_2_PI], closest to one of the limits // all arguments should be normalized angles (i.e. in range [-SIMD_PI, SIMD_PI]) SIMD_FORCE_INLINE btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians) { if(angleLowerLimitInRadians >= angleUpperLimitInRadians) { return angleInRadians; } else if(angleInRadians < angleLowerLimitInRadians) { btScalar diffLo = btFabs(btNormalizeAngle(angleLowerLimitInRadians - angleInRadians)); btScalar diffHi = btFabs(btNormalizeAngle(angleUpperLimitInRadians - angleInRadians)); return (diffLo < diffHi) ? angleInRadians : (angleInRadians + SIMD_2_PI); } else if(angleInRadians > angleUpperLimitInRadians) { btScalar diffHi = btFabs(btNormalizeAngle(angleInRadians - angleUpperLimitInRadians)); btScalar diffLo = btFabs(btNormalizeAngle(angleInRadians - angleLowerLimitInRadians)); return (diffLo < diffHi) ? (angleInRadians - SIMD_2_PI) : angleInRadians; } else { return angleInRadians; } } ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 struct btTypedConstraintData { btRigidBodyData *m_rbA; btRigidBodyData *m_rbB; char *m_name; int m_objectType; int m_userConstraintType; int m_userConstraintId; int m_needsFeedback; float m_appliedImpulse; float m_dbgDrawSize; int m_disableCollisionsBetweenLinkedBodies; char m_pad4[4]; }; SIMD_FORCE_INLINE int btTypedConstraint::calculateSerializeBufferSize() const { return sizeof(btTypedConstraintData); } class btAngularLimit { private: btScalar m_center, m_halfRange, m_softness, m_biasFactor, m_relaxationFactor, m_correction, m_sign; bool m_solveLimit; public: /// Default constructor initializes limit as inactive, allowing free constraint movement btAngularLimit() :m_center(0.0f), m_halfRange(-1.0f), m_softness(0.9f), m_biasFactor(0.3f), m_relaxationFactor(1.0f), m_correction(0.0f), m_sign(0.0f), m_solveLimit(false) {} /// Sets all limit's parameters. /// When low > high limit becomes inactive. /// When high - low > 2PI limit is ineffective too becouse no angle can exceed the limit void set(btScalar low, btScalar high, btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f); /// Checks conastaint angle against limit. If limit is active and the angle violates the limit /// correction is calculated. void test(const btScalar angle); /// Returns limit's softness inline btScalar getSoftness() const { return m_softness; } /// Returns limit's bias factor inline btScalar getBiasFactor() const { return m_biasFactor; } /// Returns limit's relaxation factor inline btScalar getRelaxationFactor() const { return m_relaxationFactor; } /// Returns correction value evaluated when test() was invoked inline btScalar getCorrection() const { return m_correction; } /// Returns sign value evaluated when test() was invoked inline btScalar getSign() const { return m_sign; } /// Gives half of the distance between min and max limit angle inline btScalar getHalfRange() const { return m_halfRange; } /// Returns true when the last test() invocation recognized limit violation inline bool isLimit() const { return m_solveLimit; } /// Checks given angle against limit. If limit is active and angle doesn't fit it, the angle /// returned is modified so it equals to the limit closest to given angle. void fit(btScalar& angle) const; /// Returns correction value multiplied by sign value btScalar getError() const; btScalar getLow() const; btScalar getHigh() const; }; #endif //BT_TYPED_CONSTRAINT_H